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Kapitel 1

Alphabete, Worter, Sprachen

Wenn man sich mit der Funktionsweise von Rechnern (Computern) genauer beschéftigt, stellt man
fest, dass Rechner im Grunde eine Transformation von Eingabedaten in Ausgabedaten realisieren.
Sowohl die Eingabedaten als auch die Ausgabedaten lassen sich als Texte darstellen. Die Texte
sind nichts anderes als Folgen von Symbolen aus einem bestimmten Alphabet. Programme kénnen
als Folge von Symbolen der Computertastatur dargestellt werden. In digitalen Rechnern sind alle
Informationen als Folgen von Einsen und Nullen gespeichert. Damit realisiert der Rechner eine
Transformation von Eingabetexten in Ausgabetexte.

In diesem Kapitel wollen wir den Formalismus fiir den Umgang mit Texten kennenlernen. Wir wer-
den die fundamentalen Begriffe Alphabet, Wort und Sprache einfiihren. Diese werden uns spéter
helfen, bekannte Probleme der Informatik wie beispielsweise das Entscheidungsproblem mathema-
tisch sauber zu formulieren.

Dieses Kapitel folgt dem Abschnitt 2.2 aus dem Buch' sehr nahe. Es wurden einige Aufgaben,
welche als Hilfestellung dienen, hinzugefiigt und kleine Teile ausgelassen.

1.1 Alphabete, Worter, Sprachen

Definition 1.1 (Alphabet):
Fine endliche nichtleere Menge . heisst Alphabet. Die Elemente eines Alphabets werden
Buchstaben (Zeichen, Symbole) genannt.

Wir werden spéter Alphabete verwenden, um eine schriftliche Darstellung einer Sprache zu erzeugen.
Definition 1.1, entspricht unserer intuitiven Vorstellung eines Alphabets: Um Text darstellen zu
konnen, muss ein Alphabet mindestens ein Symbol enthalten (— nichtleer). Damit man sich auf
einen fixen Satz von Zeichen einigen kann, darf das Alphabet nicht unendlich gross sein (— endlich).

Wir listen nun einige der Alphabete auf, die in der Mathematik und Informatik hiufig verwendet
werden.

Beispiel 1.1: (a) Yp001 = {0,1} ist das Boole’sche Alphabet, mit dem digitale Rechner
arbeiten.
(b) Yyt = {a,b,c,...,2,A,B,...,Z} ist das lateinische Alphabet.
(¢) Etastatur = {a,b,¢,...,2,A,B,C,....Z,,,>,<,(,),...,#, 7,1} ist das Alphabet aller

1J. Hromkovic: Theoretische Informatik. 5. Auflage, Springer Vieweg 2014., ISBN: 978-3-658-06432-7
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Symbole, die mit der englischen Tastatur getippt werden kénnen. Dabei ist |, das Symbol
fiir das Leerzeichen / Leersymbol.

(d) Xgreek = {a, B,7,...,w, A, B,T,...,Q} ist das griechische Alphabet.

(e) Ly ={neN; n<m} fir jede fixe Wahl von m € N\ {0}, ist ein Alphabet fir die
m-~adische Darstellung von Zahlen.

Wérter werden wir als endliche Folgen von Buchstaben ansehen.

Definition 1.2 (Wort):

Sei X ein Alphabet. Ein Wort iiber X ist eine endliche (moglicherweise leere) Folge von
Buchstaben aus 3. Das leere Wort X ist die leere Buchstabenfolge. Die Linge |w| eines Wortes
w ist die Lange des Wortes als Folge, das heisst die Anzahl der Vorkommen von Buchstaben
in w.

Beispiel 1.2: (a) w =1,0,0,1,0 ist ein Wort iiber dem Alphabet ¥1,,0 und |w| =5, da w
eine Folge von 5 Buchstaben ist.
(b) w= M, ,,jist ein Wort liber Epastatur und |u| = 3, da u eine Folge von 3 Buchstaben
ist.
(c) Das leere Wort A ist ein Wort iiber jedem Alphabet und es gilt |A| = 0.

= Aufgabe 1.1

Was ist 17

Definition 1.3 (Stern-Operator):

Sei ¥ ein Alphabet. ¥* (gesprochen: Sigma Stern) ist die Menge aller Worter tiber X, also
die Menge aller endlichen Folgen von Symbolen aus . Man nennt ¥* auch den Kleene’schen
Stern” von X. ¥ = ¥* \ {\} ist die Menge aller Worter {iber ¥ ohne das leere Wort.

“benannt nach dem US-Amerikanischen Mathematiker Stephen Cole Kleene

Wir werden im Folgenden Woérter ohne Kommmas schreiben. Anstelle von 1,0,0,1,0 werden wir
lediglich 10010 schreiben. Allgemein, werden wir anstelle von x1, x2, . . ., &, einfach 12 . . . x,, schrei-
ben.

Bemerkung 1.1:

In der deutschen Sprache existieren die zwei Ausdriicke ,Worter“ und ,,Worte®“. Dies sind
keine Synonyme. Wérter bezeichnet den Plural von Wort (,Im Duden stehen viele Worter®).
Der Ausdruck Worte bezieht sich auf Gedankenkonstrukte (,,Sie sprach weise Worte*).

Wir kénnen Worter benutzen, um mathematische Objekte wie Zahlen, Formeln, Graphen und Com-
puterprogramme darzustellen. Ein Wort © = x122 ... 2, € (Zpool)” kann als bindre Darstellung der
Zahl

n
Nummer(z) = Z T (1.1)
k=1

betrachtet werden.
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[#' Aufgabe 1.2

Sei = 1011. Berechnen Sie Nummer(x).

Fiir eine Zahl m € N\ {0} wird mit Bin(m) € (Zpoo1)” die kiirzeste bindre Darstellung von m
bezeichnet, also gilt Nummer (Bin(m)) = m. Man setzt Bin(0) = 0.

[#' Aufgabe 1.3

Wie sehen die folgenden Mengen aus?

(a) {1}
(b) (Ebool)*

@ Aufgabe 1.4

In Definition 1.2, haben wir ein Wort als endliche Folge von Buchstaben definiert. Nun enthalt
zum Beispiel die Menge {1} in Aufgabe 1.3 aber Worter beliebiger Linge. Erkliren Sie,
warum dies kein Widerspruch ist.

Da Alphabete insbesondere auch Mengen sind, kann man auch das kartesische Produkt von Alpha-
beten bilden.

Beispiel 1.3:
Sei X1 = {g,h} und Xy = {z,y}, dann ist das kartesische Produkt ¥; x¥9 = {(g, ), (g,v), (h,z), (h,y)}.

Wir werden nun eine Operation einfithren, welche uns erlaubt Worter zu verketten. Diese Operation
werden wir sehr haufig verwenden.

7

Definition 1.4 (Verkettung / Konkatenation):
Die Verkettung (Konkatenation) fiir ein Alphabet 3 ist eine Abbildung Kon: ¥* x ¥* —
¥*, sodass

Kon(z,y) =z -y ==zy

fiir alle z,y € X*.

Beispiel 1.4:
Sei ¥ = 8,9, d, e und seien x = €899dd und y = de8, dann ist Kon(z,y) = = - y = e899ddde8.

\

Wir werden fast ausnahmslos zy schreiben und nur selten z - y oder Kon(z,y).

[#' Aufgabe 1.5

Erlautern Sie in Thren eigenen Worten, was die Bedeutung des Ausdrucks X* x ¥* — >* in
Definition 1.4 ist.

Die Verkettung Kon iiber % ist assoziativ iiber ¥*, da offensichtlich

Kon(z,Kon(y,2)) =z - (y-2) =xyz = (x - y) - z = Kon(Kon(z,y), 2)
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gilt, fir alle x,y, z € X*.

[# Aufgabe 1.6

Bei der Multiplikation in den reellen Zahlen ist die Zahl 1 € R das neutrale Element, da
1l-xz=z-1=z fir alle z € R gilt. Welches ist das neutrale Element der Addition in den
reellen Zahlen?

Fiir jedes x € X* gilt
T A==z

Damit ist A das neutrale Element der Verkettung iiber >*.

@ Aufgabe 1.7

Sei # = a01b und y = c21. Bestimmen Sie |z|, |y| und |zy|. Seien allgemein z,y € ¥* zwei
Worter fiir ein Alphabet . Finden Sie einen Ausdruck fiir |zy|.

Definition 1.5 (Umkehrung / Reversal):
Sei n eine natiirliche Zahl. Fiir ein Wort x = z1x9... 2y, mit z; € X fir ¢ € {1,2,...,n}
bezeichnet zf* = z,z,,_1 ...z die Umkehrung (Reversal) von .

Beispiel 1.5:
Es sei w := abede. Dann gilt w’ = edcba.

\.

= Aufgabe 1.8

Sei ¥ ein Alphabet und u,v € ¥* zwei Worter. Beweisen oder widerlegen Sie die Aussage:

(uv)® = vy ®

Definition 1.6 (Iteration eines Wortes):
Sei ¥ ein Alphabet. Fiir alle z € ¥* und alle i € N definieren wir die i-te Iteration z* von x
als

Beispiel 1.6:
Sei ¥ = {a, b, c}. Wir kénnen nun schreiben:

aCL:CLQ

abababab = (ab)*
cbbbbbab = cb®ab = ¢(bb)*bab

\.

Mit der folgenden Definition wollen wir den Begriff Teilwort, fiir den wir eine gute Intuition haben,
formalisieren. Ein Teilwort eines Wortes x ist ein zusammenhéngender Teil von x.
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Definition 1.7 (Teilworter):
Seien u,w € ¥* fiir ein Alphabet .

e v heisst Teilwort von w < es existieren =,y € ¥*, sodass w = zvy

e v heisst Prafix von w < es existiert x € ¥*, sodass w = vz

e o heisst Suffix von w < es existiert x € X*, sodass w = zv

o v # X heisst echtes Teilwort (Préfix, Suffix) von w < v # w und v ein Teilwort (Préfix,
Suffix) von w ist

[#' Aufgabe 1.9

Es seien ¥ := {a,b,c} und w := abe ein Wort iiber ¥. Bestimmen Sie alle Teilworter von w.
Welche dieser Teilworter sind auch Prafixe von w?

Beispiel 1.7:

Sei ¥ = {a, b, c}. Das Wort abc ist ein echtes Teilwort, echtes Préifix und ein echtes Suffix von
(abc)?. Das leere Wort A ist Teilwort von jedem Wort. Jedes Wort ist Teilwort von sich selbst
(aber kein echtes Teilwort).

W Aufgabe (Challenge) 1.10

Es sei x ein Wort der Lange n € N, welches aus lauter verschiedenen Buchstaben besteht
(also aus n verschiedenen Buchstaben). Wie viele verschiedene Teilworter hat =7

Wir wollen an dieser Stelle noch eine weitere nutzliche Schreibweise definieren.
Sei z € ¥* und a € ¥, dann ist |z|, definiert als die Anzahl der Vorkommen von a in .

Beispiel 1.8:
Sei v = babaac, dann ist |v|, =3, |v|, = 2 und |v|, = 1. Offensichtlich gilt fir alle x € ¥*

Nun kommen wir zur Definition einer Sprache. Dies wird fiir uns einer der wichtigsten Begriffe sein.

Definition 1.8 (Sprache):
Eine Sprache L iiber einem Alphabet ¥ ist eine Teilmenge von ¥*. Das Komplement L¢
der Sprache L beziiglich ¥ ist die Sprache ¥* \ L.

o Ly = () ist die leere Sprache.
o Ly = {\} ist die einelementige Sprache, die nur aus dem leeren Wort besteht.

Sind L1 und Lo Sprachen iiber X, so bezeichnet
L1~L2:L1L2:{Uw; vELlundwELg}

die Konkatenation von L; und Ls.
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Ist L eine Sprache iiber %, so definieren wir die Iterationen

LV =L,, L' = L". Lfirallei € N,

L'=JL'wnd LT = | J L' L.
€N €N

Beispiel 1.9:
Die folgenden Mengen sind Beispiele von Sprachen iiber ¥ = {a, b}.

e L1 =10

o Ly={A}

o Ly=Y*={\a,b,aa,...}

o Ly=%"={a,b,aaq,...}

(] L5 = 2

o Lg={aP; pist eine Primzahl }

e Ls={a}" ={\ a,aa,aaa,aaqaaq,...}
e %2 = {aa,ab,ba,bb}

\.

Man beachte, dass %! = { x € $* ; |x| = i } fiir eine natiirliche Zahl i, und dass Ly-L = 0, Lx-L = L.

