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Kapitel 1

Vorwissen

Diese Unterlagen behandeln anspruchsvolle Inhalte der Informatik und Mathematik. Um ihnen
gerecht zu werden, bedarf es einer mathematisch prézisen Ausdrucksweise. Den iiberwiegenden Teil
der benotigten mathematischen Werkzeuge werden die Lesenden typischerweise in den ersten Jahren
des Gymnasiums kennengelernt haben. Einige der von uns benétigten Konzepte werden den meisten
Lesenden jedoch vermutlich noch nicht bekannt sein. Diese Konzepte wollen wir in diesem Kapitel
einfiihren. Wir werden dies in kompakter Form tun und an verschiedenen Stellen auf artifiziell
wirkende (forcierte) Beispiele bewusst verzichten.

1.1 Mathematik

1.1.1 Direkter und indirekter Beweis

Seien A und C' mathematische Aussagen. Wir mochten beweisen, dass die Aussage
A=C

(A impliziert C) gilt. Solch ein Beweis kann im Wesentlichen auf zwei Arten erbracht werden:
entweder durch einen direkten Beweis oder einen indirekten Beweis.

1.1.1.1 Direkter Beweis

Der direkte Beweis macht von folgender logischen Tatsache Gebrauch: Impliziert A eine weitere
Aussage B

A= B
und B impliziert wiederum C'
B=C,
dann impliziert A auch C. Zusammengefasst gilt also:
(A= B)und (B=0))= (A= C). (1.1)

Um die Richtigkeit der Implikation A = C zu beweisen, zerlegt man die Implikation in bereits als
flir richtig befundene , Teilaussagen“ A = B und B = C, also

(A= B)und (B = C).
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Danach folgt die Implikation A = C aus Ausdruck 1.1. Diese Strategie kann wiederholt angewendet
werden und man erhélt eine ,Kette“ logischer Implikationen (Schliisse):

((A = Bl) und (B1 = Bg) und (BQ = Bg) und ... und (Bn = C)) = (A = C)

Dabei kénnen die Begriindungen der Implikationen A = By, B,, = C sowie By = By fiir jedes
ke {1,2,...,n— 1} als logische ,Zwischenschritte“ verstanden werden.

1.1.1.2 Indirekter Beweis

Ein indirekter Beweis (Beweis durch Widerspruch) beginnt mit der Annahme, dass die Aussage C'
falsch sei, dass also =C' (nicht C') richtig ist. Nun wird einzig, unter Verwendung der Richtigkeit von
A und —C sowie bereits als wahr erkannter mathematischer Aussagen, die Richtigkeit einer Aussage
B abgeleitet, von der bereits bekannt ist, dass sie falsch ist. Dadurch haben wir einen ,Widerspruch“
erhalten und konnen folgern, dass —=C' nicht richtig sein kann und somit C' wahr sein muss. Damit
ist, wie gewiinscht, die Implikation A = C' nachgewiesen.

1.1.2 Kontraposition

Seien A und B mathematische Aussagen. Logisch dquivalent zur Behauptung A = B ist die Aussage
- B = A, welche Kontraposition der Implikation A = B genannt wird. Der Beweis fiir A = B
ist demnach auch erbracht, falls man zeigen kann, dass aus der Annahme, die Folgerungen seien
nicht erfiillt, folgt, dass auch die Voraussetzungen nicht erfiillt sein konnen. Gelegentlich féllt es
einem leichter, die Kontraposition -B = —A einer Implikation A = B zu zeigen.

Beispiel 1.1:
Sei A die Aussage ,Es hat geregnet.* und B die Aussage ,Die Strasse ist nass.. Die Implikation
A = B bedeutet: ,Falls es geregnet hat, ist die Strasse nass.”

Falls die Strasse nass ist, muss das umgekehrt nicht bedeuten, dass es geregnet hat. Beispielsweise
koénnte die Strasse auch von der Strassenreinigung nass gemacht worden sein. Was wir aber sicherlich
sagen konnen, ist, dass falls die Strasse nicht nass ist, es auch nicht geregnet haben kann, was genau
—B = = A bedeutet.

1.1.3 Funktionen
1.1.3.1 Definition einer Funktion

Definition 1.1 (Funktion als Vorschrift):

Seien X und Y Mengen. Wir sagen, dass eine Funktion auf X mit Werten in Y definiert ist,
wenn aufgrund einer Vorschrift (Regel) f jedem Element xz € X genau ein Element y € YV
zugehorig ist.

Wir sagen dann, dass die Menge X die Definitionsmenge der Funktion ist.

Das Symbol z, das benutzt wird, um ein allgemeines Element dieser Menge zu beschreiben, wird
Argument oder unabhdngige Variable der Funktion genannt.

Das Element yg € Y, das einem Argument xg € X zugeordnet wird, wird Wert der Funktion in xq
genannt oder auch Wert der Funktion an der Stelle x = z¢ und f(xg) geschrieben. Die Menge Y
wird Zielmenge der Funktion genannt.

Bei Anderung der Argumente x € X verdindern sich im Allgemeinen die Resultate y = f(x) € Y in
Abhéngigkeit von den Werten x. Aus diesem Grund wird die Grosse y = f(x) oft auch abhdangige
Variable genannt.
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Definition 1.2 (Bild einer Funktion):
Die Menge

im(f) :=={yeY; esexistiert ein x € X mit y = f(z) }

von Werten, die von einer Funktion f fiir alle Elemente in der Menge X angenommen werden,
wird Bild (englisch: image) oder Wertemenge der Funktion f : X — Y genannt. Haufig wird
im (f) alternativ als f(X) geschrieben, wobei X die Definitionsmenge von f ist.

1.1.3.2 Surjektion, Injektion, Bijektion

In diesen Unterlagen werden wir hiufig iiber Funktionen sprechen. Insbesondere werden wir die
folgenden drei Eigenschaften von Funktionen mehrmals verwenden.

