
Informatik

Endliche Automaten
Skript

Thomas Graf

« Winterthur, 14. Januar 2026

mailto:thomas.graf@edu.zh.ch
mailto:

Inhaltsverzeichnis

1 Alphabete, Wörter, Sprachen 2
1.1 Alphabete, Wörter, Sprachen . 2
1.2 Lösungen der Aufgaben . 8
1.3 Kapiteltest . 11
1.4 Lösungen zum Kapiteltest . 12

2 Algorithmische Probleme 13
2.1 Das Entscheidungsproblem . 14
2.2 Graphen . 15

2.2.1 Adjazenzmatrix . 17
2.2.1.1 Knotenüberdeckung (vertex cover) 19

2.3 Lösungen der Aufgaben . 21

3 Endliche Automaten 22
3.1 Darstellung endlicher Automaten . 22

3.1.1 Darstellung durch gerichtete Graphen . 22
3.1.2 Darstellung durch Programme . 26
3.1.3 Formale Definition . 29

3.2 Beweise der Nichtexistenz . 33
3.3 Lösungen der Aufgaben . 38

4 Turingmaschinen 42

1

Kapitel 1

Alphabete, Wörter, Sprachen

Wenn man sich mit der Funktionsweise von Rechnern (Computern) genauer beschäftigt, stellt man
fest, dass Rechner im Grunde eine Transformation von Eingabedaten in Ausgabedaten realisieren.
Sowohl die Eingabedaten als auch die Ausgabedaten lassen sich als Texte darstellen. Die Texte
sind nichts anderes als Folgen von Symbolen aus einem bestimmten Alphabet. Programme können
als Folge von Symbolen der Computertastatur dargestellt werden. In digitalen Rechnern sind alle
Informationen als Folgen von Einsen und Nullen gespeichert. Damit realisiert der Rechner eine
Transformation von Eingabetexten in Ausgabetexte.

In diesem Kapitel wollen wir den Formalismus für den Umgang mit Texten kennenlernen. Wir wer-
den die fundamentalen Begriffe Alphabet, Wort und Sprache einführen. Diese werden uns später
helfen, bekannte Probleme der Informatik wie beispielsweise das Entscheidungsproblem mathema-
tisch sauber zu formulieren.

Dieses Kapitel folgt dem Abschnitt 2.2 aus dem Buch1 sehr nahe. Es wurden einige Aufgaben,
welche als Hilfestellung dienen, hinzugefügt und kleine Teile ausgelassen.

1.1 Alphabete, Wörter, Sprachen

Definition 1.1 (Alphabet):
Eine endliche nichtleere Menge Σ heisst Alphabet. Die Elemente eines Alphabets werden
Buchstaben (Zeichen, Symbole) genannt.

Wir werden später Alphabete verwenden, um eine schriftliche Darstellung einer Sprache zu erzeugen.
Definition 1.1, entspricht unserer intuitiven Vorstellung eines Alphabets: Um Text darstellen zu
können, muss ein Alphabet mindestens ein Symbol enthalten (→ nichtleer). Damit man sich auf
einen fixen Satz von Zeichen einigen kann, darf das Alphabet nicht unendlich gross sein (→ endlich).

Wir listen nun einige der Alphabete auf, die in der Mathematik und Informatik häufig verwendet
werden.

Beispiel 1.1: (a) Σbool = {0, 1} ist das Boole’sche Alphabet, mit dem digitale Rechner
arbeiten.

(b) Σlat = {a, b, c, . . . , z, A, B, . . . , Z} ist das lateinische Alphabet.
(c) ΣTastatur = {a, b, c, . . . , z, A, B, C, . . . , Z, ␣ , >, <, (,), . . . , #, ?, !} ist das Alphabet aller

1J. Hromkovic: Theoretische Informatik. 5. Auflage, Springer Vieweg 2014., ISBN: 978-3-658-06432-7

2

Endliche Automaten « Thomas Graf, Informatik, 2026

Symbole, die mit der englischen Tastatur getippt werden können. Dabei ist ␣ das Symbol
für das Leerzeichen / Leersymbol.

(d) Σgreek = {α, β, γ, . . . , ω, A, B, Γ, . . . , Ω} ist das griechische Alphabet.
(e) Σm = { n ∈ N ; n < m } für jede fixe Wahl von m ∈ N \ {0}, ist ein Alphabet für die

m-adische Darstellung von Zahlen.

Wörter werden wir als endliche Folgen von Buchstaben ansehen.

Definition 1.2 (Wort):
Sei Σ ein Alphabet. Ein Wort über Σ ist eine endliche (möglicherweise leere) Folge von
Buchstaben aus Σ. Das leere Wort λ ist die leere Buchstabenfolge. Die Länge |w| eines Wortes
w ist die Länge des Wortes als Folge, das heisst die Anzahl der Vorkommen von Buchstaben
in w.

Beispiel 1.2: (a) w = 1, 0, 0, 1, 0 ist ein Wort über dem Alphabet Σbool und |w| = 5, da w
eine Folge von 5 Buchstaben ist.

(b) u = M, ␣ , j ist ein Wort über ΣTastatur und |u| = 3, da u eine Folge von 3 Buchstaben
ist.

(c) Das leere Wort λ ist ein Wort über jedem Alphabet und es gilt |λ| = 0.

EDIT Aufgabe 1.1

Was ist Σ10?

Definition 1.3 (Stern-Operator):
Sei Σ ein Alphabet. Σ∗ (gesprochen: Sigma Stern) ist die Menge aller Wörter über Σ, also
die Menge aller endlichen Folgen von Symbolen aus Σ. Man nennt Σ∗ auch den Kleene’schen
Sterna von Σ. Σ+ = Σ∗ \ {λ} ist die Menge aller Wörter über Σ ohne das leere Wort.
abenannt nach dem US-Amerikanischen Mathematiker Stephen Cole Kleene

Wir werden im Folgenden Wörter ohne Kommmas schreiben. Anstelle von 1, 0, 0, 1, 0 werden wir
lediglich 10010 schreiben. Allgemein, werden wir anstelle von x1, x2, . . . , xn einfach x1x2 . . . xn schrei-
ben.

Bemerkung 1.1:
In der deutschen Sprache existieren die zwei Ausdrücke „Wörter“ und „Worte“. Dies sind
keine Synonyme. Wörter bezeichnet den Plural von Wort („Im Duden stehen viele Wörter“).
Der Ausdruck Worte bezieht sich auf Gedankenkonstrukte („Sie sprach weise Worte“).

Wir können Wörter benutzen, um mathematische Objekte wie Zahlen, Formeln, Graphen und Com-
puterprogramme darzustellen. Ein Wort x = x1x2 . . . xn ∈ (Σbool)∗ kann als binäre Darstellung der
Zahl

Nummer(x) =
n∑

k=1
xk · 2n−k (1.1)

betrachtet werden.

3

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

EDIT Aufgabe 1.2

Sei x = 1011. Berechnen Sie Nummer(x).

Für eine Zahl m ∈ N \ {0} wird mit Bin(m) ∈ (Σbool)∗ die kürzeste binäre Darstellung von m
bezeichnet, also gilt Nummer (Bin(m)) = m. Man setzt Bin(0) = 0.

EDIT Aufgabe 1.3

Wie sehen die folgenden Mengen aus?

(a) {1}∗

(b) (Σbool)∗

EDIT Aufgabe 1.4

In Definition 1.2, haben wir ein Wort als endliche Folge von Buchstaben definiert. Nun enthält
zum Beispiel die Menge {1}∗ in Aufgabe 1.3 aber Wörter beliebiger Länge. Erklären Sie,
warum dies kein Widerspruch ist.

Da Alphabete insbesondere auch Mengen sind, kann man auch das kartesische Produkt von Alpha-
beten bilden.

Beispiel 1.3:
Sei Σ1 = {g, h} und Σ2 = {x, y}, dann ist das kartesische Produkt Σ1×Σ2 = {(g, x), (g, y), (h, x), (h, y)}.

Wir werden nun eine Operation einführen, welche uns erlaubt Wörter zu verketten. Diese Operation
werden wir sehr häufig verwenden.

Definition 1.4 (Verkettung / Konkatenation):
Die Verkettung (Konkatenation) für ein Alphabet Σ ist eine Abbildung Kon: Σ∗ × Σ∗ →
Σ∗, sodass

Kon(x, y) = x · y = xy

für alle x, y ∈ Σ∗.

Beispiel 1.4:
Sei Σ = 8, 9, d, e und seien x = e899dd und y = de8, dann ist Kon(x, y) = x · y = e899ddde8.

Wir werden fast ausnahmslos xy schreiben und nur selten x · y oder Kon(x, y).

EDIT Aufgabe 1.5

Erläutern Sie in Ihren eigenen Worten, was die Bedeutung des Ausdrucks Σ∗ × Σ∗ → Σ∗ in
Definition 1.4 ist.

Die Verkettung Kon über Σ ist assoziativ über Σ∗, da offensichtlich

Kon(x, Kon(y, z)) = x · (y · z) = xyz = (x · y) · z = Kon(Kon(x, y), z)

4

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

gilt, für alle x, y, z ∈ Σ∗.

EDIT Aufgabe 1.6

Bei der Multiplikation in den reellen Zahlen ist die Zahl 1 ∈ R das neutrale Element, da
1 · x = x · 1 = x für alle x ∈ R gilt. Welches ist das neutrale Element der Addition in den
reellen Zahlen?

Für jedes x ∈ Σ∗ gilt

x · λ = λ · x = x.

Damit ist λ das neutrale Element der Verkettung über Σ∗.

EDIT Aufgabe 1.7

Sei x = a01b und y = c21. Bestimmen Sie |x|, |y| und |xy|. Seien allgemein x, y ∈ Σ∗ zwei
Wörter für ein Alphabet Σ. Finden Sie einen Ausdruck für |xy|.

Definition 1.5 (Umkehrung / Reversal):
Sei n eine natürliche Zahl. Für ein Wort x = x1x2 . . . xn, mit xi ∈ Σ für i ∈ {1, 2, . . . , n}
bezeichnet xR = xnxn−1 . . . x1 die Umkehrung (Reversal) von x.

Beispiel 1.5:
Es sei w := abcde. Dann gilt wR = edcba.

EDIT Aufgabe 1.8

Sei Σ ein Alphabet und u, v ∈ Σ∗ zwei Wörter. Beweisen oder widerlegen Sie die Aussage:

(uv)R = vRuR

Definition 1.6 (Iteration eines Wortes):
Sei Σ ein Alphabet. Für alle x ∈ Σ∗ und alle i ∈ N definieren wir die i-te Iteration xi von x
als

x0 = λ, x1 = x, xi = xxi−1.

Beispiel 1.6:
Sei Σ = {a, b, c}. Wir können nun schreiben:

aa = a2

abababab = (ab)4

cbbbbbab = cb5ab = c(bb)2bab

Mit der folgenden Definition wollen wir den Begriff Teilwort, für den wir eine gute Intuition haben,
formalisieren. Ein Teilwort eines Wortes x ist ein zusammenhängender Teil von x.

5

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Definition 1.7 (Teilwörter):
Seien u, w ∈ Σ∗ für ein Alphabet Σ.

• v heisst Teilwort von w ⇔ es existieren x, y ∈ Σ∗, sodass w = xvy
• v heisst Präfix von w ⇔ es existiert x ∈ Σ∗, sodass w = vx
• v heisst Suffix von w ⇔ es existiert x ∈ Σ∗, sodass w = xv
• v 6= λ heisst echtes Teilwort (Präfix, Suffix) von w ⇔ v 6= w und v ein Teilwort (Präfix,

Suffix) von w ist

EDIT Aufgabe 1.9

Es seien Σ := {a, b, c} und w := abc ein Wort über Σ. Bestimmen Sie alle Teilwörter von w.
Welche dieser Teilwörter sind auch Präfixe von w?

Beispiel 1.7:
Sei Σ = {a, b, c}. Das Wort abc ist ein echtes Teilwort, echtes Präfix und ein echtes Suffix von
(abc)3. Das leere Wort λ ist Teilwort von jedem Wort. Jedes Wort ist Teilwort von sich selbst
(aber kein echtes Teilwort).

Trophy Aufgabe (Challenge) 1.10

Es sei x ein Wort der Länge n ∈ N, welches aus lauter verschiedenen Buchstaben besteht
(also aus n verschiedenen Buchstaben). Wie viele verschiedene Teilwörter hat x?

Wir wollen an dieser Stelle noch eine weitere nützliche Schreibweise definieren.

Sei x ∈ Σ∗ und a ∈ Σ, dann ist |x|a definiert als die Anzahl der Vorkommen von a in x.

Beispiel 1.8:
Sei v = babaac, dann ist |v|a = 3, |v|b = 2 und |v|c = 1. Offensichtlich gilt für alle x ∈ Σ∗

|x| =
∑
a∈Σ

|x|a .

Nun kommen wir zur Definition einer Sprache. Dies wird für uns einer der wichtigsten Begriffe sein.

Definition 1.8 (Sprache):
Eine Sprache L über einem Alphabet Σ ist eine Teilmenge von Σ∗. Das Komplement LC

der Sprache L bezüglich Σ ist die Sprache Σ∗ \ L.

• L∅ = ∅ ist die leere Sprache.
• Lλ = {λ} ist die einelementige Sprache, die nur aus dem leeren Wort besteht.