7

Beispiel 1.10:

e Die Menge aller grammatikalisch korrekten englischen Texte ist eine Sprache iiber

ETastatur-
e Die Menge aller syntaktisch korrekten Programme in C++ ist auch eine Sprache iiber

ETastatur .

\.

g Aufgabe 1.11

Sei L1 = {\,a,b} und sei Ly = {a4, a2b}. Welche Worter Liegen in der Sprache Ly = L1 Ly?

W Aufgabe (Challenge) 1.12

Sei k € N. Geben Sie ein Alphabet ¥ und zwei Sprachen L; und Ls iiber ¥ an, sodass

|L1| =k und |L1L2| =k+1.
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1.2 Losungen der Aufgaben

v/ Losungsvorschlag zu Aufgabe 1.1 v/

Y0 =1{0,1,2,...,9}

ist das Alphabet fiir die Darstellung von Zahlen im Dezimalsystem.

v Losungsvorschlag zu Aufgabe 1.2 v

4
Nummer(z) = Nummer (101 ):Zxk-24*k:1-23+0-22+1~21+ M =8+2+1=11
k=1

Vv Losungsvorschlag zu Aufgabe 1.3 v

(1} = {)\,1,11,111, 1111, 11111,.. .} =
={\MU{zz.. 2y ieN, zj=1furj=1,2,...,i}

(Ebool)* = {0, 1}* ={\,0,1,00,01,10,11,000,001,010,100,011,...} =
={ANU{xz0...25; i €N, Tj € Ypoot fiir j =1,2,...,0 }

Vv Losungsvorschlag zu Aufgabe 1.4 v

Anhand dieser Frage ladsst sich der Unterschied zwischen den Begriffen unbeschrinkt und unendlich
schén verdeutlichen. Betrachten wir dazu exemplarisch nochmals die Menge {1}* aus Aufgabe 1.3:

{1} = {\,1,11,111, 1111, 11111,...} =
={NMU{ziz2...05;i€eN, z;=1firj=1,2,...,i}

o Fiir jede natiirliche Zahl n € N, existiert in {1}" ein Wort w mit |w| > n, da fiir jedes n € N
(insbesondere) auch das Wort w := 1" in der Menge {1}* enthalten ist und |w| > n. Damit
gibt es keine obere Schranke fiir die Linge der Worter in {1}

o Jedes Wort w € {1}" hat die Form w = 1" fiir eine natiirliche Zahl n. Damit hat jedes Wort
in der Menge {1}* eine endliche Linge.

Die Lange der Worter in {1}" konnen also nicht nach oben beschrinkt werden, trotzdem hat jedes

Wort in {1}* eine endliche Linge und ist somit tatséichlich ein Wort im Sinne von Definition 1.2.
v/ Losungsvorschlag zu Aufgabe 1.5 v

Wir haben zwei Worter  und y iber dem Alphabet 3. Weil X* die Menge aller Worter iiber 3 ist,

gilt offensichtlich x, y € ¥*. Aus den zwei Woértern z und y wird nun ein neues Wort xy gebildet. Man

beachte, dass die Reihenfolge xy # yx (im Allgemeinen) eine Rolle spielt. Die Verkettung nimmt

also ein geordnetes Paar (z,y) € (£* x ¥*) (dies ist gerade die Menge aller geordneten Paare von
Wortern iiber ) und bildet dieses auf ein neues Wort zy € X* ab.

Vv Losungsvorschlag zu Aufgabe 1.6 v/
Die Zahl0 e R, da 0+ =2z + 0 = z fir alle z € R.
v/ Losungsvorschlag zu Aufgabe 1.7 v
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Offensichtlich sind |z| = |a01b| = 4 und |y| = |¢21| = 3 und somit |xy| = |a01bc21| = 7.
Seien x,y € ¥* zwei Worter iiber einem Alphabet . Dann gilt

lzy| = |=| + |y .

v/ Losungsvorschlag zu Aufgabe 1.8 v/

Da u und v Wérter sind, haben sie endliche Léngen. Wir definieren n und m als n := |u| und m := |v|.
Dann hat v die Form u = wqus...u, und v = vivs ... vy, Wwobel ui,us, ..., Uy, V1, V2, ..., Uym € 2.
Damit ist

UV = ULUD . . . UpV1V2 . .. U,

und somit

)R R, R

(uv)™ = Uy« . VULUY, - . uguy = VU,

B— pp .. oo und uft =y, . . uguy gilt.

da v
v/ Losungsvorschlag zu Aufgabe 1.9 v
Die Menge der Teilworter von w ist
{\ a,b,c,ab,be,abc},
wobei nur {\, a, ab, abc} auch Prifixe von w sind.

v Losungsvorschlag zu Challenge 1.10 v

Wir diirfen annehmen, dass x die Form xz = ajas ... a, hat. Wir werden die Anzahl der Teilworter
von x der Lange i = 1,7 = 2 bis zur Lange ¢ = n zéhlen.

1= 1:
a1a2a304 . ..0An—-30n—20n—10n
a1a20a304 . . . p—30np—-20n—10n
a1G2G304 - . - Ap—30n—20n—10n
(n—3): aia2asaq...Gan_304n_20n_10y
(n—2): ajagasay...Gap—30,—20n_10y
(n,—»l) aj1aga3ay .. .QAp—_30p—20n_10n
n: o aija2asza4...0anpn-30n—20n—-10n
Offensichtlich gibt es n viele Teilworter der Lénge 1, ndmlich genau die Teilworter aq, as, ..., ay,.

Wir haben jeweils die Anfangsposition des Teilwortes in x unterstrichen.

1= 2:

a102a304 . . . Ap—-30n—-20n—10n
1420304 . . . Ap—30n—20np—10n,

a1a2a304 . . . Ap—30n—20n—10n

(n—3): ajagasay...an_30,_20n_10y
(n—2): aiagasay...ap_3a4n_20,_10y

(n—1): ajagasay...an—30n—20,_10y
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Es gibt n—1 viele Teilworter der Lange 2. Man beachte, dass sich die Anfangsposition der Teilworter
in  um eine Position nach links verschoben hat, da das letzte Teilwort (ganz rechts) der Lénge 2
beim zweitletzten Symbol in & beginnen muss.

1= 3:

a102a304 . . . Ap—30n—20n—10n

2: a10203a4...0p—30p_20n_10n

(n - 3) L a1a2a304 ... Ap—-30p—20np—10n

(n—2): aiagasay...ap_3a4n_20,_10y
Es gibt n — 2 viele Teilworter der Lange 3.

Nun nicht mehr schwierig zu sehen, dass es fur ein Teilwort der Lange i € {1,2,...,n} genaun—i+1
mogliche Anfangspositionen in x gibt, da die Positionen n — i + 2,3, ..., n nicht moglich sind (,,zu
wenig Platz“). Wir summieren jetzt die Anzahl aller unterschiedlichen (nicht leeren) Teilworter von
x der Langen i =1,2,...,n:

- n(n+1) n(n+1)

Z(n—i—l—l):n(n+1)—2i:n(n+1)_ 5 _ >
i=1 i=1

Hinzu kommt noch das leere Wort (welches Teilwort jedes Wortes ist) und als Resultat finden wir,
dass es

n(n+1)

1
5 +

viele verschiedene Teilworter von x gibt.
v/ Losungsvorschlag zu Aufgabe 1.11 v

Ly = {a4,azb, a®, a’b, ba4,ba2b}

Bitte beachten Sie unbedingt, dass zwar aa* = a® aber ba’b # a?b?, da ba?b = baab # a*b*> = aabb.

v Losungsvorschlag zu Challenge 1.12 v/
Wir wéhlen ¥ = {0} und
Ly = {01,02,...,0k} :{oi; 1 gigk}
und
Ly = {\,0}.
Dann gilt
Ly-Ly=1L;-{\}UL;-{0}
:Llu{oio; 1§i§k‘}
:Llu{oi; 2§i§k+1}
:{Oi; 1§i§k+1},
und somit | L Lo| = k + 1.

Alternativ kénnten Sie Ly auch definieren als Ly = {a,aa} (ohne L; zu verédndern).

10


mailto:thomas.graf@edu.zh.ch

Endliche Automaten O Thomas Graf, Informatik, 2026

1.3 Kapiteltest

= Aufgabe 1.13

Markieren Sie die zutreffende(n) Antwort(en).

(a) Es sei ¥ ein Alphabet.
(1 >* ist eine unendliche Menge.
[] ¥* ist eine endliche Menge.
0 ¥* ist keine Menge.
(b) Es seien X1, X9 Alphabete. Seien L; eine endliche Sprache iiber ¥; und L eine endliche
Sprache iiber 5. Dann gilt
O |Ly1Lo| < |La] - |Lel.
O |LiLo| = |La| - [Lo|.
O ’L1L2’ > ’Ll‘ o ’LQ’
O |LyLa| # |L1] - | L2l
(¢) O Xist Element jedes Alphabets
O X ist ein Wort tiber jedem Alphabet
O A =0
O X ist Suffix jedes Wortes iiber jedem Alphabet

I r

[#' Aufgabe 1.14

Gegeben sei eine natiirliche Zahl n. Bestimmen Sie die Anzahl der Worter iiber Xy, der
Lange n, welche

(a) das Teilwort 01 nicht enthalten.
(b) weder das Teilwort 01 noch das Teilwort 00 enthalten.
(c) das Teilwort 00 nicht enthalten (schwierig!).

= Aufgabe 1.15

I r
J

(a) Es sei L := {a,ab,ba}. Bestimmen Sie die Sprache L?. Zur Erinnerung: L? := L - L
(Konkatenation einer Sprache mit sich selbst).
(b) Existiert eine nichtleere endliche Sprache L # {A} tiber ¥y,401, welche die Gleichung
L=1I?

erfiillt? Begriinden Sie Ihre Antwort.

@ Aufgabe 1.16 .

Beweisen oder widerlegen Sie folgende Gleichung;:

({0.1)" = ({0, 13)°.

11
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1.4 Losungen zum Kapiteltest
v/ Losungsvorschlag zu Aufgabe 1.13 v/

(a) Es sei 2 ein Alphabet.
¥ ©* ist eine unendliche Menge.
[0 ¥* ist eine endliche Menge.
] ¥* ist keine Menge.
(b) Es seien Xp,39 Alphabete. Seien L; eine endliche Sprache tiber ¥; und Ls eine endliche
Sprache iiber ¥o. Dann gilt
S |LiLo| < |Ly - | Lol
O [LiLa| = L] - |Lal.
O |L1L2| > |L1| : ’L2|.
O |L1Lo| # |La] - [ Lol
(¢) O Xist Element jedes Alphabets
¥ X ist ein Wort iiber jedem Alphabet
A =0
¥ X ist Suffix jedes Wortes tiber jedem Alphabet
v/ Losungsvorschlag zu Aufgabe 1.14 v

(a) Enthélt ein bindres Wort w der Linge n € N nicht 01 als Teilwort, dann hat w die Form
w = 1%0™ fiir zwei natiirliche Zahlen k, m, welche die Gleichung k 4+ m = n erfiillen. Somit ist
ein solches Wort durch die Wahl von k eindeutig bestimmt. Fiir £ gelten die Ungleichungen
0 < k < n. Somit gibt es genau n + 1 mogliche Wahlméoglichkeiten fiir £ und damit also genau
n + 1 solche (gesuchten) Worter der Lange n.

(b) Wir haben in Teil (a) gesehen, dass jedes Wort mit Lange, welches 01 nicht als Teilwort enthalt,
die Form 1*0™ haben muss mit k& + m = n. Alle Worter fiir n < 1 erfiillen diese Bedingung.
Es gibt ein Wort der Lange 0 und zwei Worter der Lange 1, welche diese Bedingung erfiillen.
Sei nun n > 2. Die einzigen solchen Worter, welche nicht 00 als Teilwort enthalten, sind 1”710
und 1™. Also, gibt es fiir n > 2 genau zwei solche Worter.

v/ Losungsvorschlag zu Aufgabe 1.15 v/
(a) Essei L := {a,ab,ba}. Dann ist L? gegeben durch

L= {aQ, a’b, aba, (ab)?, ab’a, ba®, ba’b, (ba)2} .