Definition 1.3 (surjektiv, injektiv, bijektiv):
Seien X und Y Mengen und f: X — Y eine Funktion.

o [ heisst surjektiv (eine Surjektion), falls im (f) =Y.
Intuitiv gesprochen, nimmt eine surjektive Funktion jeden Wert in der Zielmenge an.
Zu beliebigem y € Y existiert (mindestens) ein x € X, sodass y = f(x).

o f heisst injektiv (eine Injektion), falls fiir z1, 29 € X aus x1 # xa stets f(x1) # f(z2)
folgt.
Zwei verschiedene Eingaben erzeugen stets verschiedene Ausgaben.

o f heisst bijektiv (eine Bijektion), falls f sowohl surjektiv als auch injektiv ist.
Da f surjektiv ist, existiert zu jedem y € Y ein z € X mit f(z) = y. Da f injektiv
ist, kann es kein anderes & € X mit Z # = geben, sodass f(Z) = y. Dadurch stellt eine
Bijektion eine , Eins-zu-eins-Zuweisung® zwischen den Elementen aus X und Y dar.

X X X
(a) surjektiv, nicht injektiv (b) injektiv, nicht surjektiv (¢) bijektiv

Abbildung 1.1: schematische Darstellung der Eigenschaften in Definition 1.3

f»lk\loow»a}%

(a) surjektiv, nicht injektiv (b) injektiv, nicht surjektiv (c) bijektiv

Abbildung 1.2: Diagramm-Darstellung der Eigenschaften in Definition 1.3

Betrachten Sie Abbildung 1.1. Diese stellt die in Definition 1.3 beschriebenen Eigenschaften fiir
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eine Funktion f : X — Y schematisch dar. Abbildung 1.1a zeigt eine Funktion, die surjektiv, aber
nicht injektiv ist, Abbildung 1.1b eine Funktion, die injektiv, aber nicht surjektiv ist. Schliesslich
wird in Abbildung 1.1c eine bijektive Funktion dargestellt. Abbildung 1.2 illustriert Surjektivitét,
Injektivitdt und Bijektivitét fiir einfache Funktionen auf konkreten endlichen Mengen. Surjektivitét,
Injektivitdt und Bijektivitat sind Eigenschaften, welche eine gegebene Funktion entweder haben
kann oder nicht.

1.1.3.3 Folgen

Definition 1.4 (Folge):

Ist X eine beliebige Menge und f : N — X eine Funktion, welche auf N definiert ist und
Werte in X annimmt, dann wird f eine Folge (in X) genannt. Ist g : D — X eine Funktion
und D C N eine endliche Teilmenge der natiirlichen Zahlen, so wird g endliche Folge in X
genannt.

Haufig schreibt man (zp,)nen, (zn) oder auch (zg,z1,z9,...) fiir die Folge f. Dabei bezeichnet
xn = f(n) das n-te Glied der Folge f = (zo,x1,2,...) fir jedes n € N.

Beispiel 1.2:
Die Funktion f : N — Z mit n — 2n ist die Folge der geraden natirlichen Zahlen.

1.2 Programmieren in Python

Wir werden hier keine Einfiihrung in die Python-Programmiersprache geben. Wir fithren im Folgen-
den einige Details der Python-Sprache auf, welche wir in den Ubungsaufgaben der niichsten Kapitel
verwenden werden.

o Der Modulo-Operator %, (Prozent-Symbol) kann in der Form a % b verwendet werden und
liefert den ganzzahligen Rest bei der Division von a mit b. Beispielsweise sind die folgenden
Ausdriicke wahr:

7%3==1 59%8==522%4==2 42 Y% 6 == 0.
Wir werden den Modulo-Operator zur Uberpriifung auf Teilbarkeit verwenden. Denn b ist
offensichtlich genau dann ein Teiler von a, fallsa % b == 0 gilt.

¢ FEine Liste in Python wird durch eckige Klammern gekennzeichnet. Beispielsweise ist [3,2,2,7]
eine Liste mit 4 Eintrdgen. Eine leere Liste (Liste ohne Eintrdge) wird durch ,leere ecki-
ge Klammern® [] bezeichnet. Mit dem Aufruf L.append(x) wird ein Eintrag x hinten (von
rechts) in eine bereits bestehende Liste L eingefiigt (angehéngt). Mit L[-1] wird der letzte (am
weitesten rechts stehende) Eintrag der Liste L bezeichnet. Der Ausdruck L[:-1] bezeichnet
alle Eintrdge der Liste mit Ausnahme des letzten.

e In Python existiert die Moglichkeit, Argumenten einer Funktion ein Default-Argument zu
geben.

# Default-Argument in Python
def eineFunktion(a, b = 5):
print(a + b)

eineFunktion(3,6) # gibt den Wert 9 aus
eineFunktion(3) # Aufruf mit Default-Argument b = 5: gibt den Wert 8 aus

Programm 1.1: Default-Argument
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Dieses Default-Argument wird genau dann verwendet, falls kein Wert fiir dieses Argument
(explizit) angegeben wird.

e Die Operation math.ceil(x) wird Aufrundungs-Operation genannt und gibt die kleinste
ganze Zahl, die grosser oder gleich x ist. Beispielsweise gelten math.ceil(3.2) = 4 und
math.ceil(3) = 3. Um diese Operation verwenden zu konnen, muss die Bibliothek math
durch den Befehl import math vor dem Gebrauch dieser Operation ins Programm eingefiigt
werden.

In Programm 1.2 haben wir die obigen Punkte noch einmal zusammengefasst.