Sind L1 und L2 Sprachen über Σ, so bezeichnet

L1 · L2 = L1L2 = { vw ; v ∈ L1 und w ∈ L2 }

die Konkatenation von L1 und L2.

6

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Ist L eine Sprache über Σ, so definieren wir die Iterationen

L0 = Lλ, Li+1 = Li · L für alle i ∈ N,

L∗ =
⋃
i∈N

Li und L+ =
⋃
i∈N

Li · L.

Beispiel 1.9:
Die folgenden Mengen sind Beispiele von Sprachen über Σ = {a, b}.

• L1 = ∅
• L2 = {λ}
• L3 = Σ∗ = {λ, a, b, aa, . . .}
• L4 = Σ+ = {a, b, aa, . . .}
• L5 = Σ
• L6 = { ap ; p ist eine Primzahl }
• L5 = {a}∗ = {λ, a, aa, aaa, aaaa, . . .}
• Σ2 = {aa, ab, ba, bb}

Man beachte, dass Σi = { x ∈ Σ∗ ; |x| = i } für eine natürliche Zahl i, und dass L∅·L = ∅, Lλ·L = L.

Beispiel 1.10:

• Die Menge aller grammatikalisch korrekten englischen Texte ist eine Sprache über
ΣTastatur.

• Die Menge aller syntaktisch korrekten Programme in C++ ist auch eine Sprache über
ΣTastatur.

EDIT Aufgabe 1.11

Sei L1 = {λ, a, b} und sei L2 =
{
a4, a2b

}
. Welche Wörter Liegen in der Sprache L3 = L1L2?

Trophy Aufgabe (Challenge) 1.12

Sei k ∈ N. Geben Sie ein Alphabet Σ und zwei Sprachen L1 und L2 über Σ an, sodass

|L1| = k und |L1L2| = k + 1.

7

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

1.2 Lösungen der Aufgaben
Check Lösungsvorschlag zu Aufgabe 1.1 Check

Σ10 = {0, 1, 2, . . . , 9}

ist das Alphabet für die Darstellung von Zahlen im Dezimalsystem.
Check Lösungsvorschlag zu Aufgabe 1.2 Check

Nummer(x) = Nummer(1011) =
4∑

k=1
xk · 24−k = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 8 + 2 + 1 = 11

Check Lösungsvorschlag zu Aufgabe 1.3 Check

{1}∗ = {λ, 1, 11, 111, 1111, 11111, . . .} =
= {λ} ∪ { x1x2 . . . xi ; i ∈ N, xj = 1 für j = 1, 2, . . . , i }

(Σbool)∗ = {0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 100, 011, . . .} =
= {λ} ∪ { x1x2 . . . xi ; i ∈ N, xj ∈ Σbool für j = 1, 2, . . . , i }

Check Lösungsvorschlag zu Aufgabe 1.4 Check

Anhand dieser Frage lässt sich der Unterschied zwischen den Begriffen unbeschränkt und unendlich
schön verdeutlichen. Betrachten wir dazu exemplarisch nochmals die Menge {1}∗ aus Aufgabe 1.3:

{1}∗ = {λ, 1, 11, 111, 1111, 11111, . . .} =
= {λ} ∪ { x1x2 . . . xi ; i ∈ N, xj = 1 für j = 1, 2, . . . , i }

• Für jede natürliche Zahl n ∈ N, existiert in {1}∗ ein Wort w mit |w| ≥ n, da für jedes n ∈ N
(insbesondere) auch das Wort w := 1n in der Menge {1}∗ enthalten ist und |w| ≥ n. Damit
gibt es keine obere Schranke für die Länge der Wörter in {1}∗.

• Jedes Wort w ∈ {1}∗ hat die Form w = 1n für eine natürliche Zahl n. Damit hat jedes Wort
in der Menge {1}∗ eine endliche Länge.

Die Länge der Wörter in {1}∗ können also nicht nach oben beschränkt werden, trotzdem hat jedes
Wort in {1}∗ eine endliche Länge und ist somit tatsächlich ein Wort im Sinne von Definition 1.2.

Check Lösungsvorschlag zu Aufgabe 1.5 Check

Wir haben zwei Wörter x und y über dem Alphabet Σ. Weil Σ∗ die Menge aller Wörter über Σ ist,
gilt offensichtlich x, y ∈ Σ∗. Aus den zwei Wörtern x und y wird nun ein neues Wort xy gebildet. Man
beachte, dass die Reihenfolge xy 6= yx (im Allgemeinen) eine Rolle spielt. Die Verkettung nimmt
also ein geordnetes Paar (x, y) ∈ (Σ∗ × Σ∗) (dies ist gerade die Menge aller geordneten Paare von
Wörtern über Σ) und bildet dieses auf ein neues Wort xy ∈ Σ∗ ab.

Check Lösungsvorschlag zu Aufgabe 1.6 Check

Die Zahl 0 ∈ R, da 0 + x = x + 0 = x für alle x ∈ R.
Check Lösungsvorschlag zu Aufgabe 1.7 Check

8

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Offensichtlich sind |x| = |a01b| = 4 und |y| = |c21| = 3 und somit |xy| = |a01bc21| = 7.

Seien x, y ∈ Σ∗ zwei Wörter über einem Alphabet Σ. Dann gilt

|xy| = |x| + |y| .

Check Lösungsvorschlag zu Aufgabe 1.8 Check

Da u und v Wörter sind, haben sie endliche Längen. Wir definieren n und m als n := |u| und m := |v|.
Dann hat u die Form u = u1u2 . . . un und v = v1v2 . . . vm, wobei u1, u2, . . . , un, v1, v2, . . . , vm ∈ Σ.
Damit ist

uv = u1u2 . . . unv1v2 . . . vm

und somit

(uv)R = vm . . . v2v1un . . . u2u1 = vRuR,

da vR = vm . . . v2v1 und uR = un . . . u2u1 gilt.
Check Lösungsvorschlag zu Aufgabe 1.9 Check

Die Menge der Teilwörter von w ist

{λ, a, b, c, ab, bc, abc} ,

wobei nur {λ, a, ab, abc} auch Präfixe von w sind.
Check Lösungsvorschlag zu Challenge 1.10 Check

Wir dürfen annehmen, dass x die Form x = a1a2 . . . an hat. Wir werden die Anzahl der Teilwörter
von x der Länge i = 1, i = 2 bis zur Länge i = n zählen.

i = 1:

1 : a1a2a3a4 . . . an−3an−2an−1an

2 : a1a2a3a4 . . . an−3an−2an−1an

3 : a1a2a3a4 . . . an−3an−2an−1an

. . .

(n − 3) : a1a2a3a4 . . . an−3an−2an−1an

(n − 2) : a1a2a3a4 . . . an−3an−2an−1an

(n − 1) : a1a2a3a4 . . . an−3an−2an−1an

n : a1a2a3a4 . . . an−3an−2an−1an

Offensichtlich gibt es n viele Teilwörter der Länge 1, nämlich genau die Teilwörter a1, a2, . . . , an.
Wir haben jeweils die Anfangsposition des Teilwortes in x unterstrichen.

i = 2:

1 : a1a2a3a4 . . . an−3an−2an−1an

2 : a1a2a3a4 . . . an−3an−2an−1an

3 : a1a2a3a4 . . . an−3an−2an−1an

. . .

(n − 3) : a1a2a3a4 . . . an−3an−2an−1an

(n − 2) : a1a2a3a4 . . . an−3an−2an−1an

(n − 1) : a1a2a3a4 . . . an−3an−2an−1an

9

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Es gibt n−1 viele Teilwörter der Länge 2. Man beachte, dass sich die Anfangsposition der Teilwörter
in x um eine Position nach links verschoben hat, da das letzte Teilwort (ganz rechts) der Länge 2
beim zweitletzten Symbol in x beginnen muss.

i = 3:

1 : a1a2a3a4 . . . an−3an−2an−1an

2 : a1a2a3a4 . . . an−3an−2an−1an

. . .

(n − 3) : a1a2a3a4 . . . an−3an−2an−1an

(n − 2) : a1a2a3a4 . . . an−3an−2an−1an

Es gibt n − 2 viele Teilwörter der Länge 3.

Nun nicht mehr schwierig zu sehen, dass es für ein Teilwort der Länge i ∈ {1, 2, . . . , n} genau n−i+1
mögliche Anfangspositionen in x gibt, da die Positionen n − i + 2, 3, . . . , n nicht möglich sind („zu
wenig Platz“). Wir summieren jetzt die Anzahl aller unterschiedlichen (nicht leeren) Teilwörter von
x der Längen i = 1, 2, . . . , n:

n∑
i=1

(n − i + 1) = n(n + 1) −
n∑

i=1
i = n(n + 1) − n(n + 1)

2 = n(n + 1)
2

Hinzu kommt noch das leere Wort (welches Teilwort jedes Wortes ist) und als Resultat finden wir,
dass es

n(n + 1)
2 + 1

viele verschiedene Teilwörter von x gibt.
Check Lösungsvorschlag zu Aufgabe 1.11 Check

L3 =
{

a4, a2b, a5, a3b, ba4, ba2b
}

Bitte beachten Sie unbedingt, dass zwar aa4 = a5 aber ba2b 6= a2b2, da ba2b = baab 6= a2b2 = aabb.
Check Lösungsvorschlag zu Challenge 1.12 Check

Wir wählen Σ = {0} und

L1 =
{

01, 02, . . . , 0k
}

=
{

0i ; 1 ≤ i ≤ k
}

und

L2 = {λ, 0} .

Dann gilt

L1 · L2 = L1 · {λ} ∪ L1 · {0}

= L1 ∪
{

0i0 ; 1 ≤ i ≤ k
}

= L1 ∪
{

0i ; 2 ≤ i ≤ k + 1
}

=
{

0i ; 1 ≤ i ≤ k + 1
}

,

und somit |L1L2| = k + 1.

Alternativ könnten Sie L2 auch definieren als L2 = {a, aa} (ohne L1 zu verändern).

10

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

1.3 Kapiteltest

EDIT Aufgabe 1.13

Markieren Sie die zutreffende(n) Antwort(en).

(a) Es sei Σ ein Alphabet.
� Σ∗ ist eine unendliche Menge.
� Σ∗ ist eine endliche Menge.
� Σ∗ ist keine Menge.

(b) Es seien Σ1, Σ2 Alphabete. Seien L1 eine endliche Sprache über Σ1 und L2 eine endliche
Sprache über Σ2. Dann gilt
� |L1L2| ≤ |L1| · |L2|.
� |L1L2| = |L1| · |L2|.
� |L1L2| > |L1| · |L2|.
� |L1L2| 6= |L1| · |L2|.

(c) � λ ist Element jedes Alphabets
� λ ist ein Wort über jedem Alphabet
� |λ| = 0
� λ ist Suffix jedes Wortes über jedem Alphabet

EDIT Aufgabe 1.14

Gegeben sei eine natürliche Zahl n. Bestimmen Sie die Anzahl der Wörter über Σbool der
Länge n, welche

(a) das Teilwort 01 nicht enthalten.
(b) weder das Teilwort 01 noch das Teilwort 00 enthalten.
(c) das Teilwort 00 nicht enthalten (schwierig!).

EDIT Aufgabe 1.15

(a) Es sei L := {a, ab, ba}. Bestimmen Sie die Sprache L2. Zur Erinnerung: L2 := L · L
(Konkatenation einer Sprache mit sich selbst).

(b) Existiert eine nichtleere endliche Sprache L 6= {λ} über Σbool, welche die Gleichung

L = L2

erfüllt? Begründen Sie Ihre Antwort.

EDIT Aufgabe 1.16

Beweisen oder widerlegen Sie folgende Gleichung:(
{0, 1}2

)∗
= ({0, 1}∗)2

.

11

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

1.4 Lösungen zum Kapiteltest
Check Lösungsvorschlag zu Aufgabe 1.13 Check

(a) Es sei Σ ein Alphabet.
�3 Σ∗ ist eine unendliche Menge.
� Σ∗ ist eine endliche Menge.
� Σ∗ ist keine Menge.

(b) Es seien Σ1, Σ2 Alphabete. Seien L1 eine endliche Sprache über Σ1 und L2 eine endliche
Sprache über Σ2. Dann gilt

�3 |L1L2| ≤ |L1| · |L2|.
� |L1L2| = |L1| · |L2|.
� |L1L2| > |L1| · |L2|.
� |L1L2| 6= |L1| · |L2|.

(c) � λ ist Element jedes Alphabets
�3 λ ist ein Wort über jedem Alphabet
�3 |λ| = 0
�3 λ ist Suffix jedes Wortes über jedem Alphabet

Check Lösungsvorschlag zu Aufgabe 1.14 Check

(a) Enthält ein binäres Wort w der Länge n ∈ N nicht 01 als Teilwort, dann hat w die Form
w = 1k0m für zwei natürliche Zahlen k, m, welche die Gleichung k + m = n erfüllen. Somit ist
ein solches Wort durch die Wahl von k eindeutig bestimmt. Für k gelten die Ungleichungen
0 ≤ k ≤ n. Somit gibt es genau n + 1 mögliche Wahlmöglichkeiten für k und damit also genau
n + 1 solche (gesuchten) Wörter der Länge n.