(b) Nein, eine solche Sprache existiert nicht. Angenommen es gébe eine solche Sprache L. Da L
nichtleer ist, existiert in L ein Wort w € L maximaler Lange, also |w| = max{ |u| ; u € L}
und es gilt |w| > 1. Da L? = L, gilt w? € L. Doch dann gilt |w?| = 2 |w| > |w| und somit ist
w nicht das langste Wort in L. Dies ist ein Widerspruch.

v/ Losungsvorschlag zu Aufgabe 1.16 v
*

Die beiden Mengen sind verschieden. Offensichtlich gilt 0 € ({0, 1}*)2 aber 0 ¢ ({07 1}2>
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Kapitel 2

Algorithmische Probleme

Der Titel dieses Kapitels stellt uns vor ein kleines Dilemma. Wir méchten in diesem Kapitel bereits
iiber algorithmische Probleme sprechen, bevor wir den Begriff Algorithmus in einem spéteren Kapitel
formal durch das Modell der Turingmaschine definieren werden. Aus diesem Grund werden wir
anstelle von Algorithmus den Begriff Programm verwenden. Dabei setzen wir voraus, dass die Leserin
/ der Leser eine gewisse intuitive Vorstellung von Programmen hat (die Programmiersprache spielt
dabei keine Rolle).

Wenn wir Programme als Algorithmen anschauen, werden wir jedoch zusétzlich fordern, dass solch
ein Programm fiir jede zulédssige Eingabe seine Arbeit in endlicher Zeit beendet (also nicht unendlich
lange lauft) und eine Ausgabe liefert. Insbesondere ist es einem Algorithmus nicht gestattet in einer
Endlosschleife zu laufen. Wenn ein Programm nach endlicher Zeit seine Arbeit beendet, sagt man
auch, dass das Programm hdlt.

Unter diesen Bedingungen realisiert ein Programm (Algorithmus) A typischerweise eine Abbildung
A: X = %5
fir Alphabete ¥; und X,. Dies sagt aus, dass

o sowohl die Eingaben als auch die Ausgaben fiir das Programm (Algorithmus) als Worter
kodiert sind und
e A fiir jede Eingabe eine eindeutige Ausgabe bestimmt.

Fiir jeden Algorithmus A und jede Eingabe = bezeichnen wir mit A(z) die Ausgabe des Algorithmus
A fiir die Eingabe = (das Resultat, welches der Algorithmus fiir die Eingabe x berechnet).

Definition 2.1 (Aquivalenz von Algorithmen):

Man sagt, dass zwei Algorithmen (Programme) A und B &quivalent sind, falls beide iiber
dem gleichen Eingabealphabet ¥ arbeiten und A(x) = B(x) fiir alle z € ¥* gilt.

Zwei Algorithmen sind also genau dann dquivalent, wenn sie das gleiche Eingabealphabet
haben und auf allen moglichen Eingaben die gleiche Ausgabe liefern. Dabei spielt es keine
Rolle, wie die jeweiligen Algorithmen ihre Ausgaben berechnen.

Wir werden im Folgenden einige sehr bekannte und wichtige algorithmische Probleme kennenlernen.

13
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2.1 Das Entscheidungsproblem

Das Entscheidungsproblem hat eine besonders simple Formulierung und wird typischerweise ver-
wendet, um die Theorie der Berechenbarkeit zu entwickeln.

Definition 2.2 (Entscheidungsproblem):
Das Entscheidungsproblem (X, L) fiir ein gegebenes Alphabet 3 und eine gegebene Spra-
che L C ¥* ist, fir jedes x € ¥* zu entscheiden, ob

r€L oder z¢L.

Ein Algorithmus A 16st das Entscheidungsproblem (X, L), falls fir alle x € ¥* gilt:

1, fall L
Aw) = & alls z €
0, fallsx ¢ L.

Das Entscheidungsproblem ist also ein geordnetes Paar (X, L) eines Alphabets ¥ und einer
Sprache L (tiber X).

Man sagt auch, dass A die Sprache L erkennt. Wenn fiir eine Sprache L ein Algorithmus existiert,
der L erkennt, dann nennt man die Sprache L rekursiv.

Wir verwenden eine Sprache L C ¥* hiufig, um gewisse Eigenschaften von Woértern zu erzwingen.
Die Worter in der Sprache L haben diese geforderte Eigenschaft und alle Worter im mengentheore-
tischen Komplement L¢ = ¥* \ L haben diese Eigenschaft nicht. In dieser Betrachtungsweise kann
man ein Entscheidungsproblem auch wie folgt darstellen:

o Eingabe: x € ¥*.
o Ausgabe: A(z) € Y01 = {0,1}, wobei gilt

Alx) = 1, fallsxz € L (Ja, z hat die Eigenschaft),
~ 10, fallsz ¢ L (Nein, z hat die Eigenschaft nicht).

Wir werden nun einige Beispiele von Sprachen geben, welche gewisse (interessante) Eigenschaften
fordern.

Beispiel 2.1:

Sei 1 = {0,1} = Zpoo1. Wir definieren L1 = { x € 3% ; = = v, fiir einv € {0,1}" }. In der
Sprache L liegen alle bindren Worter (alle endlichen Folgen von Nullen und Einsen), die
mit einer 1 beginnen (die 1 als Préfix haben). Seien beispielsweise z; = 110011, 9 = 1 und
x3 = 011110. Dann gilt x1, 22 € Ly aber x3 ¢ Ly. Das zugehorige Entscheidungsproblem ist
das geordnete Paar (X1, L1).

Beispiel 2.2:

Sei 3o = {#, o, B}. Wir definieren Ly = { x € 35 ; x = (a#)", fir ein n € N }. In der Spra-
che Lo liegen also alle Worter der Form (a#)" fiir eine natiirliche Zahl n. Das zugehérige
Entscheidungsproblem lautet (X2, Lo). Das kiirzeste Wort in Lo ist A, das zweitkiirzeste ist
a# und das drittkiirzeste ist a#ta# = (a#)2.
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Beispiel 2.3:
Eines der bekanntesten Entscheidungsprobleme ist der Primzahltest. Fiir eine natiirliche Zahl
n mochte man entscheiden, ob n eine Primzahl ist. Der Primzahltest entspricht dem Entschei-
dungsproblem

(Xbool, { € (Zbool)™ ; Nummer(z) ist eine Primzahl }).

Haufig wird dieses wichtige Entscheidungsproblem wie folgt dargestellt:

o Eingabe: z € (X001)*.

e Ausgabe:
— Ja, falls Nummer(x) eine Primzahl ist.
— Nein, sonst.

Beispiel 2.4:

Die GNU Compiler Collection® (GCC) umfasst (unter anderem) ein C++ Compiler. Ein C++
Compiler ist ein spezielles Computerprogramm, welches als Input ein in der Programmier-
sprache C++ geschriebenes Programm erhélt, und dieses Programm in ein, fiir den Computer
yverstandliches* Programm, umwandelt.

FEine Teilaufgabe des Compilers ist zu priifen, ob ein gegebenes C++ Programm syntaktisch
korrekt ist. Ein Programm ist syntaktisch korrekt, wenn es keine zwingenden Regeln seiner
entsprechenden Programmiersprache verletzt. Ein typisches Beispiel eines syntaktischen Feh-
lers ist das Offnen einer linken Klammer ,(“, die aber nirgends im Programm durch eine
rechte Klammer ,,)“ geschlossen wird.

Achtung: Syntaktische Korrektheit eines Programms P garantiert lediglich, dass P die zwin-
genden Regeln seiner Programmiersprache nicht verletzt. Es wird nicht garantiert, dass P ein
sinnvolles Programm ist.

Wir definieren Lc.+ als die Sprache aller syntaktisch korrekter C++ Programme:

Levs = { © € (BTastatur)” ; @ ist ein syntaktisch korrektes Programm in C++ }

Das entsprechende Entscheidungsproblem lautet:

o Eingabe: z € (Ztastatur)”-
e Ausgabe:

— Ja, falls € Lcis.

— Nein, sonst.

Man beachte, dass jedes Computerprogramm als ein Wort iiber dem Alphabet der Compu-
tertastatur aufgefasst werden kann — schliesslich ist jedes Programm nichts weiter als eine
endliche Folge von Symbolen der Tastatur.

“https://de.wikipedia.org/wiki/GNU_Compiler_Collection

2.2 Graphen

FEinige sehr interessante Probleme und Konzepte lassen sich besonders gut durch Graphen model-
lieren. Um ein Gefiihl fiir Graphen zu erhalten, betrachten wir Zugverbindungen zwischen den drei
Stadten Zirich (Z), Effretikon (E) und Winterthur (W). Jede der drei Stadte ist jeweils mit den
anderen beiden verbunden. Diese Situation lasst sich mit einem Graphen wie in Abbildung Abbil-
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dung 2.1 darstellen.

O

Abbildung 2.1: Zugverbindungen zwischen Ziirich (Z), Effretikon (E) und Winterthur (W).

Die griinen Kreise (die Stédte) bezeichnet man als Knoten, die schwarzen Verbindungslinien zwischen
den Knoten nennt man Kanten. Einen Graphen, in dem jeder Knoten mit jedem anderen
Knoten verbunden ist, bezeichnet man als vollstindigen Graphen (der Graph in Abbildung
Abbildung 2.1 ist ein vollstandiger Graph).

Definition 2.3 (Graph):

Ein Graph G ist ein geordnetes Paar (V, E), wobei V eine (endliche) nichtleere Menge von
Knoten (englisch: vertices) ist. Die Menge E ist eine Teilmenge der zweielementigen Teilmen-
gen von V, also F C { {z,y} ; z,y € V,x # y }. Die Elemente der Menge E bezeichnet man
als Kanten (englisch: edges). Falls die Knotenmenge V' eine endliche Menge ist, nennt man
den Graphen G = (V, E) einen endlichen Graphen.

Eine Kante in einem Graphen verbindet zwei verschiedene Knoten. Die Kantenmenge F
eines Graphen ist deshalb irgendeine Teilmenge (Auswahl) aller moglichen zweielementigen
Teilmengen {x, y} der Knotenmenge V. Dabei muss aber x # y gelten, da wir die Verbindung
eines Knotens zu sich selbst nicht als Kante anschauen mdéchten.

Fir V ={a,b,c,d} und E = {{a,b},{a,c},{b,c},{c,d}} wirde der zugehorige Graph G = (V, E)
beispielsweise so aussehen:

(O—®

Falls wir in unserem Beispiel mit den Zugverbindungen auch die Dauer der Verbindungen darstellen,
dann konnten wir das wie in Abbildung 2.2 tun. Man sagt dann, dass die Kanten gewichtet sind.
In diesem Beispiel sind die Gewichte die Fahrzeiten. Ein Graph mit gewichteten Kanten bezeichnet
man als gewichteten Graphen. Graphen, ohne gewichtete Kanten nennt man ungewichtete Graphen.

Stellen wir uns nun vor, dass die Verbindung von Ziirich nach Effretikon (und somit auch von Ziirich
nach Winterthur) aktuell unterbrochen ist, aber weiterhin Ziige von Effretikon und Winterthur
nach Zirich fahren kénnen. Des Weiteren, haben wir bemerkt, dass die Verbindung von Effretikon
nach Winterthur nur 9 Minuten dauert, die Verbindung von Winterthur nach Effretikon (wegen
Stopp in Kemptthal) jedoch 11 Minuten. Diese Situation ldsst sich durch gerichtete Kanten wie in
Abbildung 2.3 veranschaulichen.
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i

Abbildung 2.2: Gewichtete (ungerichtete) Zugverbindungen zwischen Ziirich (Z), Effretikon (E) und

Winterthur (W).

@)

Abbildung 2.3: Gerichtete und gewichtete Zugverbindungen zwischen Ziirich (Z), Effretikon (E) und
Winterthur (W).

Natiirlich ist es auch erlaubt Graphen zu konstruieren, die zwar gerichtet, aber nicht gewichtet sind.
Um zu verdeutlichen, dass bei einer Gerichteten Kante die Reihenfolge (die Richtung) eine Rolle
spielt, schreiben wir fiir gerichteten Kanten nicht eine zweielementige Menge {Effretikon, Ziirich},
sondern ein geordnetes Paar (Effretikon, Ziirich).