# gibt die durch 19 teilbaren Zahlen in {0,1,2,...,99} aus:
for k in range(100):
if (k % 19) == 0:
print(k) # gibt aus: 0 19 38 57 76 95

# Listen

L=1[3, 7, 2, 3]

L.append(99) # L ist nun [3, 7, 2, 3, 99].
print(L[-1]) # gibt aus: 99

print(L[:-2]) # gibt aus: 3, 7, 2

# Default-Argument

def person(vorname, nachname = 'Nachname unbekannt', alter = '-'):
print('Vorname: ', vorname, ', ' , 'Nachname: ', nachname, ', ', 'Alter: ',
alter, sep='")

person('Sandra') # gibt aus: Vorname: Sandra, Nachname: Nachname unbekannt, Alter:

person('Toni', 'Wildeisen') # gibt aus: Vorname: Toni, Nachname: Wildeisen, Alter:

# Importieren einer Bibliothek und Verwendung der Aufrundungs-Funktion
import math # Einfiigen der Bibliothek 'math'
print (math.ceil(3.00002)) # gibt aus: 4

Programm 1.2: Vorwissen Python
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Kapitel 2

Die natiurlichen Zahlen

2.1 Historische Betrachtung der natiirlichen Zahlen

Die natirlichen Zahlen werden so genannt, da sie auf ,natiirliche Weise“ beim Zahlen verwendet
werden. Auf dem Gebiet der heutigen Demokratischen Republik Kongo wurde im 20. Jahrhundert
ein Knochen, der sogenannte Ishango-Knochen, gefunden. Dieser Knochen wird auf die Zeit vor etwa
18’000 bis 20’000 Jahren vor unserer Zeitrechnung datiert. In dem Knochen sind ganz offensichtlich
von Menschen einige Kerben eingeritzt worden. Die Bedeutung dieser Kerben ist nicht klar. Es wird
jedoch angenommen, dass diese Kerben eine bestimmte Anzahl festhalten.

Stellen wir uns vor, dass die Kerben die Anzahl der gefangenen Fische () an einem bestimmten
Tag darstellen. Gefangene Fische durch Kerben in einem Knochen zu reprisentieren, verlangt be-
reits einen recht hohen Grad an Abstraktion! Schliesslich haben gefangene Fische und Kerben in
einem Knochen auf den ersten Blick keinen offensichtlichen Zusammenhang. Anstelle von Kerben
in einem Knochen koénnte die Fangmenge eines Tages auch durch die entsprechende Anzahl von
Kieselsteinen oder durch (abstraktere) romische Numerale représentiert werden. Wichtig fir uns
ist, dass die konkrete Wahl der Darstellung, zumindest rein mathematisch betrachtet, unwichtig ist.
Schliesslich stellen die verschiedenen Darstellungen alle dieselbe Anzahl von Fischen dar. Betrach-
ten Sie Tabelle 2.1. Mit dem Symbol # meinen wir nicht ein Fisch-Emoji, sondern den eigentlich
gefangenen Fisch. Die direkte Darstellung der Anzahl der gefangenen Fische durch sich selbst ist
offensichtlich am wenigsten abstrakt. Die Darstellung durch Kerben oder Kieselsteine bedarf bereits
einer nicht unerheblichen Abstraktion. Dhttps://www.youtube.com/watch?v=c817K67idZcie Dar-
stellungen durch das rémische, dezimale und binére Zahlensysteme sind noch eine Stufe abstrakter.

Fische Kieselsteine romisch binar dezimal
(keine) (keine) nichts (nihil) 0 0

: o I 1 1

oo 11 10 2

ceoe IIT 11 3

ceee v 100 4

AAAAA cesecce A% 101 )
,,,,,, cooccce VI 110 6
»»»»»» ee e e 0o 0 VII 111 7
-------- ceoccsee VIII 1000 3
»»»»»»»»» sceecccsse IX 1001 9

Tabelle 2.1: mogliche Darstellungen der Anzahl gefangener Fische
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Die Zahl Null hat eine lange und kontroverse Geschichte hinter sich. Vermutlich hatten die Romer
kein explizites eigenes Symbol fiir die Null. Wir werden jedoch die Null als die erste (kleinste)
natiirliche Zahl auffassen.

2.2 Unendlichkeit der natiirlichen Zahlen und konstruktive Induk-
tion

Bereits aufgrund der kurzen Anekdote iiber die gefangenen Fische und Kieselsteine in Abschnitt 2.1
kann man sich denken, dass es unendlich viele natiirliche Zahlen geben muss. Wieder denken wir
uns eine natiirliche Zahl als genau das Symbol, welches eine bestimme Anzahl an Kieselsteinen
darstellt. Dann ist klar, dass es keine grosste natiirliche Zahl geben kann, denn schliesslich kann
stets ein weiterer Kieselstein hinzugefiigt werden, was uns eine noch gréssere Zahl liefert. Zu jeder
natiirlichen Zahl n, angefangen mit der 0, erhalten wir (durch Hinzufligen eines Kieselsteins) eine
weitere natiirliche Zahl. Diese neue Zahl werden wir den Nachfolger von n nennen. Die folgenden
Uberlegungen dieses Kapitels formalisieren diese Vorstellungen und stellen diese mathematisch pri-
zise dar. Doch auch ohne mathematische Formeln kénnen wir das folgende Gedankenexperiment
durchfithren. Angenommen Sie sind in der Lage Folgendes zu tun:

o Sie kénnen eine Treppe mit 0 Stufen (ohne Stufen) bauen.
o Falls Sie bereits eine Treppe mit einer beliebigen (natiirlichen) Anzahl von Stufen gebaut
haben, dann kénnen Sie diese Treppe um eine Stufe erweitern (siehe Abbildung 2.1).

Dann werden Sie es fiir glaubhaft halten, dass Sie eine Treppe mit beliebig vielen Stufen bauen
konnen. Wie dieses Gedankenexperiment mit der mathematischen Definition der natiirlichen Zahlen
zusammenhéngt, werden Sie im néchsten Abschnitt sehen.