(b) Wir haben in Teil (a) gesehen, dass jedes Wort mit Länge, welches 01 nicht als Teilwort enthält,
die Form 1k0m haben muss mit k + m = n. Alle Wörter für n ≤ 1 erfüllen diese Bedingung.
Es gibt ein Wort der Länge 0 und zwei Wörter der Länge 1, welche diese Bedingung erfüllen.
Sei nun n ≥ 2. Die einzigen solchen Wörter, welche nicht 00 als Teilwort enthalten, sind 1n−10
und 1n. Also, gibt es für n ≥ 2 genau zwei solche Wörter.

Check Lösungsvorschlag zu Aufgabe 1.15 Check

(a) Es sei L := {a, ab, ba}. Dann ist L2 gegeben durch

L2 =
{

a2, a2b, aba, (ab)2, ab2a, ba2, ba2b, (ba)2
}

.

(b) Nein, eine solche Sprache existiert nicht. Angenommen es gäbe eine solche Sprache L. Da L
nichtleer ist, existiert in L ein Wort w ∈ L maximaler Länge, also |w| = max { |u| ; u ∈ L }
und es gilt |w| ≥ 1. Da L2 = L, gilt w2 ∈ L. Doch dann gilt

∣∣w2∣∣ = 2 |w| > |w| und somit ist
w nicht das längste Wort in L. Dies ist ein Widerspruch.

Check Lösungsvorschlag zu Aufgabe 1.16 Check

Die beiden Mengen sind verschieden. Offensichtlich gilt 0 ∈ ({0, 1}∗)2 aber 0 /∈
(
{0, 1}2

)∗
.

12

mailto:thomas.graf@edu.zh.ch

Kapitel 2

Algorithmische Probleme

Der Titel dieses Kapitels stellt uns vor ein kleines Dilemma. Wir möchten in diesem Kapitel bereits
über algorithmische Probleme sprechen, bevor wir den Begriff Algorithmus in einem späteren Kapitel
formal durch das Modell der Turingmaschine definieren werden. Aus diesem Grund werden wir
anstelle von Algorithmus den Begriff Programm verwenden. Dabei setzen wir voraus, dass die Leserin
/ der Leser eine gewisse intuitive Vorstellung von Programmen hat (die Programmiersprache spielt
dabei keine Rolle).

Wenn wir Programme als Algorithmen anschauen, werden wir jedoch zusätzlich fordern, dass solch
ein Programm für jede zulässige Eingabe seine Arbeit in endlicher Zeit beendet (also nicht unendlich
lange läuft) und eine Ausgabe liefert. Insbesondere ist es einem Algorithmus nicht gestattet in einer
Endlosschleife zu laufen. Wenn ein Programm nach endlicher Zeit seine Arbeit beendet, sagt man
auch, dass das Programm hält.

Unter diesen Bedingungen realisiert ein Programm (Algorithmus) A typischerweise eine Abbildung

A : Σ∗
1 → Σ∗

2

für Alphabete Σ1 und Σ2. Dies sagt aus, dass

• sowohl die Eingaben als auch die Ausgaben für das Programm (Algorithmus) als Wörter
kodiert sind und

• A für jede Eingabe eine eindeutige Ausgabe bestimmt.

Für jeden Algorithmus A und jede Eingabe x bezeichnen wir mit A(x) die Ausgabe des Algorithmus
A für die Eingabe x (das Resultat, welches der Algorithmus für die Eingabe x berechnet).

Definition 2.1 (Äquivalenz von Algorithmen):
Man sagt, dass zwei Algorithmen (Programme) A und B äquivalent sind, falls beide über
dem gleichen Eingabealphabet Σ arbeiten und A(x) = B(x) für alle x ∈ Σ∗ gilt.

Zwei Algorithmen sind also genau dann äquivalent, wenn sie das gleiche Eingabealphabet
haben und auf allen möglichen Eingaben die gleiche Ausgabe liefern. Dabei spielt es keine
Rolle, wie die jeweiligen Algorithmen ihre Ausgaben berechnen.

Wir werden im Folgenden einige sehr bekannte und wichtige algorithmische Probleme kennenlernen.

13

Endliche Automaten « Thomas Graf, Informatik, 2026

2.1 Das Entscheidungsproblem
Das Entscheidungsproblem hat eine besonders simple Formulierung und wird typischerweise ver-
wendet, um die Theorie der Berechenbarkeit zu entwickeln.

Definition 2.2 (Entscheidungsproblem):
Das Entscheidungsproblem (Σ, L) für ein gegebenes Alphabet Σ und eine gegebene Spra-
che L ⊆ Σ∗ ist, für jedes x ∈ Σ∗ zu entscheiden, ob

x ∈ L oder x /∈ L.

Ein Algorithmus A löst das Entscheidungsproblem (Σ, L), falls für alle x ∈ Σ∗ gilt:

A(x) =
{

1, falls x ∈ L

0, falls x /∈ L.

Das Entscheidungsproblem ist also ein geordnetes Paar (Σ, L) eines Alphabets Σ und einer
Sprache L (über Σ).

Man sagt auch, dass A die Sprache L erkennt. Wenn für eine Sprache L ein Algorithmus existiert,
der L erkennt, dann nennt man die Sprache L rekursiv.

Wir verwenden eine Sprache L ⊆ Σ∗ häufig, um gewisse Eigenschaften von Wörtern zu erzwingen.
Die Wörter in der Sprache L haben diese geforderte Eigenschaft und alle Wörter im mengentheore-
tischen Komplement LC = Σ∗ \ L haben diese Eigenschaft nicht. In dieser Betrachtungsweise kann
man ein Entscheidungsproblem auch wie folgt darstellen:

• Eingabe: x ∈ Σ∗.
• Ausgabe: A(x) ∈ Σbool = {0, 1}, wobei gilt

A(x) =
{

1, falls x ∈ L (Ja, x hat die Eigenschaft),
0, falls x /∈ L (Nein, x hat die Eigenschaft nicht).

Wir werden nun einige Beispiele von Sprachen geben, welche gewisse (interessante) Eigenschaften
fordern.

Beispiel 2.1:
Sei Σ1 = {0, 1} = Σbool. Wir definieren L1 = { x ∈ Σ∗

1 ; x = 1v, für ein v ∈ {0, 1}∗ }. In der
Sprache L1 liegen alle binären Wörter (alle endlichen Folgen von Nullen und Einsen), die
mit einer 1 beginnen (die 1 als Präfix haben). Seien beispielsweise x1 = 110011, x2 = 1 und
x3 = 011110. Dann gilt x1, x2 ∈ L1 aber x3 /∈ L1. Das zugehörige Entscheidungsproblem ist
das geordnete Paar (Σ1, L1).

Beispiel 2.2:
Sei Σ2 = {#, α, β}. Wir definieren L2 = { x ∈ Σ∗

2 ; x = (α#)n, für ein n ∈ N }. In der Spra-
che L2 liegen also alle Wörter der Form (α#)n für eine natürliche Zahl n. Das zugehörige
Entscheidungsproblem lautet (Σ2, L2). Das kürzeste Wort in L2 ist λ, das zweitkürzeste ist
α# und das drittkürzeste ist α#α# = (α#)2.

14

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Beispiel 2.3:
Eines der bekanntesten Entscheidungsprobleme ist der Primzahltest. Für eine natürliche Zahl
n möchte man entscheiden, ob n eine Primzahl ist. Der Primzahltest entspricht dem Entschei-
dungsproblem

(Σbool, { x ∈ (Σbool)∗ ; Nummer(x) ist eine Primzahl }) .

Häufig wird dieses wichtige Entscheidungsproblem wie folgt dargestellt:

• Eingabe: x ∈ (Σbool)∗.
• Ausgabe:

– Ja, falls Nummer(x) eine Primzahl ist.
– Nein, sonst.

Beispiel 2.4:
Die GNU Compiler Collectiona (GCC) umfasst (unter anderem) ein C++ Compiler. Ein C++
Compiler ist ein spezielles Computerprogramm, welches als Input ein in der Programmier-
sprache C++ geschriebenes Programm erhält, und dieses Programm in ein, für den Computer
„verständliches“ Programm, umwandelt.

Eine Teilaufgabe des Compilers ist zu prüfen, ob ein gegebenes C++ Programm syntaktisch
korrekt ist. Ein Programm ist syntaktisch korrekt, wenn es keine zwingenden Regeln seiner
entsprechenden Programmiersprache verletzt. Ein typisches Beispiel eines syntaktischen Feh-
lers ist das Öffnen einer linken Klammer „(“, die aber nirgends im Programm durch eine
rechte Klammer „)“ geschlossen wird.

Achtung: Syntaktische Korrektheit eines Programms P garantiert lediglich, dass P die zwin-
genden Regeln seiner Programmiersprache nicht verletzt. Es wird nicht garantiert, dass P ein
sinnvolles Programm ist.

Wir definieren LC++ als die Sprache aller syntaktisch korrekter C++ Programme:

LC++ = { x ∈ (ΣTastatur)∗ ; x ist ein syntaktisch korrektes Programm in C++ }

Das entsprechende Entscheidungsproblem lautet:

• Eingabe: x ∈ (ΣTastatur)∗.
• Ausgabe:

– Ja, falls x ∈ LC++.
– Nein, sonst.

Man beachte, dass jedes Computerprogramm als ein Wort über dem Alphabet der Compu-
tertastatur aufgefasst werden kann — schliesslich ist jedes Programm nichts weiter als eine
endliche Folge von Symbolen der Tastatur.
ahttps://de.wikipedia.org/wiki/GNU_Compiler_Collection

2.2 Graphen
Einige sehr interessante Probleme und Konzepte lassen sich besonders gut durch Graphen model-
lieren. Um ein Gefühl für Graphen zu erhalten, betrachten wir Zugverbindungen zwischen den drei
Städten Zürich (Z), Effretikon (E) und Winterthur (W). Jede der drei Städte ist jeweils mit den
anderen beiden verbunden. Diese Situation lässt sich mit einem Graphen wie in Abbildung Abbil-

15

mailto:thomas.graf@edu.zh.ch
https://de.wikipedia.org/wiki/GNU_Compiler_Collection

Endliche Automaten « Thomas Graf, Informatik, 2026

dung 2.1 darstellen.

Z

E

W

Abbildung 2.1: Zugverbindungen zwischen Zürich (Z), Effretikon (E) und Winterthur (W).

Die grünen Kreise (die Städte) bezeichnet man als Knoten, die schwarzen Verbindungslinien zwischen
den Knoten nennt man Kanten. Einen Graphen, in dem jeder Knoten mit jedem anderen
Knoten verbunden ist, bezeichnet man als vollständigen Graphen (der Graph in Abbildung
Abbildung 2.1 ist ein vollständiger Graph).

Definition 2.3 (Graph):
Ein Graph G ist ein geordnetes Paar (V, E), wobei V eine (endliche) nichtleere Menge von
Knoten (englisch: vertices) ist. Die Menge E ist eine Teilmenge der zweielementigen Teilmen-
gen von V , also E ⊆ { {x, y} ; x, y ∈ V, x 6= y }. Die Elemente der Menge E bezeichnet man
als Kanten (englisch: edges). Falls die Knotenmenge V eine endliche Menge ist, nennt man
den Graphen G = (V, E) einen endlichen Graphen.

Eine Kante in einem Graphen verbindet zwei verschiedene Knoten. Die Kantenmenge E
eines Graphen ist deshalb irgendeine Teilmenge (Auswahl) aller möglichen zweielementigen
Teilmengen {x, y} der Knotenmenge V . Dabei muss aber x 6= y gelten, da wir die Verbindung
eines Knotens zu sich selbst nicht als Kante anschauen möchten.

Für V = {a, b, c, d} und E = {{a, b} , {a, c} , {b, c} , {c, d}} würde der zugehörige Graph G = (V, E)
beispielsweise so aussehen:

a b

c d

Falls wir in unserem Beispiel mit den Zugverbindungen auch die Dauer der Verbindungen darstellen,
dann könnten wir das wie in Abbildung 2.2 tun. Man sagt dann, dass die Kanten gewichtet sind.
In diesem Beispiel sind die Gewichte die Fahrzeiten. Ein Graph mit gewichteten Kanten bezeichnet
man als gewichteten Graphen. Graphen, ohne gewichtete Kanten nennt man ungewichtete Graphen.

Stellen wir uns nun vor, dass die Verbindung von Zürich nach Effretikon (und somit auch von Zürich
nach Winterthur) aktuell unterbrochen ist, aber weiterhin Züge von Effretikon und Winterthur
nach Zürich fahren können. Des Weiteren, haben wir bemerkt, dass die Verbindung von Effretikon
nach Winterthur nur 9 Minuten dauert, die Verbindung von Winterthur nach Effretikon (wegen
Stopp in Kemptthal) jedoch 11 Minuten. Diese Situation lässt sich durch gerichtete Kanten wie in
Abbildung 2.3 veranschaulichen.

16

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Z

E

W

15 9

21

Abbildung 2.2: Gewichtete (ungerichtete) Zugverbindungen zwischen Zürich (Z), Effretikon (E) und
Winterthur (W).

Z

E

W

9

11
15

21

Abbildung 2.3: Gerichtete und gewichtete Zugverbindungen zwischen Zürich (Z), Effretikon (E) und
Winterthur (W).