2.2.1 Adjazenzmatrix

Jeder endliche Graph G = (V| E), egal ob gerichtet / ungerichtet oder gewichtet / ungewichtet,
ldsst sich einfach durch die ihm zugehérige Adjazenzmatriz AC représentieren. Wir wollen fiir einen
gegebenen Graphen G die Adjazenzmatrix AY finden. Bevor wir das Vorgehen fiir einen beliebigen
endlichen Graphen beschreiben werden, méchten wir die Adjazenzmatrix fiir den Graphen in Abbil-
dung 2.3 finden. Wir fithren diesen Graphen hier nochmals auf, allerdings haben wir zu didaktischen
Zwecken die Kantengewichte des Graphen gefarbt und die Knoten (Stéddte) neu beschriftet (num-
meriert). Dazu haben wir die Bezeichnungen v, = Ziirich, vy = Effretikon und v = Winterthur

gewahlt.
9
15
11
U3

@



mailto:thomas.graf@edu.zh.ch

Endliche Automaten O Thomas Graf, Informatik, 2026

Die zu diesem Graphen zugehérige Adjazenzmatrix Ag ist:

0 0 0
A9=115 0 9 (2.1)
11 0

Die Matrix Aq ist wie folgt zu verstehen:

Falls im Graphen eine Kantenverbindung vom Knoten v; (i € {1,2,3}) zum Knoten v; (j € {1,2,3})
besteht, dann setzt man den Matrix Eintrag Aicfj (Eintrag in der i-ten Zeile und j-ten Spalte) auf das
der Kante entsprechende Kantengewicht. Zum Beispiel besteht im Graphen die Kantenverbindung
von Effretikon (v2) nach Winterthur (vs), mit einem Kantengewicht von 9. Damit wird der Eintrag
Ag3 der Adjazenzmatrix in der zweiten Zeile und der dritten Spalte auf den Wert 9 gesetzt. Besteht
keine Verbindung von Knoten v; nach v;, so wird AZ-GJ- = 0 gesetzt.

Bei ungewichteten Graphen ist der Matrix Eintrag Aicfj = 1, falls eine Kante vom Knoten v; zum
Knoten v; besteht und Afj = 0, falls keine Verbindung besteht.

Es spielt keine Rolle, welche konkrete Nummerierung der Knoten im Graphen gewihlt wird. Die
Adjazenzmatrix wird immer genau eine vollstindige Beschreibung des ihr entsprechenden Graphen
liefern.

Vorgehen 2.1:
Aufstellen der Adjazenzmatrix bei gegebenem Graphen
Gegeben sei ein Graph G = (V, E) als Bild oder als Beschreibung durch Mengen. Die zu G
gehorige Adjazenzmatrix A wird wie folgt aufgestellt:
1. Sei n := |V| die Anzahl der Knoten in G. Dann hat A% eine Anzahl von n Zeilen und
n Spalten (und ist somit eine quadratische Matrix).
2. Wahle eine beliebige Nummerierung der n Knoten von G und beschrifte den i-ten
Knoten mit v; fir i € {1,2,...,n}.
Die genaue Form von A% hingt von der konkreten Wahl der Nummerierung ab, die von
AC festgehaltene Information iiber G jedoch nicht.
3. Falls in G keine Kantenverbindung von v;, i € {1,2,...,n}, nach v;, j € {1,2,...,n},
existiert, dann setze A% = 0. Falls eine solche Kantenverbindung existiert, dann setze
¢ bei ungewichteten Graphen: AZG] =1,
e bei gewichteten Graphen: Afj = w; ;, wobei w; ; das Gewicht der Kante von v;
nach v; ist.

Wir haben gesehen, wie ein gegebener Graph mit nummerierten Knoten eindeutig durch eine Ad-
jazenzmatrix dargestellt werden kann. Umgekehrt, lésst sich aus einer gegebener Adjazenzmatrix
ein eindeutiger Graph gewinnen. Damit ist eine Adjazenzmatrix eine alternative Reprisentation
eines Graphen. Adjazenzmatrizen ungewichteter lassen sich einfach durch ein Wort iiber dem Al-
phabet {0, 1, #} darstellen (fiir gewichtete Graphen ist die Darstellung etwas weniger offensichtlich).
Beispielsweise ist die Kodierung der Matrix

00 01
1 010
1 0 0 1
1 100
gegeben durch das Wort
0001#1010#4100141100
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[#' Aufgabe 2.1 .

Uberlegen Sie sich eine mégliche Kodierung der Adjazenzmatrix

NG e =)
© oo
N O W
O N A Ot

iiber dem Alphabet {0, 1, #}

\ J

4 Aufgabe 2.2 .

Welche Eintrage haben bei jeder Adjazenzmatrix immer den Wert 07

2.2.1.1 Knoteniiberdeckung (vertex cover)

Nun haben wir geniigend Wissen {iber Graphen um ein sehr interessantes Entscheidungsproblem in
Zusammenhang mit Graphen elegant beschreiben zu kénnen. In diesem Unterunterabschnitt werden
wir uns auf ungerichtete Graphen beschranken.

Definition 2.4 (Knoteniiberdeckung (vertex cover)):
Man sagt, dass eine Kante {u,v} inzident zu genau ihren Endpunkten w und v ist.

Eine Knoteniiberdeckung (englisch: vertex cover) eines Graphen G = (V, E) ist jede Kno-
tenmenge U C V, sodass jede Kante aus F zu mindestens einem Knoten aus U inzident ist.
Eine Teilmenge U der Knotenmenge V' eines Graphen G = (V, E) ist also eine Knoteniiber-
deckung, falls jede Kante e € ' mindestens einen ihrer beiden Endpunkte in U hat.

@

Betrachten wir zum Beispiel den Graphen in Abbildung 2.4.

Abbildung 2.4: Graph mit 6 Knoten. Die Menge {v2,v3,v4,v5} (rot markierte Knoten) ist eine
Knoteniiberdeckung des Graphen.

Die Menge {vg,v3,v4,v5} der 4 rot markierten Knoten ist eine Knoteniiberdeckung des Graphen,
da jede der 7 Kanten des Graphen mindestens einer ihrer Endpunkte in dieser Menge hat.

Jedoch ist die Menge {v2,v3,v4,v5} keine minimale Knoteniiberdeckung, denn die Knotenmenge
{va,v3,v5} (siehe Abbildung 2.5) enthélt einen Knoten weniger und ist ebenfalls eine Knoteniiber-
deckung.
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? ®
@7

Abbildung 2.5: Die Menge {v2,v3,v5} (rot markierte Knoten) ist eine minimale Knoteniiberde-
ckung des Graphen.

6%@

Definition 2.5 (Entscheidungsproblem der Knoteniiberdeckung):

Das Entscheidungsproblem der Knoteniiberdeckung, besteht darin fiir einen gegebe-
nen Graphen G und eine feste natiirliche Zahl k zu entscheiden, ob G ein ungerichteter Graph
ist, der eine Knoteniiberdeckung mit maximal k£ vielen Knoten besitzt. Man mdchte also fiir
einen Graphen G und eine natiirliche Zahl k entscheiden, ob das geordnete Paar (G, k) in der
Menge

VC = {(G, k) ; G ist ein ungerichteter Graph mit einer Knoteniiberdeckung
(vertex cover) der Méchtigkeit hochstens &}

liegt oder nicht.
Noch etwas genauer ausgedriickt:

VC ={w € {0,1,#}" ; w ist die Kodierung eines ungerichteten Graph mit einer
Knotentiberdeckung (vertex cover) der
Maéchtigkeit hochstens k}

Wie man tiberpriifen kann, lasst der Graph in Abbildung 2.5 zum Beispiel keine Knoteniiberdeckung
der Machtigkeit hochstens 2 zu.
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2.3 Losungen der Aufgaben
v/ Losungsvorschlag zu Aufgabe 2.1 v

Jedes Kantengewicht w kodieren wir durch Bin(w), die einzelnen Kodierungen der Gewichte werden
durch # abgetrennt. Das Ende einer Zeile wird durch ## markiert. Damit erhalten wir folgende
Kodierung der gegebenen Adjazenzmatrix:

0F 1114114410144 10004204 1410044 11141104204 1044 1004410014 1040

v/ Losungsvorschlag zu Aufgabe 2.2 v

Die sogenannten Diagonalemente. Dies sind die Eintrage, bei denen die Zeilennummer mit der
Spaltennummer {ibereinstimmt, also alle Eintrédge der Form AlGZ Angenommen, ein Diagonalelement
ware nicht 0. Dann wiirde im zur Adjazenzmatrix gehérenden Graphen eine Verbindung der Form
{v;,v;} beziehungsweise (v;,v;) bestehen. Dies darf aber geméss der Definition der Kantenmenge
nicht sein, da sie Kantenverbindungen von einem Knoten zu sich selbst ausschliesst.
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Kapitel 3

Endliche Automaten

Endliche Automaten sind das einfachste Berechnungsmodell, das man in der Informatik betrachtet.
In einer ersten Phase mdéchten wir eine gute intuitive Vorstellung der Arbeitsweise von endlichen
Automaten gewinnen. Dazu werden wir in Unterabschnitt 3.1.1 endliche Automaten mit (leicht
modifizierten) gerichteten Graphen identifizieren. In Unterabschnitt 3.1.2 werden wir sehen, dass
endliche Automaten dquivalent zu einer Darstellung durch spezielle Programme sind. Diese speziel-
len Programme 16sen gewisses Entscheidungsproblem, ohne bei ihrer Arbeit Variablen zu benutzen.

Mithilfe dieser Intuition wird uns die formale Definition endlicher Automaten in Unterabschnitt 3.1.3
elegant und natiirlich erscheinen.

Die Betrachtung endlicher Automaten ist hervorragend dazu geeignet, zentrale Begriffe der Infor-
matik wie Konfiguration, Berechnungsschritt, Simulation und Berechnung schonend einzufiihren.

3.1 Darstellung endlicher Automaten

Wir werden drei verschiedene Moglichkeiten zur Darstellung endlicher Automaten kennenlernen:

1. Darstellung durch gerichtete Graphen (Graphendarstellung)
2. Darstellung durch Programme (Programmdarstellung)
3. Formale Definition (durch Mengen und Funktionen)

3.1.1 Darstellung durch gerichtete Graphen

Die Darstellung endlicher Automaten durch (etwas modifizierte) gerichtete Graphen ist besonders
pragnant und anschaulich. Wir werden deshalb endliche Automaten mit gerichteten Graphen iden-
tifizieren (Graphendarstellung). Wir werden im Folgenden nicht mehr zwischen einem endlichen
Automaten A und seiner Darstellung G(A) als gerichteter Graph unterscheiden.

Wenn man ein Berechnungsmodell definieren méchte, muss man folgende vier Fragen beantworten
koénnen:

1. Welcher Speicher steht zur Verfiigung und wie wird dieser verwendet?

2. Wie wird die Eingabe (Input) eingegeben?

3. Wie wird die Ausgabe (Output) ausgegeben?

4. Welche elementaren Rechenoperationen kann das Berechnungsmodell durchfithren?

Bei endlichen Automaten hat man keinen Speicher zur Verfiigung ausser dem Speicher, in dem der
(modifizierte) gerichtete Graph gespeichert ist und einem Zeiger, der auf den aktuell betrachteten

22



Endliche Automaten O Thomas Graf, Informatik, 2026

Knoten des Graphen zeigt. Die einzige wechselnde (nicht statische) Information ist der Name des
Knoten, auf den der Zeiger aktuell zeigt.

Um konkret iiber endliche Automaten sprechen zu koénnen, betrachten wir den einfachen endli-
chen Automaten A in Abbildung 3.1. Wir werden den Aufbau und die Funktionsweise endlicher
Automaten anhand dieses konkreten endlichen Automaten A erkléren.

0 0,1

1
start —>

Abbildung 3.1: Darstellung von A als gerichteter Graph.

e A hat zwei Zustidnde ¢y und ¢;. Die Zustandsmenge ) von A ist somit @ = {qo,q1}-
Allgemein, entspricht die Zustandsmenge ) der Knotenmenge V' des Graphen.

e Der Zeiger zeigt zu Beginn auf einen Zustand und ist mit dem Label ,start“ besonders mar-
kiert. Der Zustand, auf den der Zeiger zu Beginn zeigt, wird Anfangszustand genannt.
Manchmal schreibt man anstelle des Labels ,start* auch ,\“, weil sich der Automat nach dem
Lesen des leeren Wortes A im Anfangszustand befindet. Man darf auf das Label des Zeigers
auch verzichten. Der Anfangszustand von A ist gg.

e« Wenn der Zeiger des endlichen Automaten auf den Zustand ¢ zeigt, dann sagt man, dass sich
der Automat im Zustand ¢ befindet.

e Jedem endlichen Automaten ist ein Eingabealphabet Y zugeordnet. Das Eingabealphabet
von A ist ¥ = {0,1}. Alle zuldssigen Eingaben w fiir eines endlichen Automaten miissen
Worter iiber seinem Eingabealphabet sein. Der endliche Automat erhélt ein Eingabewort w
iiber 3 und liest dieses Buchstabe um Buchstabe von links nach rechts. Wenn der endliche
Automat das gesamte Wort w gelesen hat, ist seine Arbeit auf w beendet.

e Falls sich A zum Beispiel im Zustand ¢y befindet und das Symbol 1 liest, dann folgt A der

Kante des Graphen, welche mit 1 beschriftet ist. Dadurch gelangt A in den Zustand ¢;. Mit
dem Lesen von 0 im Zustand g bleibt A im Zustand gg.
Allgemein gilt: Falls sich ein endlicher Automat im Zustand g befindet und ein Symbol a von
der Eingabe liest, dann folgt der Automat der Kante des Graphen, welche mit «a beschriftet
ist. Die Destination der Kante wird sein neuer Zustand sein. Mental kann man sich vorstellen,
dass der Zeiger auf diesen neuen Zustand zeigt.

e Falls sich ein endlicher Automat nach dem vollstindigen Lesen eines Eingabewortes w
in einem doppelt umkreisten Zustand befindet, dann akzeptiert der Automat die Eingabe w,
ansonsten akzeptiert der Automat die Eingabe w nicht (verwirft die Eingabe). A hat nur einen
akzeptierend Zustand, ndmlich ¢;. Der Zustand ¢g ist nicht akzeptierend.