Abbildung 2.1: Erweiterung einer Treppe um eine weitere Stufe.

2.3 Die Peano-Axiome

Uns ist vollkommen bewusst, dass Sie bereits seit Threr Kindheit mit dem Konzept der natiirlichen
Zahlen vertraut sind. Sie konnten vermutlich schon als Kleinkind Gegenstinde zédhlen und lernten
spétestens in der Grundschule die Addition und Multiplikation natiirlicher Zahlen kennen. Fiir diese
einfachen Anwendungen reicht eine rein intuitive Beschreibung der natiirlichen Zahlen vollkommen
aus.
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Sie werden jedoch festgestellt haben, dass mit fortschreitender schulischer Reife eine prézise Definiti-
on von Begriffen und Konzepten zunehmend an Bedeutung gewinnt. Auf der Stufe des Gymnasiums
wird der bis dorthin rein intuitiv geprégte Begriff der natiirlichen Zahlen durch das Konzept der
Mengen formalisiert. Ab dann wird von der Menge der natirlichen Zahlen, bezeichnet durch das
Symbol N, gesprochen.

2.4 Informale Definition der natiirlichen Zahlen

In Lehrbiichern des Gymnasiums (siehe zum Beispiel [1]') wird die Menge der natiirlichen Zahlen
typischerweise wie folgt definiert:

Definition 2.1 (Informale Definition der natiirlichen Zahlen):
Die Menge

N:={0,1,2,3,4,...}

wird als die Menge der natiirlichen Zahlen bezeichnet.

Man beginnt also bei 0 und zéhlt dann unbegrenzt weit nach vorne. In einem gewissen Sinne
beantwortet Definition 2.1 die Frage, was natiirliche Zahlen sind: Eine natiirliche Zahl ist ein Element
der Menge N. Dennoch ist die Definition nicht sehr befriedigend, denn sie beantwortet nicht die
Frage, was N selbst ist. [2] Wir werden nicht von dieser Definition Gebrauch machen, sondern eine
niitzlichere Definition entwickeln.

Der folgende Abschnitt ist teilweise inspiriert durch die entsprechenden Teile in den hervorragenden
Biichern [2] und [3].

Bei nidherer Betrachtung wirft die informale Definition 2.1 insbesondere die folgenden drei Fragen
auf:

1. Woher wissen wir, dass wir beliebig lange weiter vorwérts zédhlen kénnen, ohne schliesslich
(wie bei einer Uhr) wieder bei der 0 anzukommen?
2. Wie sollen nun Operationen wie die Addition, Multiplikation und die Potenz definiert werden?

Die zweite Frage wollen wir zuerst besprechen. Komplizierte Operationen kénnen durch einfache-
re Operationen ausgedriickt werden. So ist Potenzieren lediglich wiederholtes Multiplizieren und
Multiplizieren wiederum wiederholtes Addieren. Zum Beispiel sind 5% nichts weiter als drei Fiinfer
miteinander multipliziert und 6 - 3 lediglich sechs Dreien miteinander addiert. Wie sieht es mit der
Addition aus? Die Addition kann durch wiederholtes Inkrementieren oder Vorwdrtszihlen realisiert
werden. Bei der Addition 4 + 3 wird die Vier dreimal inkrementiert (wir zdhlen von der Vier aus
dreimal vorwérts). Inkrementieren scheint eine fundamentale Operation zu sein, welche sich nicht
auf eine noch einfachere Operation reduzieren lasst.

Eine sinnvolle Definition der natiirlichen Zahlen scheint also das Inkrementieren als fundamentales
Konzept zu verwenden. Fiir eine nattirliche Zahl n werden wir im Folgenden mit v(n) das Inkrement
von n bezeichnen. Wir werden v(n) auch den Nachfolger von n nennen. Zum Beispiel gilt 3 =
v(2),4 = v(3) = v(r(2)) und so weiter. Das Inkrementieren liefert uns also einen ,,Zahlvorgang*,
der bei 0 beginnt. Die bisherigen Uberlegungen lassen vermuten, dass wir N als die Menge mit den
Elementen

0,2(0), »(¥(0)), v(¥(1(0))), v (¥ (¥(¥(0)))), v(¥ (¥ (¥(¥(0))))), - .-

!Dieses Buch bietet allerdings auch eine alternative Definition der natiirlichen Zahlen an.

10
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ansehen wollen. Diese Menge enthélt 0 und alle Objekte, welche aus 0 durch Inkrementieren erhalten
werden konnen. Sie wissen bereits, dass fundamentale (nicht beweisbare) Annahmen in der Mathe-
matik als Aziome bezeichnet werden. Bislang haben wir zwei fundamentale Annahmen beziiglich
der Menge N der natiirlichen Zahlen getroffen. Diese fassen wir in zwei Axiomen zusammen:

7

Axiom 2.1:
Die 0 liegt in N.

Axiom 2.2:
Falls n in N liegt, dann liegt auch der Nachfolger v(n) von n in der Menge N.

\. J

Dies sind die ersten zwei von insgesamt fiinf Axiomen, welche zusammen bekannt sind als die
Peano-Axiome der natiirlichen Zahlen. Die Peano-Axiome sind benannt nach dem italienischen
Mathematiker Giuseppe Peano, welcher diese Axiome im Jahr 1889 formulierte.