Natürlich ist es auch erlaubt Graphen zu konstruieren, die zwar gerichtet, aber nicht gewichtet sind.
Um zu verdeutlichen, dass bei einer Gerichteten Kante die Reihenfolge (die Richtung) eine Rolle
spielt, schreiben wir für gerichteten Kanten nicht eine zweielementige Menge {Effretikon, Zürich},
sondern ein geordnetes Paar (Effretikon, Zürich).

2.2.1 Adjazenzmatrix

Jeder endliche Graph G = (V, E), egal ob gerichtet / ungerichtet oder gewichtet / ungewichtet,
lässt sich einfach durch die ihm zugehörige Adjazenzmatrix AG repräsentieren. Wir wollen für einen
gegebenen Graphen G die Adjazenzmatrix AG finden. Bevor wir das Vorgehen für einen beliebigen
endlichen Graphen beschreiben werden, möchten wir die Adjazenzmatrix für den Graphen in Abbil-
dung 2.3 finden. Wir führen diesen Graphen hier nochmals auf, allerdings haben wir zu didaktischen
Zwecken die Kantengewichte des Graphen gefärbt und die Knoten (Städte) neu beschriftet (num-
meriert). Dazu haben wir die Bezeichnungen v1 = Zürich, v2 = Effretikon und v3 = Winterthur
gewählt.

v1

v2

v3

9

11
15

21

17

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Die zu diesem Graphen zugehörige Adjazenzmatrix AG ist:

AG =

 0 0 0
15 0 9
21 11 0

 (2.1)

Die Matrix AG ist wie folgt zu verstehen:

Falls im Graphen eine Kantenverbindung vom Knoten vi (i ∈ {1, 2, 3}) zum Knoten vj (j ∈ {1, 2, 3})
besteht, dann setzt man den Matrix Eintrag AG

i,j (Eintrag in der i-ten Zeile und j-ten Spalte) auf das
der Kante entsprechende Kantengewicht. Zum Beispiel besteht im Graphen die Kantenverbindung
von Effretikon (v2) nach Winterthur (v3), mit einem Kantengewicht von 9. Damit wird der Eintrag
AG

2,3 der Adjazenzmatrix in der zweiten Zeile und der dritten Spalte auf den Wert 9 gesetzt. Besteht
keine Verbindung von Knoten vi nach vj , so wird AG

i,j = 0 gesetzt.

Bei ungewichteten Graphen ist der Matrix Eintrag AG
i,j = 1, falls eine Kante vom Knoten vi zum

Knoten vj besteht und AG
i,j = 0, falls keine Verbindung besteht.

Es spielt keine Rolle, welche konkrete Nummerierung der Knoten im Graphen gewählt wird. Die
Adjazenzmatrix wird immer genau eine vollständige Beschreibung des ihr entsprechenden Graphen
liefern.

Vorgehen 2.1:
Aufstellen der Adjazenzmatrix bei gegebenem Graphen
Gegeben sei ein Graph G = (V, E) als Bild oder als Beschreibung durch Mengen. Die zu G
gehörige Adjazenzmatrix AG wird wie folgt aufgestellt:

1. Sei n := |V | die Anzahl der Knoten in G. Dann hat AG eine Anzahl von n Zeilen und
n Spalten (und ist somit eine quadratische Matrix).

2. Wähle eine beliebige Nummerierung der n Knoten von G und beschrifte den i-ten
Knoten mit vi für i ∈ {1, 2, . . . , n}.
Die genaue Form von AG hängt von der konkreten Wahl der Nummerierung ab, die von
AG festgehaltene Information über G jedoch nicht.

3. Falls in G keine Kantenverbindung von vi, i ∈ {1, 2, . . . , n}, nach vj , j ∈ {1, 2, . . . , n},
existiert, dann setze AG

i,j = 0. Falls eine solche Kantenverbindung existiert, dann setze
• bei ungewichteten Graphen: AG

i,j = 1,
• bei gewichteten Graphen: AG

i,j = wi,j , wobei wi,j das Gewicht der Kante von vi

nach vj ist.

Wir haben gesehen, wie ein gegebener Graph mit nummerierten Knoten eindeutig durch eine Ad-
jazenzmatrix dargestellt werden kann. Umgekehrt, lässt sich aus einer gegebener Adjazenzmatrix
ein eindeutiger Graph gewinnen. Damit ist eine Adjazenzmatrix eine alternative Repräsentation
eines Graphen. Adjazenzmatrizen ungewichteter lassen sich einfach durch ein Wort über dem Al-
phabet {0, 1, #} darstellen (für gewichtete Graphen ist die Darstellung etwas weniger offensichtlich).
Beispielsweise ist die Kodierung der Matrix

0 0 0 1
1 0 1 0
1 0 0 1
1 1 0 0


gegeben durch das Wort

0001#1010#1001#1100

18

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

EDIT Aufgabe 2.1

Überlegen Sie sich eine mögliche Kodierung der Adjazenzmatrix
0 7 3 5
8 0 1 4
7 6 0 2
4 9 2 0


über dem Alphabet {0, 1, #}

EDIT Aufgabe 2.2

Welche Einträge haben bei jeder Adjazenzmatrix immer den Wert 0?

2.2.1.1 Knotenüberdeckung (vertex cover)

Nun haben wir genügend Wissen über Graphen um ein sehr interessantes Entscheidungsproblem in
Zusammenhang mit Graphen elegant beschreiben zu können. In diesem Unterunterabschnitt werden
wir uns auf ungerichtete Graphen beschränken.

Definition 2.4 (Knotenüberdeckung (vertex cover)):
Man sagt, dass eine Kante {u, v} inzident zu genau ihren Endpunkten u und v ist.

Eine Knotenüberdeckung (englisch: vertex cover) eines Graphen G = (V, E) ist jede Kno-
tenmenge U ⊆ V , sodass jede Kante aus E zu mindestens einem Knoten aus U inzident ist.
Eine Teilmenge U der Knotenmenge V eines Graphen G = (V, E) ist also eine Knotenüber-
deckung, falls jede Kante e ∈ E mindestens einen ihrer beiden Endpunkte in U hat.

Betrachten wir zum Beispiel den Graphen in Abbildung 2.4.

v1

v2 v3 v4

v5 v6

Abbildung 2.4: Graph mit 6 Knoten. Die Menge {v2, v3, v4, v5} (rot markierte Knoten) ist eine
Knotenüberdeckung des Graphen.

Die Menge {v2, v3, v4, v5} der 4 rot markierten Knoten ist eine Knotenüberdeckung des Graphen,
da jede der 7 Kanten des Graphen mindestens einer ihrer Endpunkte in dieser Menge hat.

Jedoch ist die Menge {v2, v3, v4, v5} keine minimale Knotenüberdeckung, denn die Knotenmenge
{v2, v3, v5} (siehe Abbildung 2.5) enthält einen Knoten weniger und ist ebenfalls eine Knotenüber-
deckung.

19

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

v1

v2 v3 v4

v5 v6

Abbildung 2.5: Die Menge {v2, v3, v5} (rot markierte Knoten) ist eine minimale Knotenüberde-
ckung des Graphen.

Definition 2.5 (Entscheidungsproblem der Knotenüberdeckung):
Das Entscheidungsproblem der Knotenüberdeckung, besteht darin für einen gegebe-
nen Graphen G und eine feste natürliche Zahl k zu entscheiden, ob G ein ungerichteter Graph
ist, der eine Knotenüberdeckung mit maximal k vielen Knoten besitzt. Man möchte also für
einen Graphen G und eine natürliche Zahl k entscheiden, ob das geordnete Paar (G, k) in der
Menge

VC = {(G, k) ; G ist ein ungerichteter Graph mit einer Knotenüberdeckung
(vertex cover) der Mächtigkeit höchstens k}

liegt oder nicht.
Noch etwas genauer ausgedrückt:

VC = {w ∈ {0, 1, #}∗ ; w ist die Kodierung eines ungerichteten Graph mit einer
Knotenüberdeckung (vertex cover) der
Mächtigkeit höchstens k}

Wie man überprüfen kann, lässt der Graph in Abbildung 2.5 zum Beispiel keine Knotenüberdeckung
der Mächtigkeit höchstens 2 zu.

20

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

2.3 Lösungen der Aufgaben
Check Lösungsvorschlag zu Aufgabe 2.1 Check

Jedes Kantengewicht w kodieren wir durch Bin(w), die einzelnen Kodierungen der Gewichte werden
durch # abgetrennt. Das Ende einer Zeile wird durch ## markiert. Damit erhalten wir folgende
Kodierung der gegebenen Adjazenzmatrix:

0#111#11#101##1000#0#1#100##111#110#0#10##100#1001#10#0

Check Lösungsvorschlag zu Aufgabe 2.2 Check

Die sogenannten Diagonalemente. Dies sind die Einträge, bei denen die Zeilennummer mit der
Spaltennummer übereinstimmt, also alle Einträge der Form AG

i,i. Angenommen, ein Diagonalelement
wäre nicht 0. Dann würde im zur Adjazenzmatrix gehörenden Graphen eine Verbindung der Form
{vi, vi} beziehungsweise (vi, vi) bestehen. Dies darf aber gemäss der Definition der Kantenmenge
nicht sein, da sie Kantenverbindungen von einem Knoten zu sich selbst ausschliesst.

21

mailto:thomas.graf@edu.zh.ch

Kapitel 3

Endliche Automaten

Endliche Automaten sind das einfachste Berechnungsmodell, das man in der Informatik betrachtet.
In einer ersten Phase möchten wir eine gute intuitive Vorstellung der Arbeitsweise von endlichen
Automaten gewinnen. Dazu werden wir in Unterabschnitt 3.1.1 endliche Automaten mit (leicht
modifizierten) gerichteten Graphen identifizieren. In Unterabschnitt 3.1.2 werden wir sehen, dass
endliche Automaten äquivalent zu einer Darstellung durch spezielle Programme sind. Diese speziel-
len Programme lösen gewisses Entscheidungsproblem, ohne bei ihrer Arbeit Variablen zu benutzen.

Mithilfe dieser Intuition wird uns die formale Definition endlicher Automaten in Unterabschnitt 3.1.3
elegant und natürlich erscheinen.

Die Betrachtung endlicher Automaten ist hervorragend dazu geeignet, zentrale Begriffe der Infor-
matik wie Konfiguration, Berechnungsschritt, Simulation und Berechnung schonend einzuführen.

3.1 Darstellung endlicher Automaten
Wir werden drei verschiedene Möglichkeiten zur Darstellung endlicher Automaten kennenlernen:

1. Darstellung durch gerichtete Graphen (Graphendarstellung)
2. Darstellung durch Programme (Programmdarstellung)
3. Formale Definition (durch Mengen und Funktionen)

3.1.1 Darstellung durch gerichtete Graphen

Die Darstellung endlicher Automaten durch (etwas modifizierte) gerichtete Graphen ist besonders
prägnant und anschaulich. Wir werden deshalb endliche Automaten mit gerichteten Graphen iden-
tifizieren (Graphendarstellung). Wir werden im Folgenden nicht mehr zwischen einem endlichen
Automaten A und seiner Darstellung G(A) als gerichteter Graph unterscheiden.

Wenn man ein Berechnungsmodell definieren möchte, muss man folgende vier Fragen beantworten
können:

1. Welcher Speicher steht zur Verfügung und wie wird dieser verwendet?
2. Wie wird die Eingabe (Input) eingegeben?
3. Wie wird die Ausgabe (Output) ausgegeben?
4. Welche elementaren Rechenoperationen kann das Berechnungsmodell durchführen?

Bei endlichen Automaten hat man keinen Speicher zur Verfügung ausser dem Speicher, in dem der
(modifizierte) gerichtete Graph gespeichert ist und einem Zeiger, der auf den aktuell betrachteten

22

Endliche Automaten « Thomas Graf, Informatik, 2026

Knoten des Graphen zeigt. Die einzige wechselnde (nicht statische) Information ist der Name des
Knoten, auf den der Zeiger aktuell zeigt.

Um konkret über endliche Automaten sprechen zu können, betrachten wir den einfachen endli-
chen Automaten A in Abbildung 3.1. Wir werden den Aufbau und die Funktionsweise endlicher
Automaten anhand dieses konkreten endlichen Automaten A erklären.

q0start q1

0

1

0, 1

Abbildung 3.1: Darstellung von A als gerichteter Graph.

• A hat zwei Zustände q0 und q1. Die Zustandsmenge Q von A ist somit Q = {q0, q1}.
Allgemein, entspricht die Zustandsmenge Q der Knotenmenge V des Graphen.

• Der Zeiger zeigt zu Beginn auf einen Zustand und ist mit dem Label „start“ besonders mar-
kiert. Der Zustand, auf den der Zeiger zu Beginn zeigt, wird Anfangszustand genannt.
Manchmal schreibt man anstelle des Labels „start“ auch „λ“, weil sich der Automat nach dem
Lesen des leeren Wortes λ im Anfangszustand befindet. Man darf auf das Label des Zeigers
auch verzichten. Der Anfangszustand von A ist q0.

• Wenn der Zeiger des endlichen Automaten auf den Zustand q zeigt, dann sagt man, dass sich
der Automat im Zustand q befindet.

• Jedem endlichen Automaten ist ein Eingabealphabet Σ zugeordnet. Das Eingabealphabet
von A ist Σ = {0, 1}. Alle zulässigen Eingaben w für eines endlichen Automaten müssen
Wörter über seinem Eingabealphabet sein. Der endliche Automat erhält ein Eingabewort w
über Σ und liest dieses Buchstabe um Buchstabe von links nach rechts. Wenn der endliche
Automat das gesamte Wort w gelesen hat, ist seine Arbeit auf w beendet.