Um den Umgang mit endlichen Automaten zu iiben, betrachten wir die Arbeit von A auf dem
konkreten Eingabewort w = 00101. A befindet sich zu Beginn in seinem Anfangszustand gy. Nun
beginnt er damit das Eingabewort von links nach recht zu lesen (Buchstabe um Buchstabe). Halten
Sie sich im Folgenden Abbildung 3.1 vor Augen.

1. Der erste Buchstabe (der Buchstabe ganz links) des Eingabeworts ist 0. Wir miissen schauen,
wohin die gerichtete Kante, ausgehend vom aktuellen Zustand ¢g, beim Lesen von 0 fiihrt.
Wie wir sehen, filhrt uns die Kante, die mit einer 0 markiert ist, zuriick in den Zustand g¢g.
Wir bleiben also im Zustand gp.

2. Danach liest A nochmals den Buchstaben 0. Genau wie im ersten Schritt, werden wir wieder
der Kanten mit der 0, die vom Zustand ¢y ausgeht, folgen. Damit befindet sich A nach dem
Lesen des Préifixes 00 von w = 00101 noch immer im Zustand ¢g. Es bleibt noch das Suffix
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101 von w zu lesen.

3. Nun liest A das Symbol 1 und wir miissen von unserem aktuellen Zustand qg aus, der mit 1
markierten Kante folgen. Dadurch gelangt A in den Zustand ¢;.

4. A liest im Zustand ¢; das Symbol 0. Die mit 0 markierte Kante, die von ¢; ausgeht, fiithrt
zuriick nach ¢;.

5. A liest im Zustand ¢; das Symbol 1. Die mit 1 markierte Kante, der von ¢; ausgeht, fiihrt
ebenfalls zuriick nach q;.

6. A hat das Eingabewort w nun vollstdndig gelesen und beendet seine Arbeit im akzeptierenden
Zustand ¢;. Damit akzeptiert A das Eingabewort w = 00101.

A akzeptiert genau die Eingabeworter aus {0,1}", die mindestens eine 1 enthalten. Die Menge aller
Worter, welche von A akzeptiert werden ist somit

{we{0,1}" ; w=zlymit z,y € {0,1}" } (3.1)

Dies kann man wie folgt einsehen:

A hat nur den einen akzeptierenden Zustand ¢;. Beginnend im Anfangszustand g, wird der A
solange im Zustand gg bleiben (solange Nullen lesen), bis er das erste Mal eine 1 liest. Durch das
Lesen dieser 1 gelangt A in den Zustand ¢;. Beide (alle) von ¢; ausgehenden Kanten fithren direkt
zuriick zu ¢;. Deshalb wird der A nach dem erstmaligen Lesen einer 1, solange im akzeptierenden
Zustand ¢ verbleiben, bis er die gesamte Eingabe gelesen hat und somit seine Arbeit in dem
akzeptierenden Zustand beendet. A akzeptiert somit alle bindren Eingabeworter, die mindestens
eine 1 enthalten', was genau der Menge in Ausdruck Gleichung (3.1) entspricht.

Man bemerke, dass die Menge
L:={we{0,1}" ; w=2zlymitz,y € {0,1}" } C{0,1}" (3.2)

eine Teilmenge von {0, 1}" ist. Somit ist L eine Sprache iiber dem Alphabet {0,1}. Die Menge L ist
die Sprache aller Wérter, die von dem endlichen Automaten A akzeptiert werden.

Beispiel 3.1:
Sei Ly, die Sprache aller Worter iiber ¥ = {a, b, ¢}, welche mit a beginnen und mit bb enden,
genauer:

Loy :={ w € {a,b,c}" ; w = axbd, fir ein z € {a,b,c}" }. (3.3)

Entwerfen Sie einen endlichen Automaten (in grafischer Form), welcher die Sprache L akzep-
tiert.

Losung:

!Die Funktionsweise dieses endlichen Automaten kénnte in Computer-Hardware zum Beispiel durch einen sogenannten
Latch (to latch heisst auf Deutsch ,einrasten“, ,einklinken“) umgesetzt werden.
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a,c
b
start — a qa @
b, c
a

Abbildung 3.2: Endlicher Automat A fiir die Sprache Ly, in Ausdruck Gleichung (3.3).

Erklarung;:

Sei w € {a,b,c}” ein Eingabewort fiir den endlichen Automaten A in Abbildung 3.2. A
beginnt seine Arbeit im Zustand ¢g und liest den ersten Buchstaben von w.

o Falls w nicht mit a beginnt (sondern mit b oder c), geht A beim Lesen des ersten
Buchstabens von w in den nicht akzeptierend Abfallzustand (trash) ¢; tiber. Dort wird
der Automat bleiben, egal welche weiteren Buchstaben von w er liest. A wird fiir w im
nicht akzeptierenden Zustand ¢; seine Arbeit beenden (— w wird verworfen).

e Falls w mit a beginnt, wechselt A in den Zustand gq,.

e Falls A im Zustand ¢, die Buchstaben a oder c¢ liest, dann bleibt A im Zustand g,.

e Falls A im Zustand ¢, den Buchstaben b liest, geht er in den Zustand g iiber.

e Die Worter, welche den endlichen Automaten A in den Zustand g fithren, beginnen
mit a, enden mit b, haben aber an ihrer zweitletzten Stelle nicht das Symbol b (siehe
dazu Aufgabe 3.3).

e Falls A in ¢, die Buchstaben a oder ¢ liest, dann kann das bislang gelesene Prifix von
w nicht mit b enden und A geht zuriick zu ¢,.

o Falls A in ¢4 nochmals ein b liest, endet das bislang gelesene Préfix von w mit bb und
A wechselt in den akzeptierenden Zustand ggpp.

o A bleibt beim weiteren Lesen von b in gq (das gelesene Prifix von w endet dann immer
noch mit bb), ansonsten muss der Automat zuriick in den Zustand g,.

Bemerkung 3.1:

Beachten Sie, dass ein endlicher Automat ein Eingabewort w nicht sofort akzeptiert, nur weil
er wihrend seiner Arbeit auf w akzeptierenden Zusténde (einmal oder mehrfach) durchlauft.
Die Entscheidung ,,akzeptieren oder verwerfen* wird erst mit dem Lesen des letzten Buch-
stabens von w getroffen. Befindet sich der Automat nach dem Lesen des letzten Buchstabens
von w in einem verwerfenden Zustand, dann verwirft der Automat w. Befindet er sich dann
in einem akzeptieren Zustand, dann akzeptiert der Automat w.

Bei der Arbeit auf dem Wort w = abbc zum Beispiel, durchlduft der endliche Automat in
Abbildung 3.2 zwar den akzeptierenden Zustand g,p,, beendet seine Arbeit aber im nicht
akzeptierenden Zustand q,. Dies ist auch richtig, denn w = abbec liegt nicht in der Sprache

Lapp.

J

Bei der Graphendarstellung, miissen von jedem Knoten genauso viele Kanten (Pfeile) ausgehen, wie
das Eingabealphabet des Automaten Symbole hat. Wenn der endliche Automat das Eingabealphabet
> hat, dann muss der Ausgangsgrad (Anzahl der gerichteten Kanten, welche von dem Knoten
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ausgehen) jedes Knoten genau |X| sein. Ware der Ausgangsgrad eines Knoten kleiner, dann wére
die Arbeit des endlichen Automaten auf mindestens einem Symbol seines Eingabealphabets nicht
definiert, was man natiirlich nicht mochte.

[#' Aufgabe 3.1
Entwerfen Sie einen endlichen Automaten fiir die Sprache

Ly :={we{0,1}" ; w=2x0100y mit z,y € {0,1}" }. (3.4)

[#' Aufgabe 3.2

Beschreiben Sie die Sprache Lo, der von dem endlichen Automaten in Abbildung 3.3 akzep-
tierten Worter.

Abbildung 3.3: Endlicher Automat fiir die Sprache Ls.

[#' Aufgabe 3.3

Betrachten Sie den endlichen Automaten in Abbildung 3.2. Beschreiben Sie mathematisch
prazise die Teilmenge M, aller Worter tiber {a, b, ¢}, welche in den Zustand g, fithren.

3.1.2 Darstellung durch Programme

In diesem Unterabschnitt werden wir sehen, dass die Graphendarstellung von endlichen Automaten
aquivalent zur Darstellung durch gewisse spezielle Programme (Programmdarstellung) ist.

Die Programme sind speziell in dem Sinne, dass sie lediglich Speicher zur Abspeicherung des Pro-
gramms und zum Speichern eines ,,Zeigers®, der auf die aktuell auszufithrende Zeile des Programms
zeigt. Dies bedeutet aber, dass das Programm keinen Speicher fiir Variablen zur Verfiigung hat.
Der Inhalt des Zeigers, also die Nummer der aktuellen Programmzeile, ist die einzige wechselnde
Information.

Um die Aquivalenz einzusehen, werden wir eine Methode demonstrieren, welche jede Graphendar-
stellung in ein dquivalentes Programm iibersetzt (und umgekehrt). Bevor wir die Methode allgemein
beschreiben, mochten wir das Vorgehen anhand eines Beispiels entwickeln. Betrachten Sie dazu den
endlichen Automaten in Abbildung 3.4.
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Abbildung 3.4: Endlicher Automat mit der Zustandsmenge {q, p,7}.

In einem ersten Schritt méchten wir die Zustdnde g, p,r durch die Nummern 0, 1,2 ersetzen. Die
Vergabe der Nummern kann beliebig gewihlt werden?, aber dem Anfangszustand muss die Nummer
0 zugewiesen werden. Wir wahlen fir p die Nummer 1 und fir r die Nummer 2. Damit erhalten wir
den ,nummerierten Graphen“ in Abbildung 3.5.

Abbildung 3.5: Nummerierte Version des endlichen Automaten in Abbildung 3.4 mit Zustandsmenge
{0,1,2}.

Wir méchten nun ein Programm entwerfen, welches den endlichen Automaten in Abbildung 3.5
beschreibt, jedoch ohne Variablen auskommt. Das Programm soll genau so viele Zeilen haben, wie
der endliche Automat Zustdnde (Knoten) hat. In diesem Fall wird das Programm entsprechend
genau drei Zeilen haben. Die Nummerierung der Zustédnde wird dabei genau der Nummerierung
der Programmzeilen entsprechen. Deshalb ist es wichtig, dass der Anfangszustand die Nummer 0
erhélt, da das Programm von oben nach unten abgearbeitet wird und somit bei Zeile 0 seine Arbeit
beginnt. Das Programm erhélt das Eingabewort des endlichen Automaten als Input.

Falls das erste Symbol des Input a oder b ist, dann soll das Programm zu Zeile 1 springen. Falls das
erste Symbol ein c ist, soll das Programm zu Zeile 2 springen. Nach dem Lesen eines Symbols des
Eingabebandes wird dieses automatisch geloscht und das néchste wird gelesen. Analog ist das Vorge-
hen fiir die anderen beiden Zeilen 1 und 2 des Programms. Insgesamt wird die Programmdarstellung
des endlichen Automaten in Abbildung 3.5 durch folgendes Programm beschrieben:

if input = a goto 1, if input = b goto 1, if input = c goto 2;
if input a goto 1, if input = b goto 1, if input = c goto 1;
if input = a goto 1, if input c goto 1;

b goto 0, if input

Falls der endliche Automat in Abbildung 3.5 im Zustand 0 das Symbol a oder b liest, dann wechselt
er in den Zustand 1. Falls er das Symbol ¢ liest, dann wechselt er in den Zustand 2. Genau so geht
auch unser obiges Programm vor:

’Die zugehorigen Programme werden die gleichen Entscheidungen treffen und bis auf einfache Vertauschungen von
Nummern identisch sein. Siehe dazu auch Aufgabe 3.4.
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Falls (if) das Programm in Zeile 0 das Symbol a vom Input erhélt (liest), springt es mit dem goto
Befehl zur Zeile 1. Dasselbe gilt, wenn in Zeile 0 der Input b gelesen wird. Falls in Zeile 0 der Input
¢ gelesen wird, springt das Programm zur Zeile 2. Das Vorgehen fiir die Programmzeilen 1 und 2
(beziehungsweise die Zusténde 1 und 2) ist vollig analog.