Bemerkung 2.1:

o Beachten Sie, dass Axiom 2.2 lediglich aussagt, dass der Nachfolger v(n) einer natiir-
lichen Zahl n wieder eine natiirliche Zahl ist. Das Axiom sagt nichts dariiber aus, wie
dieser Nachfolger lautet.

e Manche Autorinnen und Autoren ziehen es vor, den ,,Zéhlvorgang“ nicht bei 0, sondern
bei 1 zu beginnen. Dies ist mathematisch ohne Bedeutung. [3]

o Wir definieren 1 := v(0), 2 := v(1) = v(v(0)), 3 := v(2) = v(r(v(0))) und so weiter.
Anstelle von

0,2(0), v(1(0)), v(¥(1(0))), v(v (¥ (¥(0)))), v (¥ (¥ (¥ (¥(0))))), - - -

schreiben wir iiblicherweise 0,1, 2,3,4,5, ...

11


mailto:thomas.graf@edu.zh.ch

Induktion und Rekursion O Thomas Graf, Informatik, 2026

In Abschnitt 2.1 haben wir bereits begriindet, warum die konkrete Darstellung einer Zahl nicht von
Bedeutung ist. Wir haben Tabelle 2.1 um eine Spalte erweitert:

Fische Kieselsteine romisch bindr dezimal Nachfolger
(keine) (keine) mnichts (nihil) 0 0 0

. I 1 1 v(0)

X ) 11 10 2 v(v(0))

co e 111 11 3 v(v(»(0)))

ceee v 100 4 (v (v (1(0))))

cecce A% 101 5 v(r(r(v((0)))))

cscece VI 110 6 v (v (v (¥(0))))))

XXX ccsecece VII 111 7 v (r (v (v (1(0)))))
eecescee VIII 1000 8 (@ (v (v (@ (0)))))))
ccececsce IX 1001 9 L EEEEEEO)))

Tabelle 2.2: Ilustration des Nachfolgers einer natiirlichen Zahl. Beachten Sie, dass 0 nicht Nachfolger
einer anderen natiirlichen Zahl ist.

Abbildung 2.2: Giuseppe Peano (1858-1932)

@ Aufgabe 2.1

Beweisen Sie, dass 2 eine natiirliche Zahl ist. Verwenden Sie dazu lediglich die beiden ersten
Peano-Axiome.

Bereits Giuseppe Peano stellte fest, dass diese ersten beiden Axiome nicht ausreichend sind, um
unsere intuitive Vorstellung der natiirlichen Zahlen einzufangen. Es kénnte sein, dass wir bei dem
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Vorwartszéhlen schliesslich wieder bei 0 ankommen. Betrachten wir dazu ein Modell der natiirlichen
Zahlen, welches von 3 zuriick zur 0 z&hlt, genauer: v(0) ist 1, v(1) ist 2, v(2) ist 3, aber v(3) ist wieder
0 (und geméss der Definition von 4 auch gleich der 4). So erfiillt also auch die Menge {0, 1,2, 3} die
ersten zwei Peano-Axiome und kénnte als Menge der natiirlichen Zahlen angesehen werden.

g Aufgabe 2.2

Welches ist die kleinste Menge, welche die ersten zwei Peano-Axiome erfullt?

Die Axiome 2.1 und 2.2 erlauben also auch Mengen, welche wir sicherlich nicht als Modelle der natiir-
lichen Zahlen anschauen moéchten. Wir miissen die erlaubten Nachfolger der Elemente der Mengen
weiter einschrdnken. Auf jeden Fall stellen wir fest, dass die 0 nicht Nachfolger einer natirlichen
Zahl sein soll und fordern deshalb:

Axiom 2.3:

Die 0 selbst ist nicht Nachfolger einer natiirlichen Zahl. Es gilt also v(n) # 0 fiir jede natiirliche
Zahl n.

Bemerkung 2.2:

Wir bezeichnen mit N* die Menge der natiirlichen Zahlen ohne die 0. Fiir jede natiirliche
Zahl n soll der Nachfolger v(n) von n wieder eine nattrliche Zahl sein. Da geméss Axiom 2.3
die 0 nicht Nachfolger einer natiirlichen Zahl ist, kénnen wir uns v als Funktion

v:N— N*,
n— v(n)

denken. Diese erhélt eine natiirliche Zahl n als Eingabe und liefert die natiirliche Zahl v(n),
welche nicht die 0 ist, als Ausgabe.

[#' Aufgabe 2.3

Beweisen Sie, dass 0 # 3 gilt. Verwenden Sie lediglich die ersten drei Peano-Axiome.

J

Betrachten Sie ein Zahlensystem, welches 0 enthélt und fiir das gilt: v(0) ist 1, (1) ist 2, v(2) ist 3,
aber v(3) bleibt 3 (also 4 = 3, 5 = 3, 6 = 3 und so weiter). Es ist auch ein Zahlensystem vorstellbar,
welches von 3 zuriick zu 1 geht, also v(3) = 1,v(1) = 2,v(2) = 3,v(3) = 1 und so weiter. Die beiden
Beispiele erfiillen alle drei ersten Peano-Axiome. Das Problem ist, dass die ersten drei Peano-Axiome
erlauben, dass verschiedene natiirliche Zahlen gleiche Nachfolger haben kénnen. Diese Moglichkeit
wollen wir also ausschliessen. Dazu fiigen wir das vierte Peano-Axiom hinzu:

Axiom 2.4:

Unterschiedliche natiirliche Zahlen haben unterschiedliche Nachfolger. Sind also n, m natiir-
liche Zahlen und n # m, dann gilt v(n) # v(m). Die Kontraposition dieser Aussage lautet:
Gilt v(n) = v(m), dann folgt n = m.

. v

2" Aufgabe 2.4 ~

Verwenden Sie die ersten vier Peano-Axiome, um zu beweisen, dass 1 # 4 gilt.
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Wir wollen N als die Menge verstehen, welche die 0 enthélt und alle Objekte, welche aus 0 durch
Inkrementieren erhalten werden kann. Diese Intuition wird schliesslich auf geniale Weise durch das
finfte Peano-Axiom formalisiert. Dieses letzte Peano-Axiom formuliert auf mathematisch prézise
Weise, was mit ,,aus 0 durch Inkrementieren erhalten werden kann“, gemeint ist:

Axiom 2.5:
Enthélt eine Teilmenge N C N das Element 0 und mit jedem n € N auch den Nachfolger
v(n) von n, so gilt N = N.