• Falls sich A zum Beispiel im Zustand q0 befindet und das Symbol 1 liest, dann folgt A der
Kante des Graphen, welche mit 1 beschriftet ist. Dadurch gelangt A in den Zustand q1. Mit
dem Lesen von 0 im Zustand q0 bleibt A im Zustand q0.
Allgemein gilt: Falls sich ein endlicher Automat im Zustand q befindet und ein Symbol α von
der Eingabe liest, dann folgt der Automat der Kante des Graphen, welche mit α beschriftet
ist. Die Destination der Kante wird sein neuer Zustand sein. Mental kann man sich vorstellen,
dass der Zeiger auf diesen neuen Zustand zeigt.

• Falls sich ein endlicher Automat nach dem vollständigen Lesen eines Eingabewortes w
in einem doppelt umkreisten Zustand befindet, dann akzeptiert der Automat die Eingabe w,
ansonsten akzeptiert der Automat die Eingabe w nicht (verwirft die Eingabe). A hat nur einen
akzeptierend Zustand, nämlich q1. Der Zustand q0 ist nicht akzeptierend.

Um den Umgang mit endlichen Automaten zu üben, betrachten wir die Arbeit von A auf dem
konkreten Eingabewort w = 00101. A befindet sich zu Beginn in seinem Anfangszustand q0. Nun
beginnt er damit das Eingabewort von links nach recht zu lesen (Buchstabe um Buchstabe). Halten
Sie sich im Folgenden Abbildung 3.1 vor Augen.

1. Der erste Buchstabe (der Buchstabe ganz links) des Eingabeworts ist 0. Wir müssen schauen,
wohin die gerichtete Kante, ausgehend vom aktuellen Zustand q0, beim Lesen von 0 führt.
Wie wir sehen, führt uns die Kante, die mit einer 0 markiert ist, zurück in den Zustand q0.
Wir bleiben also im Zustand q0.

2. Danach liest A nochmals den Buchstaben 0. Genau wie im ersten Schritt, werden wir wieder
der Kanten mit der 0, die vom Zustand q0 ausgeht, folgen. Damit befindet sich A nach dem
Lesen des Präfixes 00 von w = 00101 noch immer im Zustand q0. Es bleibt noch das Suffix

23

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

101 von w zu lesen.
3. Nun liest A das Symbol 1 und wir müssen von unserem aktuellen Zustand q0 aus, der mit 1

markierten Kante folgen. Dadurch gelangt A in den Zustand q1.
4. A liest im Zustand q1 das Symbol 0. Die mit 0 markierte Kante, die von q1 ausgeht, führt

zurück nach q1.
5. A liest im Zustand q1 das Symbol 1. Die mit 1 markierte Kante, der von q1 ausgeht, führt

ebenfalls zurück nach q1.
6. A hat das Eingabewort w nun vollständig gelesen und beendet seine Arbeit im akzeptierenden

Zustand q1. Damit akzeptiert A das Eingabewort w = 00101.

A akzeptiert genau die Eingabewörter aus {0, 1}∗, die mindestens eine 1 enthalten. Die Menge aller
Wörter, welche von A akzeptiert werden ist somit

{ w ∈ {0, 1}∗ ; w = x1y mit x, y ∈ {0, 1}∗ } (3.1)

Dies kann man wie folgt einsehen:

A hat nur den einen akzeptierenden Zustand q1. Beginnend im Anfangszustand q0, wird der A
solange im Zustand q0 bleiben (solange Nullen lesen), bis er das erste Mal eine 1 liest. Durch das
Lesen dieser 1 gelangt A in den Zustand q1. Beide (alle) von q1 ausgehenden Kanten führen direkt
zurück zu q1. Deshalb wird der A nach dem erstmaligen Lesen einer 1, solange im akzeptierenden
Zustand q1 verbleiben, bis er die gesamte Eingabe gelesen hat und somit seine Arbeit in dem
akzeptierenden Zustand beendet. A akzeptiert somit alle binären Eingabewörter, die mindestens
eine 1 enthalten1, was genau der Menge in Ausdruck Gleichung (3.1) entspricht.

Man bemerke, dass die Menge

L := { w ∈ {0, 1}∗ ; w = x1y mit x, y ∈ {0, 1}∗ } ⊆ {0, 1}∗ (3.2)

eine Teilmenge von {0, 1}∗ ist. Somit ist L eine Sprache über dem Alphabet {0, 1}. Die Menge L ist
die Sprache aller Wörter, die von dem endlichen Automaten A akzeptiert werden.

Beispiel 3.1:
Sei Labb die Sprache aller Wörter über Σ = {a, b, c}, welche mit a beginnen und mit bb enden,
genauer:

Labb := { w ∈ {a, b, c}∗ ; w = axbb, für ein x ∈ {a, b, c}∗ } . (3.3)

Entwerfen Sie einen endlichen Automaten (in grafischer Form), welcher die Sprache L akzep-
tiert.

Lösung:

1Die Funktionsweise dieses endlichen Automaten könnte in Computer-Hardware zum Beispiel durch einen sogenannten
Latch (to latch heisst auf Deutsch „einrasten“, „einklinken“) umgesetzt werden.

24

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

q0start

qt

qa qab qabb
a

b, c

a, b, c

a, c

b

b
a, c

b

a, c

Abbildung 3.2: Endlicher Automat A für die Sprache Labb in Ausdruck Gleichung (3.3).

Erklärung:

Sei w ∈ {a, b, c}∗ ein Eingabewort für den endlichen Automaten A in Abbildung 3.2. A
beginnt seine Arbeit im Zustand q0 und liest den ersten Buchstaben von w.

• Falls w nicht mit a beginnt (sondern mit b oder c), geht A beim Lesen des ersten
Buchstabens von w in den nicht akzeptierend Abfallzustand (trash) qt über. Dort wird
der Automat bleiben, egal welche weiteren Buchstaben von w er liest. A wird für w im
nicht akzeptierenden Zustand qt seine Arbeit beenden (→ w wird verworfen).

• Falls w mit a beginnt, wechselt A in den Zustand qa.
• Falls A im Zustand qa die Buchstaben a oder c liest, dann bleibt A im Zustand qa.
• Falls A im Zustand qa den Buchstaben b liest, geht er in den Zustand qab über.
• Die Wörter, welche den endlichen Automaten A in den Zustand qab führen, beginnen

mit a, enden mit b, haben aber an ihrer zweitletzten Stelle nicht das Symbol b (siehe
dazu Aufgabe 3.3).

• Falls A in qab die Buchstaben a oder c liest, dann kann das bislang gelesene Präfix von
w nicht mit b enden und A geht zurück zu qa.

• Falls A in qab nochmals ein b liest, endet das bislang gelesene Präfix von w mit bb und
A wechselt in den akzeptierenden Zustand qabb.

• A bleibt beim weiteren Lesen von b in qabb (das gelesene Präfix von w endet dann immer
noch mit bb), ansonsten muss der Automat zurück in den Zustand qa.

Bemerkung 3.1:
Beachten Sie, dass ein endlicher Automat ein Eingabewort w nicht sofort akzeptiert, nur weil
er während seiner Arbeit auf w akzeptierenden Zustände (einmal oder mehrfach) durchläuft.
Die Entscheidung „akzeptieren oder verwerfen“ wird erst mit dem Lesen des letzten Buch-
stabens von w getroffen. Befindet sich der Automat nach dem Lesen des letzten Buchstabens
von w in einem verwerfenden Zustand, dann verwirft der Automat w. Befindet er sich dann
in einem akzeptieren Zustand, dann akzeptiert der Automat w.

Bei der Arbeit auf dem Wort w = abbc zum Beispiel, durchläuft der endliche Automat in
Abbildung 3.2 zwar den akzeptierenden Zustand qabb, beendet seine Arbeit aber im nicht
akzeptierenden Zustand qa. Dies ist auch richtig, denn w = abbc liegt nicht in der Sprache
Labb.

Bei der Graphendarstellung, müssen von jedem Knoten genauso viele Kanten (Pfeile) ausgehen, wie
das Eingabealphabet des Automaten Symbole hat. Wenn der endliche Automat das Eingabealphabet
Σ hat, dann muss der Ausgangsgrad (Anzahl der gerichteten Kanten, welche von dem Knoten

25

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

ausgehen) jedes Knoten genau |Σ| sein. Wäre der Ausgangsgrad eines Knoten kleiner, dann wäre
die Arbeit des endlichen Automaten auf mindestens einem Symbol seines Eingabealphabets nicht
definiert, was man natürlich nicht möchte.

EDIT Aufgabe 3.1

Entwerfen Sie einen endlichen Automaten für die Sprache

L1 := { w ∈ {0, 1}∗ ; w = x0100y mit x, y ∈ {0, 1}∗ } . (3.4)

EDIT Aufgabe 3.2

Beschreiben Sie die Sprache L2, der von dem endlichen Automaten in Abbildung 3.3 akzep-
tierten Wörter.

p0start p1

p2 p3

b

a

b

aa

b

a

b

Abbildung 3.3: Endlicher Automat für die Sprache L2.

EDIT Aufgabe 3.3

Betrachten Sie den endlichen Automaten in Abbildung 3.2. Beschreiben Sie mathematisch
präzise die Teilmenge Mab aller Wörter über {a, b, c}, welche in den Zustand qab führen.

3.1.2 Darstellung durch Programme

In diesem Unterabschnitt werden wir sehen, dass die Graphendarstellung von endlichen Automaten
äquivalent zur Darstellung durch gewisse spezielle Programme (Programmdarstellung) ist.

Die Programme sind speziell in dem Sinne, dass sie lediglich Speicher zur Abspeicherung des Pro-
gramms und zum Speichern eines „Zeigers“, der auf die aktuell auszuführende Zeile des Programms
zeigt. Dies bedeutet aber, dass das Programm keinen Speicher für Variablen zur Verfügung hat.
Der Inhalt des Zeigers, also die Nummer der aktuellen Programmzeile, ist die einzige wechselnde
Information.

Um die Äquivalenz einzusehen, werden wir eine Methode demonstrieren, welche jede Graphendar-
stellung in ein äquivalentes Programm übersetzt (und umgekehrt). Bevor wir die Methode allgemein
beschreiben, möchten wir das Vorgehen anhand eines Beispiels entwickeln. Betrachten Sie dazu den
endlichen Automaten in Abbildung 3.4.

26

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

qstart p

r

a, b

c

a, b, c

a, cb

Abbildung 3.4: Endlicher Automat mit der Zustandsmenge {q, p, r}.

In einem ersten Schritt möchten wir die Zustände q, p, r durch die Nummern 0, 1, 2 ersetzen. Die
Vergabe der Nummern kann beliebig gewählt werden2, aber dem Anfangszustand muss die Nummer
0 zugewiesen werden. Wir wählen für p die Nummer 1 und für r die Nummer 2. Damit erhalten wir
den „nummerierten Graphen“ in Abbildung 3.5.

0start 1

2

a, b

c

a, b, c

a, cb

Abbildung 3.5: Nummerierte Version des endlichen Automaten in Abbildung 3.4 mit Zustandsmenge
{0, 1, 2}.

Wir möchten nun ein Programm entwerfen, welches den endlichen Automaten in Abbildung 3.5
beschreibt, jedoch ohne Variablen auskommt. Das Programm soll genau so viele Zeilen haben, wie
der endliche Automat Zustände (Knoten) hat. In diesem Fall wird das Programm entsprechend
genau drei Zeilen haben. Die Nummerierung der Zustände wird dabei genau der Nummerierung
der Programmzeilen entsprechen. Deshalb ist es wichtig, dass der Anfangszustand die Nummer 0
erhält, da das Programm von oben nach unten abgearbeitet wird und somit bei Zeile 0 seine Arbeit
beginnt. Das Programm erhält das Eingabewort des endlichen Automaten als Input.

Falls das erste Symbol des Input a oder b ist, dann soll das Programm zu Zeile 1 springen. Falls das
erste Symbol ein c ist, soll das Programm zu Zeile 2 springen. Nach dem Lesen eines Symbols des
Eingabebandes wird dieses automatisch gelöscht und das nächste wird gelesen. Analog ist das Vorge-
hen für die anderen beiden Zeilen 1 und 2 des Programms. Insgesamt wird die Programmdarstellung
des endlichen Automaten in Abbildung 3.5 durch folgendes Programm beschrieben:

if input = a goto 1, if input = b goto 1, if input = c goto 2;
if input = a goto 1, if input = b goto 1, if input = c goto 1;
if input = a goto 1, if input = b goto 0, if input = c goto 1;

Falls der endliche Automat in Abbildung 3.5 im Zustand 0 das Symbol a oder b liest, dann wechselt
er in den Zustand 1. Falls er das Symbol c liest, dann wechselt er in den Zustand 2. Genau so geht
auch unser obiges Programm vor:
2Die zugehörigen Programme werden die gleichen Entscheidungen treffen und bis auf einfache Vertauschungen von
Nummern identisch sein. Siehe dazu auch Aufgabe 3.4.