= Aufgabe 3.4

Wie miisste obiges Programm angepasst werden, falls wir fiir die Zustédnde in Abbildung 3.4
die Nummerierung g <> 0, r <> 1 und p < 2 gewahlt hatten?

Nun sollte deutlicher geworden sein, wie auch ein beliebiger endlicher Automat in ein solch spe-
zielles Programm ohne Variablen transformiert werden kann. Das zu einem endlichen Automaten
A (beziehungsweise seiner Graphendarstellung G(A)) gehorige Programm werden wir mit P(A)
bezeichnen.

Sei ¥ = {s1,...,sm} das Eingabealphabet eines endlichen Automaten A. Eine Zeile von P(A) hat
die Form:

erlaubter Befehl (eine Zeile):

if input = s1 goto iy, if input = s9 goto io, .., if input = s, goto i,,; (3.5)

Die Bedeutung dieses Befehls ist, dass man das néchste Symbol der Eingabe liest und mit s1, So, ..., Sm
vergleicht. Falls dieses Symbol gleich s; ist, setzt das Programm seine Arbeit in der Zeile ¢; fort.
Dabei wird das gelesene Symbol geloscht und in der Zeile ¢; wird das néchste Symbol der Eingabe
gelesen. Man beachte, dass die Zeilen des Programms nummeriert sind, wobei die Nummerierung
bei 0 beginnt.

Diese Programme losen Entscheidungsprobleme. Die Ausgabe des Programms ist bestimmt durch
die Zeilennummer, in der das Programm seine Arbeit beendet. Falls das Programm aus k Zeilen
besteht, wihlt man eine Teilmenge F von {0,1,...,k — 1} aus. Wenn das Programm nach dem voll-
stdndigen Lesen der Eingabe in der j-ten Zeile endet, und j € F, dann akzeptiert das Programm
die Eingabe. Falls j € ({0,1,...,k — 1} \ F)), dann akzeptiert das Programm die Eingabe nicht.

Die eins-zu-eins-Korrespondenz zwischen einem endlichen Automaten A und seiner Programmdar-
stellung P(A) sollte nun offensichtlich sein:

Man nummeriert die Zustédnde von A. P(A) hat genau so viele Zeilen wie der A Zusténde hat, und
jedem Zustand von A ist genau eine Zeile in P(A) zugeordnet, welche die Nummer des Zustands
tragt. Falls A beim Lesen eines Symbols « von Zustand ¢ in Zustand j tibergeht (eine gerichtete
Kante mit Markierung « von i nach j hat), dann springt das Programm in Zeile i beim Lesen von
a in die Zeile j.

Aufgrund dieser Aquivalenz kann ein endlicher Automat auch durch sein Programm P(A) identifi-
ziert werden.

Mit endlichen Automaten verbindet man oft die schematische Darstellung in Abbildung 3.6. Das
Modell besteht aus den drei Hauptkomponenten Eingabeband, Lesekopf und Programm. Das
Programm haben wir oben im Detail beschrieben. Das Eingabeband besteht aus einzelnen Feldern.
Ein Feld ist eine atomare Speichereinheit, die ein Symbol des betrachteten Alphabets beinhalten
kann. Das Eingabeband hat in diesem Modell die Bedeutung des Eingabeworts. Der Lesekopf kann
sich entlang des Eingabebandes nur von links nach recht bewegen. Der Lesekopf liest den Inhalt des
Feldes, auf das er zeigt.
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Lesekopf, bewegt
sich nach rechts —

Eingabeband a1 | as | as a; Ap—_1| Gn

Lesekopf]

Programm
(Zustand)

Abbildung 3.6: Schematische Darstellung eines endlichen Automaten.

3.1.3 Formale Definition

Nach den Betrachtungen in Unterabschnitt 3.1.1 und Unterabschnitt 3.1.2 wollen wir eine formale
Definition von endlichen Automaten angeben. Diese Definition wird uns sehr natiirlich erscheinen.

Definition 3.1 (endlicher Automat):
Ein (deterministischer) endlicher Automat M ist ein 5-Tupel M = (Q, X, d, qo, F'), wobei
die einzelnen Komponenten des 5-Tupels wie folgt zu verstehen sind:

(i) Q ist eine endliche Menge von Zustdanden.
Die Zustande entsprechen der Menge der Zeilen in der Programmdarstellung und der
Knotenmenge in der Graphendarstellung.

(ii) X ist ein Alphabet, genannt Eingabealphabet.
Die zuldssigen Eingaben fiir den endlichen Automaten sind alle Worter iiber Y. Die Be-
deutung des Eingabealpabets ist bei der Programmdarstellung und Graphendarstellung
genau gleich.

(iii) qo ist der Anfangszustand.
qo entspricht dem mit ,start* markierten Knoten in der Graphendarstellung und der
Zeile 0 in der Programmdarstellung.

(iv) F C Q ist die Menge der akzeptierenden Zustdinde.
Dies entspricht der Menge der akzeptierenden Knoten in der Graphendarstellung und
Menge der akzeptierenden Programmzeilen in der Programmdarstellung.

(v) 8 ist eine Funktion Q x ¥ — Q, die Ubergangsfunktion genannt wird.
Die Ubergangsfunktion erhilt zwei Argumente. Das erste Argument ¢ € Q ist der
Zustand, in dem sich der endliche Automat M aktuell befindet. Das zweite Argument
a € Y ist ein Symbol (des Eingabeworts), welches der M aktuell liest. d(q,a) = p
bedeutet, dass M in den Zustand p iibergeht, falls M im Zustand ¢ das Symbol a gelesen
hat. In der Graphendarstellung von M existiert eine gerichtete Kante (Knoten), welche
mit a beschriftet ist und vom Zustand (Knoten) ¢ zum Zustand (Knoten) p fiithrt. In der
Programmdarstellung von M existiert eine Programmzeile ¢® der Form Gleichung (3.5),
welche durch einem goto Befehl beim Lesen des Inputs a zur Zeile p (der Zeilennummer,
welche p zugeordnet ist).

“Genauer gesagt, eine Programmzeile mit der Nummer, welcher dem Zustand g bei der Nummerierung der
Zustidnde zugeordnet wird.
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Fine Konfiguration von M ist ein Element aus @ x »*.

Wenn sich M in einer Konfiguration (¢, w) € (Q x ¥*) befindet, bedeutet dies, dass sich M im
Zustand ¢ befindet und noch das Suffix w eines Eingabewortes lesen muss.

Die Konfiguration (g, w) € ({qo} x ¥) ist die Startkonfiguration von M auf w.
M beginnt seine Arbeit auf dem Wort w im Zustand ¢g.

Jede Konfiguration aus @ x {\} wird Endkonfiguration genannt. Das gesamte Eingabewort wurde
gelesen. Es bleibt nichts mehr (nur noch das leere Wort \) zu lesen.

Der Ausdruck (g, w) M, (p,v) soll die Bedeutung haben, dass die Konfiguration (p,v) in einem
Schritt von M aus der Konfiguration (¢, w) erreicht wird:

(g, w) M, (p,v) <= w=av,a € X und §(q,a) =p

Da w = aw, ist a das vorderste Symbol in w und wird deshalb als néchstes gelesen.

Ein Schritt entspricht der Anwendung der Ubergangsfunktion auf die Konfiguration, in der sich M
im Zustand ¢ befindet und das Symbol a liest.

Fine Berechnung C von M ist eine endliche Folge C' = Cy, (4, ..., C, von Konfigurationen, mit
C; 2 €y fiir alle i € {0,1,...,n — 1}

C ist die Berechnung von M auf einem Eingabewort = € ¥*, falls Cy = (qo,x) und C,, €
(Q x {A}) (das heisst, C), ist eine Endkonfiguration).

o Falls C), € (F x {A\}) (zur Erinnerung: F' ist die Menge der akzeptierenden Zusténde), dann
ist C' eine akzeptierende Berechnung von M auf x. Man sagt dann, dass M das Wort «
akzeptiert.

M endet seine Arbeit auf dem Eingabewort x in einem akzeptierenden Zustand.

o Falls C), € ((Q\ F) x {A\}), dann ist C eine verwerfende Berechnung von M auf z. Man
sagt dann, dass M das Wort x verwirft (oder nicht akzeptiert). \/ endet seine Arbeit
auf dem Eingabewort z in einem verwerfenden Zustand.

An dieser Stelle mochten wir betonen, dass ein endlicher Automat M auf einem Wort =z € X*
offensichtlich genau eine Berechnung hat.

Wir mochten eine sehr interessante und wichtige Sprache definieren.

Definition 3.2 (akzeptiere Sprache eines endlichen Automaten):
Sei M ein endlicher Automat. Die von M akzeptierte Sprache L(M) ist definiert als

L(M) = {w € ¥* ; die Berechnung von M auf w endet in einer
Endkonfiguration (g, A), mit ¢ € F'}

Definition 3.3 (Klasse der reguliren Sprachen):

Lra={L(M); M ist ein endlicher Automat } ist die Klasse der Sprachen, welche von end-
lichen Automaten akzeptiert werden. Lg4 wird als die Klasse der reguliaren Sprachen
bezeichnet. Jede Sprache L aus Lr4 wird regulér (reguldre Sprache) genannt.
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Betrachten wir nochmals den endlichen Automaten in Abbildung 3.4. Diesen Automaten wollen wir
formal beschreiben. Dazu geniigt es, die 5 Komponenten des 5-Tupels (Q, X, d, go, F') geméss Defi-
nition 3.1, anzugeben. Der zur Graphendarstellung in Abbildung 3.4 d4quivalente endliche Automat
ist M = (Q,%,9,qo, F'), wobei:

Q={q,p,r},X={a,b,c},q0=q, F={q} und
6(g,a) =p, d(q,;b) =p, 6d(g,c)=r
o(p,a) =p, O(p,b)=p, d(p,c)=p
d(rya) =p, (r,b)=4q, 6(r,c)=0p

Man beachte, dass sich die Ubergangsfunktion & vollstindig definieren lisst, indem man den Wert
der Funktion fiir alle moglichen Argumente angibt.

= Aufgabe 3.5

Geben Sie die formale Definition des in Abbildung 3.3 dargestellten endlichen Automaten an.

Zum Abschluss dieses Unterabschnitts wollen wir noch zwei nutzliche Definitionen vorstellen.

Die Schreibweise u
(qv ’LU) T> (p7 u)

soll bedeuten, dass eine Berechnung von M existiert, die von der Konfiguration (g, w) zur Konfigu-
ration (p,u) fiihrt. Diese Intuition wollen wir etwas genauer in einer Definition festhalten.

Definition 3.4 (Stern-Operation (transitive Hiille der Schrittrelation)):
Sei M = (Q, %, 4, qo, F') ein endlicher Automat. Die Operation % werden wir Stern-Operation

nennen. Die Stern-Operation ist wie folgt definiert:

(g, w) % (p,u) <= (¢ = p und w = u) oder es existiert ein k € N\ {0},

sodass
(i) w=a1ay...a,u, a; € ¥, firi =1,2,...,k und
(ii) es existieren (k — 1) Zustande r1,792,...,7x—1 € @, sodass

M M M M
(¢, w) — (r1,a2a3 . ..axu) — (ro,asaq ...apu) — ... (rg—1, apu) — (p,u).

Gemdss dieser Definition gilt (g, w) l> (p,u) genau dann, wenn entweder ¢ = p und w = u
(dann sind die Konfigurationen (q,w) und (p,u) identisch und M hat (p,u) trivialerweise
schon erreicht) oder wenn Zwischenzusténde existieren, iiber welche M bei seiner Berechnung
auf w zur Konfiguration (p,u) gelangt.