2.4.1 Kompakte Formulierung der Peano-Axiome

Unser Wissen iiber Funktionen und ihre Eigenschaften erlaubt uns, die fiinf Axiome 2.1 bis 2.5,
kompakt und sehr préazise in der folgenden Definition zusammenzufassen:

Definition 2.2 (Formale Definition der natiirlichen Zahlen):

Die natiirlichen Zahlen sind eine Menge N, in der ein Element 0 € N ausgezeichnet ist
und fiir die es eine Funktion v : N — N* (siehe Bemerkung 2.2) mit den folgenden zwei
Eigenschaften gibt:

(No) Die Funktion v ist injektiv.
(N7) Enthalt eine Teilmenge N C N das Element 0 und mit jedem n € N auch den Nachfolger
v(n) von n, so gilt N = N.

Dabei bezeichnet N* := N\ {0} die Menge der natiirlichen Zahlen ohne die 0. Das Element v(n)
heisst Nachfolger von n und v heisst Nachfolgerfunktion. Die Eigenschaft (Nj) ist identisch zum
Axiom 2.5 und wird auch Induktionsaxiom genannt.

= Aufgabe 2.5

Weisen Sie nach, dass Definition 2.2 zu den Peano-Axiomen dquivalent ist.

r
\.

W Aufgabe (Challenge) 2.6

Erfiillt auch die Menge {0,2,4,6,...} der geraden natiirlichen Zahlen die Peano-Axiome?

~

W Aufgabe (Challenge) 2.7

Begriinden Sie, dass die Nachfolgerfunktion v : N — N* bijektiv ist.
Tipp: Verwenden Sie die beiden Eigenschaften Ng und N in Definition 2.2.

~
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Bemerkung 2.3:

(a) Aus den grundlegenden Axiomen der Mengenlehre folgt, dass es in der Tat Systeme
(N,0,v) gibt, welche die Peano-Axiome erfiillen. Diese Modelle der natiirlichen Zahlen
sind bis auf die Benennung der Elemente gleichwertig und ergeben dieselbe Mathema-
tik. Beispielsweise konnte man anstelle der arabischen Zahlenschrift auch die romische
Zahlenschrift verwenden. Die konkrete Wahl der Symbole ist mathematisch nicht von
Bedeutung. Deshalb ist es sinnvoll, von den natiirlichen Zahlen zu sprechen.

(b) Die aus der Schule bekannten Rechenregeln in den natiirlichen Zahlen (zum Beispiel
das Distributivgesetz) lassen sich allein durch logische Folgerungen aus den Peano-
Axiomen beweisen. Diese Beweise werden zum Beispiel in dem Buch [4] gefiihrt, welches
im Jahr 1930 erschien. Im Vorwort dieses Buchs schreibt der Autor Edmund Landau
unter anderem:

e Ich setze nur logisches Denken und die deutsche Sprache als bekannt voraus;
nichts aus der Schulmathematik oder gar der hoheren Mathematik.”
o . Bitte vergiss alles, was Du auf der Schule gelernt hast; denn Du hast es nicht
gelernt .
Wir werden diese (recht umfangreichen) Beweise hier nicht fiihren. Besonders interes-
sierten Lesenden empfehlen wir in diesem Zusammenhang die entsprechenden Teile in
den Biichern [4, 2, 3] zu studieren.

Abbildung 2.3: Edmund Landau (1877-1938)
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Kapitel 3

Das Induktionsprinzip

Axiom 2.5 wird Prinzip der wvollstindigen Induktion genannt. Dieses Kapitel wird sich mit
diesem wichtigen Prinzip befassen. Sie werden sehen, welche enorm weitreichenden Konsequenzen
das Axiom 2.5 (Induktionsaxiom) der natiirlichen Zahlen hat. Die Notation dieses Kapitels sowie
einige Beweise stammen aus Kapitel 5 in [3].

3.1 Einfiihrende Beispiele

3.1.1 Teilbarkeit durch 2

Thre gute Freundin Anika behauptet, eine mathematische Entdeckung gemacht zu haben. Sie hat
némlich bemerkt, dass, wenn zu dem Quadrat n? einer natiirlichen Zahl n die Zahl n addiert wird,
die entstandene Summe stets gerade ist. Sie behauptet also, dass fiir jede natiirliche Zahl n die Zahl
n? 4+ n gerade ist.

@ Aufgabe 3.1

Anika hat in der Vergangenheit schon 6fters mathematische Behauptungen aufgestellt. Nicht
selten haben sich diese bei genauerer Untersuchung als falsch erwiesen. Bevor Sie also viel
Zeit in die genauere Analyse Anikas neuer Behauptung investieren, méchten Sie eine kurze
,Plausibilitdtsprifung* durchfithren. Schreiben Sie dazu ein Python-Programm, welches fiir
die ersten 100 natiirlichen Zahlen n € { m € N; 0 < m < 100 } iiberpriift, ob n? + n jeweils
gerade ist.

\.

Das folgende Beispiel zeigt in aller Ausfiihrlichkeit, wie das Prinzip der vollstdndigen Induktion
verwendet werden kann, um eine mathematische Vermutung zu beweisen.

Beispiel 3.1:
Wir betrachten erneut die Vermutung Threr Freundin Anika:

Fiir jedes n € N ist die Zahl n? + n gerade.