27

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Falls (if) das Programm in Zeile 0 das Symbol a vom Input erhält (liest), springt es mit dem goto
Befehl zur Zeile 1. Dasselbe gilt, wenn in Zeile 0 der Input b gelesen wird. Falls in Zeile 0 der Input
c gelesen wird, springt das Programm zur Zeile 2. Das Vorgehen für die Programmzeilen 1 und 2
(beziehungsweise die Zustände 1 und 2) ist völlig analog.

EDIT Aufgabe 3.4

Wie müsste obiges Programm angepasst werden, falls wir für die Zustände in Abbildung 3.4
die Nummerierung q ↔ 0, r ↔ 1 und p ↔ 2 gewählt hätten?

Nun sollte deutlicher geworden sein, wie auch ein beliebiger endlicher Automat in ein solch spe-
zielles Programm ohne Variablen transformiert werden kann. Das zu einem endlichen Automaten
A (beziehungsweise seiner Graphendarstellung G(A)) gehörige Programm werden wir mit P (A)
bezeichnen.

Sei Σ = {s1, . . . , sm} das Eingabealphabet eines endlichen Automaten A. Eine Zeile von P (A) hat
die Form:

erlaubter Befehl (eine Zeile):
if input = s1 goto i1, if input = s2 goto i2, …, if input = sm goto im; (3.5)

Die Bedeutung dieses Befehls ist, dass man das nächste Symbol der Eingabe liest und mit s1, s2, . . . , sm

vergleicht. Falls dieses Symbol gleich sj ist, setzt das Programm seine Arbeit in der Zeile ij fort.
Dabei wird das gelesene Symbol gelöscht und in der Zeile ij wird das nächste Symbol der Eingabe
gelesen. Man beachte, dass die Zeilen des Programms nummeriert sind, wobei die Nummerierung
bei 0 beginnt.
Diese Programme lösen Entscheidungsprobleme. Die Ausgabe des Programms ist bestimmt durch
die Zeilennummer, in der das Programm seine Arbeit beendet. Falls das Programm aus k Zeilen
besteht, wählt man eine Teilmenge F von {0, 1, . . . , k − 1} aus. Wenn das Programm nach dem voll-
ständigen Lesen der Eingabe in der j-ten Zeile endet, und j ∈ F , dann akzeptiert das Programm
die Eingabe. Falls j ∈ ({0, 1, . . . , k − 1} \ F), dann akzeptiert das Programm die Eingabe nicht.

Die eins-zu-eins-Korrespondenz zwischen einem endlichen Automaten A und seiner Programmdar-
stellung P (A) sollte nun offensichtlich sein:

Man nummeriert die Zustände von A. P (A) hat genau so viele Zeilen wie der A Zustände hat, und
jedem Zustand von A ist genau eine Zeile in P (A) zugeordnet, welche die Nummer des Zustands
trägt. Falls A beim Lesen eines Symbols α von Zustand i in Zustand j übergeht (eine gerichtete
Kante mit Markierung α von i nach j hat), dann springt das Programm in Zeile i beim Lesen von
α in die Zeile j.

Aufgrund dieser Äquivalenz kann ein endlicher Automat auch durch sein Programm P (A) identifi-
ziert werden.

Mit endlichen Automaten verbindet man oft die schematische Darstellung in Abbildung 3.6. Das
Modell besteht aus den drei Hauptkomponenten Eingabeband, Lesekopf und Programm. Das
Programm haben wir oben im Detail beschrieben. Das Eingabeband besteht aus einzelnen Feldern.
Ein Feld ist eine atomare Speichereinheit, die ein Symbol des betrachteten Alphabets beinhalten
kann. Das Eingabeband hat in diesem Modell die Bedeutung des Eingabeworts. Der Lesekopf kann
sich entlang des Eingabebandes nur von links nach recht bewegen. Der Lesekopf liest den Inhalt des
Feldes, auf das er zeigt.

28

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

a1 a2 a3 . . . ai . . . an−1 an

Programm
(Zustand)

Lesekopf, bewegt
sich nach rechts →

Lesekopf

Eingabeband

Abbildung 3.6: Schematische Darstellung eines endlichen Automaten.

3.1.3 Formale Definition

Nach den Betrachtungen in Unterabschnitt 3.1.1 und Unterabschnitt 3.1.2 wollen wir eine formale
Definition von endlichen Automaten angeben. Diese Definition wird uns sehr natürlich erscheinen.

Definition 3.1 (endlicher Automat):
Ein (deterministischer) endlicher Automat M ist ein 5-Tupel M = (Q, Σ, δ, q0, F), wobei
die einzelnen Komponenten des 5-Tupels wie folgt zu verstehen sind:

(i) Q ist eine endliche Menge von Zuständen.
Die Zustände entsprechen der Menge der Zeilen in der Programmdarstellung und der
Knotenmenge in der Graphendarstellung.

(ii) Σ ist ein Alphabet, genannt Eingabealphabet.
Die zulässigen Eingaben für den endlichen Automaten sind alle Wörter über Σ. Die Be-
deutung des Eingabealpabets ist bei der Programmdarstellung und Graphendarstellung
genau gleich.

(iii) q0 ist der Anfangszustand.
q0 entspricht dem mit „start“ markierten Knoten in der Graphendarstellung und der
Zeile 0 in der Programmdarstellung.

(iv) F ⊆ Q ist die Menge der akzeptierenden Zustände.
Dies entspricht der Menge der akzeptierenden Knoten in der Graphendarstellung und
Menge der akzeptierenden Programmzeilen in der Programmdarstellung.

(v) δ ist eine Funktion Q × Σ → Q, die Übergangsfunktion genannt wird.
Die Übergangsfunktion erhält zwei Argumente. Das erste Argument q ∈ Q ist der
Zustand, in dem sich der endliche Automat M aktuell befindet. Das zweite Argument
a ∈ Σ ist ein Symbol (des Eingabeworts), welches der M aktuell liest. δ(q, a) = p
bedeutet, dass M in den Zustand p übergeht, falls M im Zustand q das Symbol a gelesen
hat. In der Graphendarstellung von M existiert eine gerichtete Kante (Knoten), welche
mit a beschriftet ist und vom Zustand (Knoten) q zum Zustand (Knoten) p führt. In der
Programmdarstellung von M existiert eine Programmzeile qa der Form Gleichung (3.5),
welche durch einem goto Befehl beim Lesen des Inputs a zur Zeile p (der Zeilennummer,
welche p zugeordnet ist).

aGenauer gesagt, eine Programmzeile mit der Nummer, welcher dem Zustand q bei der Nummerierung der
Zustände zugeordnet wird.

29

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Eine Konfiguration von M ist ein Element aus Q × Σ∗.

Wenn sich M in einer Konfiguration (q, w) ∈ (Q × Σ∗) befindet, bedeutet dies, dass sich M im
Zustand q befindet und noch das Suffix w eines Eingabewortes lesen muss.

Die Konfiguration (q0, w) ∈ ({q0} × Σ) ist die Startkonfiguration von M auf w.

M beginnt seine Arbeit auf dem Wort w im Zustand q0.

Jede Konfiguration aus Q×{λ} wird Endkonfiguration genannt. Das gesamte Eingabewort wurde
gelesen. Es bleibt nichts mehr (nur noch das leere Wort λ) zu lesen.

Der Ausdruck (q, w) M−→ (p, v) soll die Bedeutung haben, dass die Konfiguration (p, v) in einem
Schritt von M aus der Konfiguration (q, w) erreicht wird:

(q, w) M−→ (p, v) ⇐⇒ w = av, a ∈ Σ und δ(q, a) = p

Da w = av, ist a das vorderste Symbol in w und wird deshalb als nächstes gelesen.

Ein Schritt entspricht der Anwendung der Übergangsfunktion auf die Konfiguration, in der sich M
im Zustand q befindet und das Symbol a liest.

Eine Berechnung C von M ist eine endliche Folge C = C0, C1, . . . , Cn von Konfigurationen, mit
Ci

M−→ Ci+1 für alle i ∈ {0, 1, . . . , n − 1}.

C ist die Berechnung von M auf einem Eingabewort x ∈ Σ∗, falls C0 = (q0, x) und Cn ∈
(Q × {λ}) (das heisst, Cn ist eine Endkonfiguration).

• Falls Cn ∈ (F × {λ}) (zur Erinnerung: F ist die Menge der akzeptierenden Zustände), dann
ist C eine akzeptierende Berechnung von M auf x. Man sagt dann, dass M das Wort x
akzeptiert.
M endet seine Arbeit auf dem Eingabewort x in einem akzeptierenden Zustand.

• Falls Cn ∈ ((Q \ F) × {λ}), dann ist C eine verwerfende Berechnung von M auf x. Man
sagt dann, dass M das Wort x verwirft (oder nicht akzeptiert). M endet seine Arbeit
auf dem Eingabewort x in einem verwerfenden Zustand.

An dieser Stelle möchten wir betonen, dass ein endlicher Automat M auf einem Wort x ∈ Σ∗

offensichtlich genau eine Berechnung hat.

Wir möchten eine sehr interessante und wichtige Sprache definieren.

Definition 3.2 (akzeptiere Sprache eines endlichen Automaten):
Sei M ein endlicher Automat. Die von M akzeptierte Sprache L(M) ist definiert als

L(M) = {w ∈ Σ∗ ; die Berechnung von M auf w endet in einer
Endkonfiguration (q, λ), mit q ∈ F}

Definition 3.3 (Klasse der regulären Sprachen):
LEA = { L(M) ; M ist ein endlicher Automat } ist die Klasse der Sprachen, welche von end-
lichen Automaten akzeptiert werden. LEA wird als die Klasse der regulären Sprachen
bezeichnet. Jede Sprache L aus LEA wird regulär (reguläre Sprache) genannt.

30

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Betrachten wir nochmals den endlichen Automaten in Abbildung 3.4. Diesen Automaten wollen wir
formal beschreiben. Dazu genügt es, die 5 Komponenten des 5-Tupels (Q, Σ, δ, q0, F) gemäss Defi-
nition 3.1, anzugeben. Der zur Graphendarstellung in Abbildung 3.4 äquivalente endliche Automat
ist M = (Q, Σ, δ, q0, F), wobei:

Q = {q, p, r} , Σ = {a, b, c} , q0 = q, F = {q} und
δ(q, a) = p, δ(q, b) = p, δ(q, c) = r

δ(p, a) = p, δ(p, b) = p, δ(p, c) = p

δ(r, a) = p, δ(r, b) = q, δ(r, c) = p

Man beachte, dass sich die Übergangsfunktion δ vollständig definieren lässt, indem man den Wert
der Funktion für alle möglichen Argumente angibt.

EDIT Aufgabe 3.5

Geben Sie die formale Definition des in Abbildung 3.3 dargestellten endlichen Automaten an.

Zum Abschluss dieses Unterabschnitts wollen wir noch zwei nützliche Definitionen vorstellen.

Die Schreibweise
(q, w) M−→

∗
(p, u)

soll bedeuten, dass eine Berechnung von M existiert, die von der Konfiguration (q, w) zur Konfigu-
ration (p, u) führt. Diese Intuition wollen wir etwas genauer in einer Definition festhalten.

Definition 3.4 (Stern-Operation (transitive Hülle der Schrittrelation)):
Sei M = (Q, Σ, δ, q0, F) ein endlicher Automat. Die Operation M−→

∗
werden wir Stern-Operation

nennen. Die Stern-Operation ist wie folgt definiert:

(q, w) M−→
∗

(p, u) ⇐⇒ (q = p und w = u) oder es existiert ein k ∈ N \ {0} ,

sodass

(i) w = a1a2 . . . aku, ai ∈ Σ, für i = 1, 2, . . . , k und
(ii) es existieren (k − 1) Zustände r1, r2, . . . , rk−1 ∈ Q, sodass

(q, w) M−→ (r1, a2a3 . . . aku) M−→ (r2, a3a4 . . . aku) M−→ . . . (rk−1, aku) M−→ (p, u).

Gemäss dieser Definition gilt (q, w) M−→
∗

(p, u) genau dann, wenn entweder q = p und w = u

(dann sind die Konfigurationen (q, w) und (p, u) identisch und M hat (p, u) trivialerweise
schon erreicht) oder wenn Zwischenzustände existieren, über welche M bei seiner Berechnung
auf w zur Konfiguration (p, u) gelangt.

Im engen Zusammenhang mit der Stern-Operation steht die Schreibweise

δ̂(q, w) = p.

Diese soll die Bedeutung haben, dass wenn M im Zustand q das Wort w zu lesen beginnt, dann endet
M im Zustand p. Dies ist gleichbedeutend mit der Aussage (q, w) M−→

∗
(p, λ). Man kann sich die

Operation δ̂(q, w) = p so vorstellen, dass ausgehend von der Konfiguration (q, w) so lange (iterativ)
die Übergangsfunktion δ angewendet wird, bis die gesamte Eingabe w abgearbeitet ist (auf das leere
Wort λ geschrumpft ist). Die Aussage δ̂(q, w) = p sagt aus, dass diese iterative Anwendung der

31

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Übergangsfunktion den endlichen Automaten schliesslich in den Endzustand p (Endkonfiguration
(p, λ) führen wird.

Definition 3.5 (Dach-Operation):
Sei M = (Q, Σ, δ, q0, F) ein endlicher Automat. Wir definieren die Dach-Operation δ̂ : Q ×
Σ∗ → Q rekursiv wie folgt:

(i) δ̂(q, λ) = q für alle q ∈ Q und
Beim Lesen des leeren Wortes bleibt der endliche Automat in seinem Zustand.