Im engen Zusammenhang mit der Stern-Operation steht die Schreibweise

~

0(q,w) = p.
Diese soll die Bedeutung haben, dass wenn M im Zustand ¢ das Wort w zu lesen beginnt, dann endet
M im Zustand p. Dies ist gleichbedeutend mit der Aussage (g,w) % (p, A). Man kann sich die

Operation 3\(q, w) = p so vorstellen, dass ausgehend von der Konfiguration (g, w) so lange (iterativ)
die Ubergangsfunktion § angewendet wird, bis die gesamte Eingabe w abgearbeitet ist (auf das leere
Wort A geschrumpft ist). Die Aussage §(q,w) = p sagt aus, dass diese iterative Anwendung der
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Ubergangsfunktion den endlichen Automaten schliesslich in den Endzustand p (Endkonfiguration
(p, A\) fithren wird.

Definition 3.5 (Dach-Operation): R
Sei M = (Q,%,9,qo, F) ein endlicher Automat. Wir definieren die Dach-Operation ¢ : @ X
3 — @ rekursiv wie folgt:

o~

(i) (g, \) = ¢ fiir alle ¢ € Q und

Beim Lesen des leeren Wortes bleibt der endliche Automat in seinem Zustand.

(H) 5(Q7 wa) = 6(5(/9? w)a CL)
Der Ausdruck 6(q, w) entspricht einem Zustand. Wenn wir diesen mit p bezeichnen, also
p = g(q w), dann sehen wir sofort, dass 5(5((1, w),a) = §(p,a) der normalen Anwen-
dung der Ubergangsfunktion 6 (ohne Dach) beim Lesen des Symbols a im Zustand p

entspricht.

Mithilfe dieser zwei neuen Operationen lésst sich die von einem endlichen Automaten M akzeptierte
Sprache L(M) (siehe Definition Gleichung (3.1)) alternativ ausdriicken als:

L(M) = {w € ¥*; (qo,w) ~ (p, ) mit g € F}

={w e X*; d(q,w) € F}.

Beispiel 3.2:
Wir fihren hier nochmals den endlichen Automaten aus Abbildung 3.4 auf:

Abbildung 3.7: Endlicher Automat A.

Wie wir bereits festgestellt haben, ist der zu dieser Graphendarstellung dquivalente endliche
Automat A = (Q, 3,9, qo, F'), mit:

Q={q,p,r},X={a,b,c},q=¢q,F ={q} und
6(q,a) =p, 6(q,;b) =p, d(g.c)=r
6(p,a) =p, d(p,b)=p, 6(p,c)=p
d(r,a) =p, do(r,b)=q, d(r,c)=0p
Fiir diesen endlichen Automaten gilt zum Beispiel die Aussage

(q, cbcbeabac) % (r,abac),

da eine Berechnung von A auf dem Wort cbebeabac existiert, welche die Konfiguration (g, cbcbcabae)
zur Konfiguration (r, abac) fiihrt. Diese Berechnung lautet:

(g, cbebeabac) N (r, bebeabac) N (g, cbcabac) N (r, bcabac) L (q, cabac) L (r, abac).
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Fir M gilt auch
5(r, beac) = p.

Dies sehen wir ein, indem wir Punkt (i7) der Definition 3.5 wiederholt anwenden:

~

5(r, beac) = §(8(r, bea), ¢) = 8(8(8(r, be), a), ¢) = 6(8(8(3(r, be), ), a), c) =
= §(6(8(8(3(r, \),b), ¢),a),c)

Gemiiss Punkt (i) der Definition 3.5 ist 6(r,A\) = 7 und somit verschwinden alle Dach-
Operationen aus dem Ausdruck (wir haben den Basis-Fall der Rekusion erreicht). Die Uber-
gangsfunktionen ¢ lassen sich schrittweise von innen nach aussen auflésen:

5(8(r,bea), c) = 8(8(8(r,be), a), c) = 6(6(8(3(r, be), ), a), c) =

) =
5(5(5@( A),b),¢),a),c) =/
6<6<5<r ) > a),c)= |

(a,

3.2 Beweise der Nichtexistenz

In Definition 3.3 haben wir die Klasse Lg 4 der reguldren Sprachen kennengelernt. Eine Sprache L
ist regulér (L € Lg4), genau dann, wenn ein endlicher Automat A existiert, welcher die Sprache L
akzeptiert (L(A) = L).

Um zu beweisen, dass eine gegebene Sprache L regulér ist, geniigt es also einen endlichen Automaten
A zu konstruieren und zu begriinden, dass L die von A akzeptierte Sprache ist. Dieses Vorgehen
haben wir bereits mehrfach demonstriert.

Nun stellt sich natiirlich die Frage, ob jede Sprache regulér ist, oder existieren Sprachen, die nicht
regulédr sind? Wie kdnnte man beweisen, dass eine Sprache nicht regulér ist?

Nur weil wir nicht in der Lage sind, einen endlichen Automaten, fiir eine Sprache zu finden, bedeutet
dies nicht, dass die Sprache nicht reguldr ist. Es konnte natiirlich sein, dass die Sprache zwar
reguldr ist, wir jedoch nicht die passende Idee fiir die Konstruktion eines entsprechenden endlichen
Automaten gefunden haben. Unsere Unzuldnglichkeit einen endlichen Automaten konstruieren zu
konnen, ist kein Beweis dafiir, dass die Sprache nicht regular ist. Um korrekt zu beweisen, dass eine
Sprache nicht reguldr ist, miissen wir begriinden, warum es keinen endlichen Automaten fiir diese
Sprache geben kann.

Im Unterschied zu konstruktiven Beweisen, bei denen man die Existenz eines Objekts mit gewissen
Eigenschaften direkt durch eine Konstruktion eines solchen Objekts beweist (wir konstruieren zum
Beispiel einen endlichen Automaten M mit vier Zustanden, der eine gegebene Sprache akzeptiert),
kann man bei den Beweisen der Nichtexistenz mit einer unendlichen Menge von Kandidaten (zum
Beispiel allen endlichen Automaten) nicht so vorgehen, dass man alle Kandidaten einen nach dem
anderen betrachtet und iiberpriift, dass keiner die gewiinschten Eigenschaften hat. Um die Nicht-
existenz eines Objekts mit gegebenen Eigenschaften in einer unendlichen Klasse von Kandidaten
zu beweisen, muss man fir gewohnlich eine tiefgreifende Kenntnis tiber diese Klasse haben, die im
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Widerspruch zu den gewiinschten Eigenschaften steht.

Beweise der Nichtexistenz gehoren zu den schwierigsten Aufgaben der Informatik und der Mathe-
matik iiberhaupt. Das P vs NP Problem, welches eines der bekanntesten offenen Probleme der
Informatik ist, befasst sich ebenfalls mit der Problematik des Beweisens von Existenz oder Nicht-
existenz’.

Da endliche Automaten sehr stark eingeschrankte Programme sind (siehe Unterabschnitt 3.1.2),
ist der Beweis der Nichtexistenz eines endlichen Automaten fiir eine gegebene Sprache eine relativ
einfache Aufgabe. Wir nutzen diese Tatsache, um eine einfache Einfiihrung in die Methodik der
Erstellung von Beweisen der Nichtexistenz zu geben.

Das charakteristische Merkmal endlicher Automaten ist, dass sie zu jeder Zeit nur abgespeichert
haben, in welchem Zustand sie sich aktuell befinden und welches Eingabesymbol sie als Néchstes
lesen werden. Ansonsten verfiigen sie iiber keinen Speicher. Dies bedeutet insbesondere, dass ein
endlicher Automat nicht abgespeichert hat (sich nicht erinnern kann), auf welchem Wege er in seinen
aktuellen Zustand gelangt ist. Betrachten wir nochmal den endlichen Automaten in Abbildung 3.7.
Die zwei verschiedenen Woérter x := cbcbeba und y := b fithren beide in den Zustand p. In Zukunft
wird A nicht mehr zwischen x und y unterscheiden kénnen. Auf welchem Wege der endliche Automat
in einen Zustand gekommen ist, spielt also keine Rolle. Der endliche Automat hat kein ,,Gedachtnis®.
Wenn A also nach dem Lesen zweier Worter x und y jeweils in demselben Zustand go endet (also
S(QO, x) = g(qo, y)), dann gilt fir alle Worter z € ¥* (alle zukiinftigen Eingaben), dass

8(go, 22) = 8(qo, y2).

In diesem Sinne, kénnen somit bereits gelesene Eingaben, welche in denselben Zustand fithren, als
gleichwertig angesehen werden.

Diese wichtige Eigenschaft wollen wir in einem Satz formulieren und formal beweisen.

Theorem 3.1 (Pfad-Invarianz endlicher Automaten):
Sei A =(Q,%,0,q, F) ein endlicher Automat. Seien x,y € ¥* unterschiedliche Worter (z #
y) dber ¥ , mit der Eigenschaft:

(d0,@) == (1, A)  wnd  (q0,5) = (P, A)

fiir einen Zustand p € @ (dies ist gleichbedeutend mit S(qo, x) = S(qo, y) = p). Dann existiert
fiir jedes Wort z € X* ein Zustand r € @, sodass A seine Arbeit auf zz und yz jeweils im
Zustand r beendet (A landet fiir z und yz in demselben Zustand). Damit gilt insbesondere,
dass

xz € L(A) <= yz € L(A)
Entweder liegen beide Worter xz und yz in der von A akzeptierten Sprache L(M), oder

keines der beiden Worter liegt in L(A). Es kann nicht sein, dass eines der beiden Wérter in
der Sprache liegt und das andere nicht.

Shttps://www.claymath.org/millennium-problems/p-vs-np-problem
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Beweis 3.1:
Aus der Existenz der zwei Berechnungen

(d0,0) = (p.A)  und  (q0.y) = (p, )

von A folgt sofort die Existenz folgender zwei Berechnungen auf zz und yz:

(q0,72) == (p,2)  und (g0, 52) = (p, 2)

fir alle Worter z € X*. Wenn wir den Zustand, in den die Berechnung von A auf z ausge-
hende vom Zustand p fiihrt, mit r bezeichnen (also r := d(p, z)), dann ist die Berechnung
von A auf xz

(qo, z2) A, (p, 2) A, (r,A)

und die Berechnung von A auf yz
A A
(QO7yz) T> (pa Z) T> ('I”, )‘)
Falls r ein akzeptierender Zustand ist (r € F'), dann sind beide Worter 2z und yz in L(A).

Falls r ¢ F, dann sind beide Worter zz und yz nicht in L(A).

. J

Wir zeigen jetzt, wie Theorem 3.1 benutzt werden kann um, indirekt (durch Widerspruch) zu bewei-
sen, dass eine Sprache nicht regulér ist. Dieses indirekte Vorgehen wollen wir auch hier anwenden.
Betrachten wir die Sprache

Leount == { w € {0,1}" ; w=0"1" fiireinn € N }.

Die Sprache L ist die Menge aller bindren Worter, welche gleich viele Nullen und Einsen enthalten
und in denen alle Nullen vor dem ersten Auftreten einer Eins stehen. Das kiirzeste Wort in Leoynt
ist das leere Wort . Die weiteren Worter in Ly, sind 01,0011,000111,00001111, ... (aufsteigende
Léngen). Wir werden beweisen, dass Lcount keine regulire Sprache ist, also Leount ¢ Lpa gilt.
Intuitiv scheint es so, dass jeder endliche Automat, welcher Lc.oun: akzeptieren wiirde, die Anzahl
der Nullen abspeichern miisste, um diese Anzahl spéater mit der Anzahl Einsen abgleichen zu kénnen.
Ein endlicher Automat hat jedoch keinen Speicher, um die Anzahl der Nullen speicher zu kénnen.
Wir werden formal beweisen, dass diese Intuition genau richtig ist.

Theorem 3.2:
Die Sprache Leoynt ist nicht regulér (Leoynt ¢ LEA)-

Beweis 3.2:

Wir beweisen die Behauptung durch Widerspruch. Wir nehmen also an, Lcy,n: sei regulér. Dann
existiert ein endlicher Automat A = (Q,{0,1},6,q0, F) mit L(A) = Leount- Die Anzahl der
Zusténde @ von A ist |Q]. Wir betrachten die |Q| + 1 Worter (ein Wort mehr als A Zusténde
hat):

0',02%,0%,...,01Q pl@i+1, (3.6)

Da in der Auflistung 3.6 mehr Worter stehen, als A Zustdnde hat, miissen sich in der Lis-
te (geméss des Taubenschlagprinzips?) mindesten zwei unterschiedliche Worter finden las-
sen, welche den Automaten in denselben Zustand fithren. Damit existieren also zwei Zahlen
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i,7€4{1,2,...,]|Q],|Q| + 1} mit ¢ < j, sodass
5(g0,0") = 6(qo, 07).
Gemiss Theorem 3.1 muss fiir jedes Wort z € {0,1}" gelten, dass
0'2 € Leount <= 072 € Leount-

Doch dies ist ein Widerspruch, denn fiir die Wahl z := 17 liegt das Wort 07z = 0717 in der Sprache
Leount (Oj 17 hat gleich viele Nullen wie Einsen), doch das Wort 0’z = 017 liegt nicht in Leount,
da i < j gilt und 0°17 somit mehr Einsen als Nullen enthilt. Da wir einen Widerspruch erhalten
haben, muss unsere Annahme, Loy sei reguldr verworfen werden und wir haben Leoynt ¢ Lra
bewiesen.