Wie lésst sich eine solche Vermutung iiberpriifen? Sicherlich kénnen wir die Vermutung fiir ei-
nige natiirliche Zahlen ,von Hand* durch simples ,,Nachrechnen“ iiberpriifen. In Aufgabe 3.1
haben Sie die Vermutung mit einem Computerprogramm fiir die ersten 100 natiirlichen Zahlen
iiberpriift. Das Problem ist jedoch, dass wir (selbst unter Verwendung von Supercomputern)
immer nur endlich viele Zahlen {iberpriifen kénnen. Wenn wir die Vermutung fiir 100 Milli-
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arden Zahlen gepriift haben, bleiben immer noch unendlich viele Zahlen, die wir noch nicht
betrachtet haben. Was wir benétigen, ist ein mathematisches Argument, welches grundsétz-
lich erklart, warum die Vermutung stimmen muss. Ein solches mathematisches Argument
liefert uns das Prinzip der vollstdndigen Induktion. Um dieses direkt anwenden zu kénnen,
definieren wir die ,Hilfsmenge*

N::{neN; n2+nistgerade}.

Die so definierte Menge N enthélt genau die natiirlichen Zahlen, fiir welche die Zahl n? +n
gerade ist, fiir welche also die Vermutung gilt. Somit ist die Vermutung bewiesen, wenn wir
nachweisen kénnen, dass alle natiirlichen Zahlen in N liegen, dass also die Gleichheit N =N
gilt. Es gilt somit:

(fiir jedes n € N ist die Zahl n? + n gerade) <= (N =N).

Nun besagt das Prinzip der vollstandigen Induktion (Axiom 2.5), dass fiir eine Teilmenge
N C N tatséachlich N = N gilt, falls zwei Bedingungen erfiillt sind:

1. 0€ N,
2. ist n € N, dann enthélt N auch den Nachfolger v(n) =n+ 1.

Wir prifen diese beiden Bedingungen separat:

1. In der Tat gilt 0 € N, denn 0% 4+ 0 = 0 und 0 ist gerade. v/

2. Sei n € N und somit n? + n eine gerade Zahl. Wir miissen beweisen, dass auch v(n) =
(n+1) € N gilt, dass also auch (n+1)?+ (n+ 1) eine gerade Zahl ist. Dazu betrachten
wir die folgende Berechnung:

n+124+m+D)=n*4+2n+14+n+1)=n*4+3n+2=
n?+n+2n+2)=n>+n+2n+1).

Betrachten wir den Ausdruck n? + n+2(n+1). Wir wissen, dass die Zahl n? + n gerade
ist (da n in der Menge N liegt). Die Zahl 2(n + 1) ist offensichtlich ebenfalls gerade.
Somit ist (n 4 1)2 + (n + 1) als Summe zweier gerader Zahlen ebenfalls gerade. (Da die
Zahl n? + n gerade ist, existiert eine natiirliche Zahl k, sodass n? +n = 2k. Dann ist
die Summe (n + 1)2 + (n +1) = 2k +2(n + 1) = 2(k +n + 1) das Doppelte der Zahl
k +n + 1 und somit gerade). v/

Damit sind die Bedingungen des Prinzips der vollstdndigen Induktion erfiillt und die Gleich-
heit N = N (und dadurch die urspriingliche Vermutung Anikas) bewiesen.

= Aufgabe 3.2

Verwenden Sie das Prinzip der vollstindigen Induktion, um zu beweisen, dass n®

natirliche Zahl n durch 5 teilbar ist.

—n fir jede

3.1.2 Klingende Glaser

In dem Gasthaus Inn of the Prancing Pony stossen n Géste auf das neue Jahr an. Jede Person
stosst mit jeder anderen (nicht mit sich selbst) genau einmal an. Wie viele Male klingen die Glaser
(wie viele Male wird angestossen)? Die folgende elegante Uberlegung gibt uns eine Formel, um
die gesuchte Zahl rasch zu berechnen. Jede der n Personen stosst offensichtlich mit genau (n — 1)
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Personen an (mit allen anderen). Damit klingen die Gléser also n(n — 1)-mal. Die Formel ist so
aber noch nicht richtig, denn wir haben jedes Klingen doppelt gezdhlt (anstatt nur einfach). Stosst
namlich Person A mit Person B an, dann haben wir dieses Anstossen einmal aus Sicht von A gezéhlt
und noch einmal aus Sicht von B. Somit miissen wir die gesuchte Zahl n(n — 1) noch durch den
Faktor 2 teilen. Die gesuchte Zahl ist also n(n — 1)/2.

Beispiel 3.2:

Diese Formel wollen wir nun mithilfe des Prinzips der vollstédndigen Induktion tiberpriifen.
Dazu definieren wir, wie bereits in Beispiel 3.1, die Behauptung in geeigneter Form. Fiir jedes
n € N definieren wir also die Aussage A(n) als:

An) : <=

-1
Stossen n Personen (alle mit allen) an, klingen die Gliser genau n(n2) Male.

Um das Prinzip der vollstdndigen Induktion direkt anwenden zu kénnen, definieren wir erneut
eine , Hilfsmenge“ N der Form

N :={neN; A(n) ist wahr }.

Somit ist die Vermutung bewiesen, wenn wir nachweisen kénnen, dass alle natiirlichen Zahlen
in N liegen, dass also die Gleichheit N = N gilt. Erneut priifen wir die beiden Bedingungen
des Induktionsaxioms separat:

1. Die behauptete Formel besagt, dass n = 0 Personen genau 0- (0 —1) = 0-mal anstossen.
Diese ist offensichtlich korrekt und somit haben wir 0 € N begriindet. v/

2. Sei n € N und somit A(n) wahr. Wir miissen beweisen, dass auch v(n) = (n+1) € N
gilt, dass also bei (n + 1) Personen genau (n + 1)n/2 Male die Glaser klingen.
Dazu stellen wir uns vor, dass erst n Personen im Restaurant sind und diese bereits
alle miteinander angestossen haben. Da A(n) wahr ist, wissen wir also, dass die Glaser
bereits genau n(n — 1)/2 Male klangen. Nun kommt eine weitere Person hinzu. Diese
Person stosst mit allen n bereits Anwesenden an. Damit klingen die Glaser genau n
weitere Male und insgesamt also

n(n—1) nn—1)+42n nn—-142) (n+1)n

5 Tn= 2 - 2 T

Male. v

Somit ist die intuitiv gefundene Formel formal mithilfe des Prinzips der vollstdndigen Induk-
tion nachgewiesen.