(ii) δ̂(q, wa) = δ(δ̂(q, w), a)
Der Ausdruck δ̂(q, w) entspricht einem Zustand. Wenn wir diesen mit p bezeichnen, also
p := δ̂(q, w), dann sehen wir sofort, dass δ(δ̂(q, w), a) = δ(p, a) der normalen Anwen-
dung der Übergangsfunktion δ (ohne Dach) beim Lesen des Symbols a im Zustand p
entspricht.

Mithilfe dieser zwei neuen Operationen lässt sich die von einem endlichen Automaten M akzeptierte
Sprache L(M) (siehe Definition Gleichung (3.1)) alternativ ausdrücken als:

L(M) = {w ∈ Σ∗ ; (q0, w) M−→
∗

(p, λ) mit q ∈ F}

= {w ∈ Σ∗ ; δ̂(q0, w) ∈ F}.

Beispiel 3.2:
Wir führen hier nochmals den endlichen Automaten aus Abbildung 3.4 auf:

qstart p

r

a, b

c

a, b, c

a, cb

Abbildung 3.7: Endlicher Automat A.

Wie wir bereits festgestellt haben, ist der zu dieser Graphendarstellung äquivalente endliche
Automat A = (Q, Σ, δ, q0, F), mit:

Q = {q, p, r} , Σ = {a, b, c} , q0 = q, F = {q} und
δ(q, a) = p, δ(q, b) = p, δ(q, c) = r

δ(p, a) = p, δ(p, b) = p, δ(p, c) = p

δ(r, a) = p, δ(r, b) = q, δ(r, c) = p

Für diesen endlichen Automaten gilt zum Beispiel die Aussage

(q, cbcbcabac) A−→
∗

(r, abac),

da eine Berechnung von A auf dem Wort cbcbcabac existiert, welche die Konfiguration (q, cbcbcabac)
zur Konfiguration (r, abac) führt. Diese Berechnung lautet:

(q, cbcbcabac) A−→ (r, bcbcabac) A−→ (q, cbcabac) A−→ (r, bcabac) A−→ (q, cabac) A−→ (r, abac).

32

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Für M gilt auch

δ̂(r, bcac) = p.

Dies sehen wir ein, indem wir Punkt (ii) der Definition 3.5 wiederholt anwenden:

δ̂(r, bcac) = δ(δ̂(r, bca), c) = δ(δ(δ̂(r, bc), a), c) = δ(δ(δ(δ̂(r, bc), c), a), c) =
= δ(δ(δ(δ(δ̂(r, λ), b), c), a), c)

Gemäss Punkt (i) der Definition 3.5 ist δ̂(r, λ) = r und somit verschwinden alle Dach-
Operationen aus dem Ausdruck (wir haben den Basis-Fall der Rekusion erreicht). Die Über-
gangsfunktionen δ lassen sich schrittweise von innen nach aussen auflösen:

δ̂(r, bcac) = δ(δ̂(r, bca), c) = δ(δ(δ̂(r, bc), a), c) = δ(δ(δ(δ̂(r, bc), c), a), c) =
= δ(δ(δ(δ(δ̂(r, λ), b), c), a), c) = /→ δ̂(r, λ) = r

= δ(δ(δ(δ(r, b), c), a), c) = /→ δ(r, b) = q

= δ(δ(δ(q, c), a), c) = /→ δ(q, c) = r

= δ(δ(r, a), c) = /→ δ(r, a) = p

= δ(p, c) = /→ δ(p, c) = p

= p

3.2 Beweise der Nichtexistenz
In Definition 3.3 haben wir die Klasse LEA der regulären Sprachen kennengelernt. Eine Sprache L
ist regulär (L ∈ LEA), genau dann, wenn ein endlicher Automat A existiert, welcher die Sprache L
akzeptiert (L(A) = L).

Um zu beweisen, dass eine gegebene Sprache L regulär ist, genügt es also einen endlichen Automaten
A zu konstruieren und zu begründen, dass L die von A akzeptierte Sprache ist. Dieses Vorgehen
haben wir bereits mehrfach demonstriert.

Nun stellt sich natürlich die Frage, ob jede Sprache regulär ist, oder existieren Sprachen, die nicht
regulär sind? Wie könnte man beweisen, dass eine Sprache nicht regulär ist?

Nur weil wir nicht in der Lage sind, einen endlichen Automaten, für eine Sprache zu finden, bedeutet
dies nicht, dass die Sprache nicht regulär ist. Es könnte natürlich sein, dass die Sprache zwar
regulär ist, wir jedoch nicht die passende Idee für die Konstruktion eines entsprechenden endlichen
Automaten gefunden haben. Unsere Unzulänglichkeit einen endlichen Automaten konstruieren zu
können, ist kein Beweis dafür, dass die Sprache nicht regulär ist. Um korrekt zu beweisen, dass eine
Sprache nicht regulär ist, müssen wir begründen, warum es keinen endlichen Automaten für diese
Sprache geben kann.

Im Unterschied zu konstruktiven Beweisen, bei denen man die Existenz eines Objekts mit gewissen
Eigenschaften direkt durch eine Konstruktion eines solchen Objekts beweist (wir konstruieren zum
Beispiel einen endlichen Automaten M mit vier Zuständen, der eine gegebene Sprache akzeptiert),
kann man bei den Beweisen der Nichtexistenz mit einer unendlichen Menge von Kandidaten (zum
Beispiel allen endlichen Automaten) nicht so vorgehen, dass man alle Kandidaten einen nach dem
anderen betrachtet und überprüft, dass keiner die gewünschten Eigenschaften hat. Um die Nicht-
existenz eines Objekts mit gegebenen Eigenschaften in einer unendlichen Klasse von Kandidaten
zu beweisen, muss man für gewöhnlich eine tiefgreifende Kenntnis über diese Klasse haben, die im

33

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Widerspruch zu den gewünschten Eigenschaften steht.

Beweise der Nichtexistenz gehören zu den schwierigsten Aufgaben der Informatik und der Mathe-
matik überhaupt. Das P vs NP Problem, welches eines der bekanntesten offenen Probleme der
Informatik ist, befasst sich ebenfalls mit der Problematik des Beweisens von Existenz oder Nicht-
existenz3.

Da endliche Automaten sehr stark eingeschränkte Programme sind (siehe Unterabschnitt 3.1.2),
ist der Beweis der Nichtexistenz eines endlichen Automaten für eine gegebene Sprache eine relativ
einfache Aufgabe. Wir nutzen diese Tatsache, um eine einfache Einführung in die Methodik der
Erstellung von Beweisen der Nichtexistenz zu geben.

Das charakteristische Merkmal endlicher Automaten ist, dass sie zu jeder Zeit nur abgespeichert
haben, in welchem Zustand sie sich aktuell befinden und welches Eingabesymbol sie als Nächstes
lesen werden. Ansonsten verfügen sie über keinen Speicher. Dies bedeutet insbesondere, dass ein
endlicher Automat nicht abgespeichert hat (sich nicht erinnern kann), auf welchem Wege er in seinen
aktuellen Zustand gelangt ist. Betrachten wir nochmal den endlichen Automaten in Abbildung 3.7.
Die zwei verschiedenen Wörter x := cbcbcba und y := b führen beide in den Zustand p. In Zukunft
wird A nicht mehr zwischen x und y unterscheiden können. Auf welchem Wege der endliche Automat
in einen Zustand gekommen ist, spielt also keine Rolle. Der endliche Automat hat kein „Gedächtnis“.
Wenn A also nach dem Lesen zweier Wörter x und y jeweils in demselben Zustand q0 endet (also
δ̂(q0, x) = δ̂(q0, y)), dann gilt für alle Wörter z ∈ Σ∗ (alle zukünftigen Eingaben), dass

δ̂(q0, xz) = δ̂(q0, yz).

In diesem Sinne, können somit bereits gelesene Eingaben, welche in denselben Zustand führen, als
gleichwertig angesehen werden.

Diese wichtige Eigenschaft wollen wir in einem Satz formulieren und formal beweisen.

Theorem 3.1 (Pfad-Invarianz endlicher Automaten):
Sei A = (Q, Σ, δ, q0, F) ein endlicher Automat. Seien x, y ∈ Σ∗ unterschiedliche Wörter (x 6=
y) über Σ , mit der Eigenschaft:

(q0, x) A−→
∗

(p, λ) und (q0, y) A−→
∗

(p, λ)

für einen Zustand p ∈ Q (dies ist gleichbedeutend mit δ̂(q0, x) = δ̂(q0, y) = p). Dann existiert
für jedes Wort z ∈ Σ∗ ein Zustand r ∈ Q, sodass A seine Arbeit auf xz und yz jeweils im
Zustand r beendet (A landet für xz und yz in demselben Zustand). Damit gilt insbesondere,
dass

xz ∈ L(A) ⇐⇒ yz ∈ L(A)

Entweder liegen beide Wörter xz und yz in der von A akzeptierten Sprache L(M), oder
keines der beiden Wörter liegt in L(A). Es kann nicht sein, dass eines der beiden Wörter in
der Sprache liegt und das andere nicht.

3https://www.claymath.org/millennium-problems/p-vs-np-problem

34

mailto:thomas.graf@edu.zh.ch
https://www.claymath.org/millennium-problems/p-vs-np-problem

Endliche Automaten « Thomas Graf, Informatik, 2026

Beweis 3.1:
Aus der Existenz der zwei Berechnungen

(q0, x) A−→
∗

(p, λ) und (q0, y) A−→
∗

(p, λ)

von A folgt sofort die Existenz folgender zwei Berechnungen auf xz und yz:

(q0, xz) A−→
∗

(p, z) und (q0, yz) A−→
∗

(p, z)

für alle Wörter z ∈ Σ∗. Wenn wir den Zustand, in den die Berechnung von A auf z ausge-
hende vom Zustand p führt, mit r bezeichnen (also r := δ̂(p, z)), dann ist die Berechnung
von A auf xz

(q0, xz) A−→
∗

(p, z) A−→
∗

(r, λ)

und die Berechnung von A auf yz

(q0, yz) A−→
∗

(p, z) A−→
∗

(r, λ).

Falls r ein akzeptierender Zustand ist (r ∈ F), dann sind beide Wörter xz und yz in L(A).
Falls r /∈ F , dann sind beide Wörter xz und yz nicht in L(A).

Wir zeigen jetzt, wie Theorem 3.1 benutzt werden kann um, indirekt (durch Widerspruch) zu bewei-
sen, dass eine Sprache nicht regulär ist. Dieses indirekte Vorgehen wollen wir auch hier anwenden.
Betrachten wir die Sprache

Lcount := { w ∈ {0, 1}∗ ; w = 0n1n für ein n ∈ N } .

Die Sprache L ist die Menge aller binären Wörter, welche gleich viele Nullen und Einsen enthalten
und in denen alle Nullen vor dem ersten Auftreten einer Eins stehen. Das kürzeste Wort in Lcount

ist das leere Wort λ. Die weiteren Wörter in Lcount sind 01, 0011, 000111, 00001111, . . . (aufsteigende
Längen). Wir werden beweisen, dass Lcount keine reguläre Sprache ist, also Lcount /∈ LEA gilt.
Intuitiv scheint es so, dass jeder endliche Automat, welcher Lcount akzeptieren würde, die Anzahl
der Nullen abspeichern müsste, um diese Anzahl später mit der Anzahl Einsen abgleichen zu können.
Ein endlicher Automat hat jedoch keinen Speicher, um die Anzahl der Nullen speicher zu können.
Wir werden formal beweisen, dass diese Intuition genau richtig ist.

Theorem 3.2:
Die Sprache Lcount ist nicht regulär (Lcount /∈ LEA).

Beweis 3.2:
Wir beweisen die Behauptung durch Widerspruch. Wir nehmen also an, Lcount sei regulär. Dann
existiert ein endlicher Automat A = (Q, {0, 1} , δ, q0, F) mit L(A) = Lcount. Die Anzahl der
Zustände Q von A ist |Q|. Wir betrachten die |Q| + 1 Wörter (ein Wort mehr als A Zustände
hat):

01, 02, 03, . . . , 0|Q|, 0|Q|+1. (3.6)

Da in der Auflistung 3.6 mehr Wörter stehen, als A Zustände hat, müssen sich in der Lis-
te (gemäss des Taubenschlagprinzipsa) mindesten zwei unterschiedliche Wörter finden las-
sen, welche den Automaten in denselben Zustand führen. Damit existieren also zwei Zahlen

35

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

i, j ∈ {1, 2, . . . , |Q| , |Q| + 1} mit i < j, sodass

δ̂(q0, 0i) = δ̂(q0, 0j).

Gemäss Theorem 3.1 muss für jedes Wort z ∈ {0, 1}∗ gelten, dass

0iz ∈ Lcount ⇐⇒ 0jz ∈ Lcount.

Doch dies ist ein Widerspruch, denn für die Wahl z := 1j liegt das Wort 0jz = 0j1j in der Sprache
Lcount (0j1j hat gleich viele Nullen wie Einsen), doch das Wort 0iz = 0i1j liegt nicht in Lcount,
da i < j gilt und 0i1j somit mehr Einsen als Nullen enthält. Da wir einen Widerspruch erhalten
haben, muss unsere Annahme, Lcount sei regulär verworfen werden und wir haben Lcount /∈ LEA

bewiesen.
ahttps://de.wikipedia.org/wiki/Schubfachprinzip

EDIT Aufgabe 3.6

Beweisen Sie mithilfe des Theorem 3.1, dass die Sprache

L := { anbmcn ; n, m ∈ N } (3.7)

nicht regulär ist.