“https://de.wikipedia.org/wiki/Schubfachprinzip

@ Aufgabe 3.6

Beweisen Sie mithilfe des Theorem 3.1, dass die Sprache
L:={ad"v"c";n,meN} (3.7)

nicht regular ist.

I r

g Aufgabe 3.7

Beweisen Sie mithilfe des Theorem 3.1, dass die Sprache
Lzz{a"bmch;n,m,hENundm>n+2h} (3.8)

nicht regulér ist.

I r
J

[ Aufgabe 3.8

Beweisen Sie mithilfe des Theorem 3.1, dass die Sprache
L:={wH#w; we{ab} }. (3.9)

nicht regulér ist.

7~

I r
J

@ Aufgabe 3.9

Beweisen Sie, dass die Sprache
L:={01;ijeN} (3.10)

regulér ist.
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W Aufgabe (Challenge) 3.10

Entwerfen Sie einen endlichen Automaten fiir die Sprache
L :={Dec(n); n e N,n>0 und n ist durch 11 teilbar }.

Dabei steht Dec(n) fiir die Dezimaldarstellung von n ohne fithrende Nullen.

Tipp: Eine ganze Zahl z mit Dezimaldarstellung Dec(x) = z122 . ..z, ist genau dann durch
11 teilbar, wenn die alternierende Quersumme +x; — zo + 3 — x4 + x5 — ... + x,, dieser
Zahl durch 11 teilbar ist. Beispiel: Die Zahl 4752 ist durch 11 teilbar, da ihre alternierende
Quersumme +4 — 7+ 5 — 2 = 0 durch 11 teilbar ist.
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3.3 Losungen der Aufgaben

v/ Losungsvorschlag zu Aufgabe 3.1 v

1 0 0,1

0 A 1 0 0
S S @\/@—*
\// 1
1

Abbildung 3.8: Endlicher Automat fiir die Sprache L; in Ausdruck Gleichung (3.4).

Vv Losungsvorschlag zu Aufgabe 3.2 v/

Der endliche Automat in Abbildung 3.3 akzeptiert genau die Eingabeworter, fiir die der endliche
Automat seine Arbeit in einem der beiden akzeptierenden Zustianden pg oder ps beendet. Man kann
den Graphen mental wie folgt aufteilen:

e obere Hilfte: Zustdnde pg, p1
o untere Halfte: Zustidnde po, p3
o linke Hélfte: Zustdnde pg, p2
o rechte Hélfte: Zustdnde p1, p3

In die untere Hdlfte gelangt man nach dem erstmaligen Lesen eines Symbols a. Wenn ein weiteres a
gelesen wird, gelangt man wieder zuriick in die obere Hailfte. Man von der oberen Hdlfte in die untere
Hilfte (und umgekehrt) nur durch Lesen des Symbols a gelangen. Da der endliche Automat in der
oberen Hilfte im Zustand pg beginnt, ist klar, dass sich der endliche Automat genau dann in einem
der Zustande der oberen Halfte (pg, p1) befindet, wenn er eine gerade Anzahl von a’s gelesen hat.

Mit einer vollig analogen Argumentation begriindet man, dass sich der endliche Automat genau
dann in einem der Zusténde der linken Hdlfte (po, p2) befinden kann, wenn er eine gerade Anzahl
von b’s gelesen hat.

Der endliche Automat befindet sich somit genau dann im Zustand pg, wenn er eine gerade Anzahl
von a’s und eine gerade Anzahl b’s gelesen hat, wenn also fiir das Eingabewort w gilt: |w|, ist
gerade und |w|, ist gerade.

Der endliche Automat befindet sich somit genau dann im Zustand p3, wenn er eine ungerade Anzahl
von a’s und eine ungerade Anzahl b’s gelesen hat, wenn also fiir das Eingabewort w gilt: |w]|, ist
ungerade und |w|, ist ungerade.

Zusammengefasst, entspricht die vom endlichen Automaten akzeptierte Sprache Lo der Menge

Ly ={w € {a,b}" ; Das Wort w hat eine gerade Lénge (Jw| ist eine gerade Zahl). }

v Losungsvorschlag zu Aufeabe 3.3 v
le) te) S

Intuitiv gesprochen, ist M, die Menge aller Worter aus {a,b, c}* welche zwar auf b enden, aber
nicht auf bb. Wir erhalten M, durch das (mengentheoretische) Subtrahieren der Menge L, von
der Menge aller Worter M., die mit a beginnen und auf b enden:

My = { w € {a,b,c}* ; w= axb, fiir ein x € {a,b,c}" }
Mab == Mamb \ Labb
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Alternative Losung:

Die Wérter w in Mg, haben die Form w = azyb, mit x € {a,b,c}” und y € {a, c}. Dies sind genau
die Worter, welche mit a beginnen, an letzter Stelle das Symbol b steht, aber an der zweitletzten
Stelle nicht das Symbol b. Folglich gilt auch:

My, == { w e {a,b,c}" ; w=axyb, fir ein x € {a,b,c}” und ein y € {a,c} }

v/ Losungsvorschlag zu Aufgabe 3.4 v
if input = a goto 2, if input = b goto 2, if input = c goto 1;
if input a goto 2, if input = b goto O, if input c goto 2;
if input = a goto 2, if input = b goto 2, if input = c goto 2;

Vv Losungsvorschlag zu Aufgabe 3.5 v

Der zur Graphendarstellung in Abbildung 3.3 &quivalente endliche Automat ist M = (@, %, 6, qo, F),
wobei:

Q = {p07p11p27p3}72 = {aa b} » 40 :p(]vF = {p07p3} und

d(po,a) = p2, 6(po,b) = p1
6(p1,a) = p3, 6(p1,b) = po
6(p2,a) = po, O(p2,b) =p3
d(p3,a) = p1, 6(p3,b) =p2

v/ Losungsvorschlag zu Aufgabe 3.6 v

Wir beweisen die Behauptung durch Widerspruch. Wir nehmen also an, L = { a"b0™c¢" ; n,m € N }
sei reguldr. Dann existiert ein endlicher Automat A = (Q,{a,b,c},d,qo, F) mit L(A) = L. Die
Anzahl der Zustdnde @ von A ist |Q]. Wir betrachten die |Q| + 1 Worter (ein Wort mehr als A
Zustande hat):

al,a?,a®,. .., a9 l@HL, (3.11)

Da in der Auflistung 3.11 mehr Worter stehen, als A Zusténde hat, miissen sich in der Liste (geméss
des Taubenschlagprinzips) mindesten zwei unterschiedliche Worter finden lassen, welche den Auto-
maten in denselben Zustand fithren. Damit existieren also zwei Zahlen i,j € {1,2,...,|Q],|Q| + 1}
mit ¢ < j, sodass

3(qo, a') = 0(qo, a?).
Gemiss Theorem 3.1 muss fiir jedes Wort z € {a, b, c}” gelten, dass
dzel < dzel.

Doch dies ist ein Widerspruch, denn fiir die Wahl z := ¢/ liegt das Wort a’z = a’¢’ in der Sprache
L (a’& hat gleich viele a’s wie ¢’s), doch das Wort a’z = a’c’ liegt nicht in L, da i < j gilt und a’c’
somit mehr ¢’s als a’s enthélt. Da wir einen Widerspruch erhalten haben, muss unsere Annahme, L
sei reguldr verworfen werden und wir haben L ¢ Lg4 bewiesen.

v Losungsvorschlag zu Aufgabe 3.7 v
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Wir beweisen die Behauptung durch Widerspruch. Wir nehmen also an,
L= { ambmc n,m,hENundm>n+2h}

sei reguldr. Dann existiert ein endlicher Automat A = (Q,{a,b,c},d,qo, F) mit L(A) = L. Die
Anzahl der Zustdnde @ von A ist |Q|. Wir betrachten die |Q| + 1 Worter (ein Wort mehr als A
Zusténde hat):

at,a? a3, ... ,a'Q‘,a‘Ql‘H. (3.12)
Da in der Auflistung 3.12 mehr Worter stehen, als A Zusténde hat, miissen sich in der Liste (geméss
des Taubenschlagprinzips) mindesten zwei unterschiedliche Woérter finden lassen, welche den Auto-
maten in denselben Zustand fithren. Damit existieren also zwei Zahlen 4,5 € {1,2,...,|Q|,|Q|+ 1}
mit ¢ < j, sodass
6(go, a’) = 6(qo, a’).
Gemiss Theorem 3.1 muss fiir jedes Wort z € {a, b, c}” gelten, dass

adzelL<daz€elL.

Doch dies ist ein Widerspruch, denn fiir die Wahl z := &/ liegt das Wort a‘z = a’b’ in der Sprache
L (j > i), doch das Wort a’z = a/b’ liegt nicht in L. Da wir einen Widerspruch erhalten haben,
muss unsere Annahme, L sei reguldr verworfen werden und wir haben L ¢ L4 bewiesen.

Vv Losungsvorschlag zu Aufgabe 3.8 v/
Wir beweisen die Behauptung durch Widerspruch. Wir nehmen also an, L = { w#w ; w € {a,b}" }
sei reguldr. Dann existiert ein endlicher Automat A = (@, {a,b, #},0,qo, F) mit L(A) = L. Die

Anzahl der Zustiande @ von A ist |Q|. Wir betrachten die |Q| + 1 Worter (ein Wort mehr als A
Zustande hat):

a',a?,a®,. .., al® @, (3.13)

Da in der Auflistung 3.13 mehr Worter stehen, als A Zusténde hat, miissen sich in der Liste (geméss
des Taubenschlagprinzips) mindesten zwei unterschiedliche Worter finden lassen, welche den Auto-
maten in denselben Zustand fithren. Damit existieren also zwei Zahlen i,j € {1,2,...,|Q],|Q| + 1}
mit ¢ < j, sodass

3(qo, a’) = 6(go, a”).
Gemiss Theorem 3.1 muss fiir jedes Wort z € {a, b, #}* gelten, dass
a'z€L <= dz€L.

Doch dies ist ein Widerspruch, denn fiir die Wahl z := #a’ liegt das Wort a‘z = a'#a’ in der
Sprache L (j > ©), doch das Wort a?z = a?#a" liegt nicht in L. Da wir einen Widerspruch erhalten
haben, muss unsere Annahme, L sei regulir verworfen werden und wir haben L ¢ Lg4 bewiesen.

v Losungsvorschlag zu Aufeabe 3.9 v
le) te)

Wir zeigen, dass die gegebene Sprache regulér ist, indem wir einen endlichen Automaten fiir diese
Sprache angeben. Der endliche Automat ist gegeben durch:

0 0,1

1
start —>@ 1 @ 0 q2

Abbildung 3.9: Endlicher Automat fiir die Sprache L := { 0i17 ;4,5 €N b
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v Losungsvorschlag zu Challenge 3.10 v/
Wir geben einen endlichen Automaten M = (Q, 3,0, ¢0, F') mit L(M) = L an.

o Q - (Q67 qt, 40,41, - --,410,P0,P1, - - - 7p10) (dies sind 24 ZuSté‘nde)
e X =%1={0,1,...,9}
Der Anfangszustand ¢0 ist gegeben durch gj.

F ::{QO)pO}
Die Ubergangsfunktion ¢ ist vollstdndig beschrieben durch:

d(g0,0) =

5(qt,j)—qt, j€{0,1,...,9},

0(a0.7) = a5, J€{1,2,....9},
6(qisJ) = P(i—j) mod 11> 1J €{0,1,...,9},
8(PisJ) = Qli+j) mod 11, 1,5 €{0,1,...,9}.
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Kapitel 4

Turingmaschinen

&y

- Input/Output Tape

Reading and Writing Head

q3

q2

q1

/

q0

Finite Control

oves in both directions)

Abbildung 4.1: Turing-Maschine
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