EDIT Aufgabe 3.7

Beweisen Sie mithilfe des Theorem 3.1, dass die Sprache

L :=
{

anbmch ; n, m, h ∈ N und m > n + 2h
}

(3.8)

nicht regulär ist.

EDIT Aufgabe 3.8

Beweisen Sie mithilfe des Theorem 3.1, dass die Sprache

L := { w#w ; w ∈ {a, b}∗ } . (3.9)

nicht regulär ist.

EDIT Aufgabe 3.9

Beweisen Sie, dass die Sprache

L :=
{

0i1j ; i, j ∈ N
}

(3.10)

regulär ist.

36

mailto:thomas.graf@edu.zh.ch
https://de.wikipedia.org/wiki/Schubfachprinzip

Endliche Automaten « Thomas Graf, Informatik, 2026

Trophy Aufgabe (Challenge) 3.10

Entwerfen Sie einen endlichen Automaten für die Sprache

L := { Dec(n) ; n ∈ N, n > 0 und n ist durch 11 teilbar } .

Dabei steht Dec(n) für die Dezimaldarstellung von n ohne führende Nullen.

Tipp: Eine ganze Zahl x mit Dezimaldarstellung Dec(x) = x1x2 . . . xm ist genau dann durch
11 teilbar, wenn die alternierende Quersumme +x1 − x2 + x3 − x4 + x5 − . . . ± xm dieser
Zahl durch 11 teilbar ist. Beispiel: Die Zahl 4752 ist durch 11 teilbar, da ihre alternierende
Quersumme +4 − 7 + 5 − 2 = 0 durch 11 teilbar ist.

37

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

3.3 Lösungen der Aufgaben
Check Lösungsvorschlag zu Aufgabe 3.1 Check

q0start q1 q2 q3 q4

1

0

0

1

1

0 0

1

0, 1

Abbildung 3.8: Endlicher Automat für die Sprache L1 in Ausdruck Gleichung (3.4).

Check Lösungsvorschlag zu Aufgabe 3.2 Check

Der endliche Automat in Abbildung 3.3 akzeptiert genau die Eingabewörter, für die der endliche
Automat seine Arbeit in einem der beiden akzeptierenden Zuständen p0 oder p3 beendet. Man kann
den Graphen mental wie folgt aufteilen:

• obere Hälfte: Zustände p0, p1
• untere Hälfte: Zustände p2, p3
• linke Hälfte: Zustände p0, p2
• rechte Hälfte: Zustände p1, p3

In die untere Hälfte gelangt man nach dem erstmaligen Lesen eines Symbols a. Wenn ein weiteres a
gelesen wird, gelangt man wieder zurück in die obere Hälfte. Man von der oberen Hälfte in die untere
Hälfte (und umgekehrt) nur durch Lesen des Symbols a gelangen. Da der endliche Automat in der
oberen Hälfte im Zustand p0 beginnt, ist klar, dass sich der endliche Automat genau dann in einem
der Zustände der oberen Hälfte (p0, p1) befindet, wenn er eine gerade Anzahl von a’s gelesen hat.

Mit einer völlig analogen Argumentation begründet man, dass sich der endliche Automat genau
dann in einem der Zustände der linken Hälfte (p0, p2) befinden kann, wenn er eine gerade Anzahl
von b’s gelesen hat.

Der endliche Automat befindet sich somit genau dann im Zustand p0, wenn er eine gerade Anzahl
von a’s und eine gerade Anzahl b’s gelesen hat, wenn also für das Eingabewort w gilt: |w|a ist
gerade und |w|b ist gerade.

Der endliche Automat befindet sich somit genau dann im Zustand p3, wenn er eine ungerade Anzahl
von a’s und eine ungerade Anzahl b’s gelesen hat, wenn also für das Eingabewort w gilt: |w|a ist
ungerade und |w|b ist ungerade.

Zusammengefasst, entspricht die vom endlichen Automaten akzeptierte Sprache L2 der Menge

L2 = { w ∈ {a, b}∗ ; Das Wort w hat eine gerade Länge (|w| ist eine gerade Zahl). }

Check Lösungsvorschlag zu Aufgabe 3.3 Check

Intuitiv gesprochen, ist Mab die Menge aller Wörter aus {a, b, c}∗ welche zwar auf b enden, aber
nicht auf bb. Wir erhalten Mab durch das (mengentheoretische) Subtrahieren der Menge Labb von
der Menge aller Wörter Maxb, die mit a beginnen und auf b enden:

Maxb := { w ∈ {a, b, c}∗ ; w = axb, für ein x ∈ {a, b, c}∗ }
Mab = Maxb \ Labb

38

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Alternative Lösung:

Die Wörter w in Mab haben die Form w = axyb, mit x ∈ {a, b, c}∗ und y ∈ {a, c}. Dies sind genau
die Wörter, welche mit a beginnen, an letzter Stelle das Symbol b steht, aber an der zweitletzten
Stelle nicht das Symbol b. Folglich gilt auch:

Mab := { w ∈ {a, b, c}∗ ; w = axyb, für ein x ∈ {a, b, c}∗ und ein y ∈ {a, c} }

Check Lösungsvorschlag zu Aufgabe 3.4 Check

if input = a goto 2, if input = b goto 2, if input = c goto 1;
if input = a goto 2, if input = b goto 0, if input = c goto 2;
if input = a goto 2, if input = b goto 2, if input = c goto 2;

Check Lösungsvorschlag zu Aufgabe 3.5 Check

Der zur Graphendarstellung in Abbildung 3.3 äquivalente endliche Automat ist M = (Q, Σ, δ, q0, F),
wobei:

Q = {p0, p1, p2, p3} , Σ = {a, b} , q0 = p0, F = {p0, p3} und
δ(p0, a) = p2, δ(p0, b) = p1

δ(p1, a) = p3, δ(p1, b) = p0

δ(p2, a) = p0, δ(p2, b) = p3

δ(p3, a) = p1, δ(p3, b) = p2

Check Lösungsvorschlag zu Aufgabe 3.6 Check

Wir beweisen die Behauptung durch Widerspruch. Wir nehmen also an, L = { anbmcn ; n, m ∈ N }
sei regulär. Dann existiert ein endlicher Automat A = (Q, {a, b, c} , δ, q0, F) mit L(A) = L. Die
Anzahl der Zustände Q von A ist |Q|. Wir betrachten die |Q| + 1 Wörter (ein Wort mehr als A
Zustände hat):

a1, a2, a3, . . . , a|Q|, a|Q|+1. (3.11)

Da in der Auflistung 3.11 mehr Wörter stehen, als A Zustände hat, müssen sich in der Liste (gemäss
des Taubenschlagprinzips) mindesten zwei unterschiedliche Wörter finden lassen, welche den Auto-
maten in denselben Zustand führen. Damit existieren also zwei Zahlen i, j ∈ {1, 2, . . . , |Q| , |Q| + 1}
mit i < j, sodass

δ̂(q0, ai) = δ̂(q0, aj).

Gemäss Theorem 3.1 muss für jedes Wort z ∈ {a, b, c}∗ gelten, dass

aiz ∈ L ⇐⇒ ajz ∈ L.

Doch dies ist ein Widerspruch, denn für die Wahl z := cj liegt das Wort ajz = ajcj in der Sprache
L (ajcj hat gleich viele a’s wie c’s), doch das Wort aiz = aicj liegt nicht in L, da i < j gilt und aicj

somit mehr c’s als a’s enthält. Da wir einen Widerspruch erhalten haben, muss unsere Annahme, L
sei regulär verworfen werden und wir haben L /∈ LEA bewiesen.

Check Lösungsvorschlag zu Aufgabe 3.7 Check

39

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Wir beweisen die Behauptung durch Widerspruch. Wir nehmen also an,

L =
{

anbmch ; n, m, h ∈ N und m > n + 2h
}

sei regulär. Dann existiert ein endlicher Automat A = (Q, {a, b, c} , δ, q0, F) mit L(A) = L. Die
Anzahl der Zustände Q von A ist |Q|. Wir betrachten die |Q| + 1 Wörter (ein Wort mehr als A
Zustände hat):

a1, a2, a3, . . . , a|Q|, a|Q|+1. (3.12)

Da in der Auflistung 3.12 mehr Wörter stehen, als A Zustände hat, müssen sich in der Liste (gemäss
des Taubenschlagprinzips) mindesten zwei unterschiedliche Wörter finden lassen, welche den Auto-
maten in denselben Zustand führen. Damit existieren also zwei Zahlen i, j ∈ {1, 2, . . . , |Q| , |Q| + 1}
mit i < j, sodass

δ̂(q0, ai) = δ̂(q0, aj).

Gemäss Theorem 3.1 muss für jedes Wort z ∈ {a, b, c}∗ gelten, dass

aiz ∈ L ⇐⇒ ajz ∈ L.

Doch dies ist ein Widerspruch, denn für die Wahl z := bj liegt das Wort aiz = aibj in der Sprache
L (j > i), doch das Wort ajz = ajbj liegt nicht in L. Da wir einen Widerspruch erhalten haben,
muss unsere Annahme, L sei regulär verworfen werden und wir haben L /∈ LEA bewiesen.

Check Lösungsvorschlag zu Aufgabe 3.8 Check

Wir beweisen die Behauptung durch Widerspruch. Wir nehmen also an, L = { w#w ; w ∈ {a, b}∗ }
sei regulär. Dann existiert ein endlicher Automat A = (Q, {a, b, #} , δ, q0, F) mit L(A) = L. Die
Anzahl der Zustände Q von A ist |Q|. Wir betrachten die |Q| + 1 Wörter (ein Wort mehr als A
Zustände hat):

a1, a2, a3, . . . , a|Q|, a|Q|+1. (3.13)

Da in der Auflistung 3.13 mehr Wörter stehen, als A Zustände hat, müssen sich in der Liste (gemäss
des Taubenschlagprinzips) mindesten zwei unterschiedliche Wörter finden lassen, welche den Auto-
maten in denselben Zustand führen. Damit existieren also zwei Zahlen i, j ∈ {1, 2, . . . , |Q| , |Q| + 1}
mit i < j, sodass

δ̂(q0, ai) = δ̂(q0, aj).

Gemäss Theorem 3.1 muss für jedes Wort z ∈ {a, b, #}∗ gelten, dass

aiz ∈ L ⇐⇒ ajz ∈ L.

Doch dies ist ein Widerspruch, denn für die Wahl z := #ai liegt das Wort aiz = ai#ai in der
Sprache L (j > i), doch das Wort ajz = aj#ai liegt nicht in L. Da wir einen Widerspruch erhalten
haben, muss unsere Annahme, L sei regulär verworfen werden und wir haben L /∈ LEA bewiesen.

Check Lösungsvorschlag zu Aufgabe 3.9 Check

Wir zeigen, dass die gegebene Sprache regulär ist, indem wir einen endlichen Automaten für diese
Sprache angeben. Der endliche Automat ist gegeben durch:

q0start q1 q2

0

1

1

0

0, 1

Abbildung 3.9: Endlicher Automat für die Sprache L :=
{

0i1j ; i, j ∈ N
}
.

40

mailto:thomas.graf@edu.zh.ch

Endliche Automaten « Thomas Graf, Informatik, 2026

Check Lösungsvorschlag zu Challenge 3.10 Check

Wir geben einen endlichen Automaten M = (Q, Σ, δ, q0, F) mit L(M) = L an.

• Q = (q′
0, qt, q0, q1, . . . , q10, p0, p1, . . . , p10) (dies sind 24 Zustände)

• Σ = Σ10 = {0, 1, . . . , 9}
• Der Anfangszustand q0 ist gegeben durch q′

0.
• F = {q0, p0}
• Die Übergangsfunktion δ ist vollständig beschrieben durch:

δ(q′
0, 0) = qt,

δ(qt, j) = qt, j ∈ {0, 1, . . . , 9} ,

δ(q′
0, j) = qj , j ∈ {1, 2, . . . , 9} ,

δ(qi, j) = p(i−j) mod 11, i, j ∈ {0, 1, . . . , 9} ,

δ(pi, j) = q(i+j) mod 11, i, j ∈ {0, 1, . . . , 9} .

41

mailto:thomas.graf@edu.zh.ch

Kapitel 4

Turingmaschinen

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)

Abbildung 4.1: Turing-Maschine

42

Endliche Automaten « Thomas Graf, Informatik, 2026

43

mailto:thomas.graf@edu.zh.ch

	Alphabete, Wörter, Sprachen
	Alphabete, Wörter, Sprachen
	Lösungen der Aufgaben
	Kapiteltest
	Lösungen zum Kapiteltest

	Algorithmische Probleme
	Das Entscheidungsproblem
	Graphen
	Adjazenzmatrix
	Knotenüberdeckung (vertex cover)

	Lösungen der Aufgaben

	Endliche Automaten
	Darstellung endlicher Automaten
	Darstellung durch gerichtete Graphen
	Darstellung durch Programme
	Formale Definition

	Beweise der Nichtexistenz
	Lösungen der Aufgaben

	Turingmaschinen