3.2 Erklimmen einer Leiter

In Beispiel 3.1 und dem Beweis von Theorem 3.1 haben wir das Prinzip der vollstandigen Induktion
als Beweistechnik verwendet. Dabei haben wir jeweils auf geschickte Weise eine ,Hilfsmenge“ N
definiert und gezeigt, dass N die Menge aller natiirlichen Zahlen N ist. Nun méchten wir aber ma-
thematische Aussagen beweisen und nicht unbedingt iber Mengen sprechen. Deshalb ist es intuitiv
einfacher, im Beweisverfahren der vollsténdigen Induktion den Begriff der Menge durch den Begriff
der Aussage zu ersetzen. Um dies konkreter zu machen, betrachten wir nochmals Beispiel 3.1. In
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dem Beispiel kann man fiir jedes n € N die Aussage A(n) definieren als
A(n) : <= Die Zahl n? + n ist gerade.

In der Sprache der Aussagen erhalten wir das folgende rezeptartige Beweisverfahren:

Zusammenfassung 3.1 (Beweis durch vollstédndige Induktion):
Fiir jedes n € N sei A(n) eine Aussage. Wir wollen beweisen, dass A(n) fiir jedes n € N richtig
ist. Der Beweis kann mithilfe des Prinzips der vollstdndigen Induktion erbracht werden, indem
wie folgt vorgegangen wird:
(a) Induktionsanfang: Es wird gezeigt, dass A(0) richtig ist.
(b) Induktionsschluss: Dieser besteht aus zwei Teilen:
(i) Induktionsvoraussetzung: Es sei n eine natiirliche Zahl und A(n) sei richtig.
(ii) Induktionsschritt (n — n + 1): Man zeigt, dass aus der Induktionsvoraussetzung
(i), logischen Schliissen und bereits als wahr erkannten Aussagen die Richtigkeit
von A(n + 1) abgeleitet werden kann.
Damit ist die Richtigkeit von A(n) fiir alle n € N gezeigt.

Beachten Sie, dass das Prinzip der vollstandigen Induktion dem Axiom 2.5 entspricht und als solches
nicht bewiesen werden kann. Was wir aber anbieten kénnen, ist eine Metapher, welche das Prinzip
veranschaulicht:

Bemerkung 3.1 (Metapher der Leiter):

Die vollstdndige Induktion beweist, dass wir auf einer Leiter beliebig weit hochsteigen kénnen,
indem sie beweist, dass wir den untersten Tritt (Induktionsanfang) erreichen kénnen und, dass
wir von jedem Tritt den néchsthoheren Tritt erreichen kénnen (Induktionsschluss).

= Aufgabe 3.3 .

Erklaren Sie, wie das rezeptartige Beweisverfahren in Zusammenfassung 3.1 aus Axiom 2.5
folgt. Tipp: Definieren Sie die ,Hilfsmenge*

N :={neN; A(n) ist richtig }

aller nattirlichen Zahlen, fir welche A(n) richtig ist.

4 Aufgabe 3.4 .

Beweisen Sie durch vollstdndige Induktion, dass fiir jede natiirliche Zahl n die Zahl 5™ — 1
durch 4 teilbar ist.

3.3 Zwei bedeutende Satze uiber natiirliche Zahlen

Das Prinzip der vollstdndigen Induktion ist in der Mathematik und Informatik von enormer Bedeu-
tung. Wir wollen in diesem anspruchsvollen Abschnitt noch mehr verdeutlichen, wie weitreichend
die Beweiskraft dieses Prinzips ist. Dazu moéchten wir zwei bedeutende Sétze der Mathematik be-
sprechen und zeigen, wie diese aus dem Prinzip der vollstdndigen Induktion folgen.
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3.3.1 Wohlordnungsprinzip

Beachten Sie, dass die Menge der ganzen Zahlen Z kein Minimum (kleinstes Element) besitzt. Zu
jeder ganzen Zahl m ist offensichtlich m — 1 ebenfalls eine ganze Zahl, die (noch) kleiner ist als m.
Die Teilmenge {—3,—1,0,7} von Z hingegen besitzt —3 als Minimum.

Definition 3.1 (Minimum):
Es sei A eine nichtleere Menge, in der sich Elemente durch die Relation < vergleichen lassen.
Ein Element m € A heisst Minimum von A, falls

m<x

fiir alle x € A gilt. Das Minimum einer Menge A muss selbst Element von A sein. Beachten
Sie, dass A offensichtlich hochstens ein Minimum enthalten kann. Dieses wird mit min(A)
bezeichnet.

= Aufgabe 3.5

(a) Welches ist das Minimum von N?
(b) Erkldren Sie, warum das halboffene Intervall

(0,1 :={zeR;0<zx<1}

kein Minimum besitzt.

\

Wir haben gesehen, dass durchaus nicht jede Menge ein Minimum besitzt. Das sogenannte Wohl-
ordnungsprinzip der natiirlichen Zahlen garantiert uns aber, dass jede Teilmenge von N, welche
nicht die leere Menge ist, ein Minimum besitzt. Die leere Menge besitzt keine Elemente und somit
offensichtlich auch kein minimales Element. Weshalb ist das Wohlordnungsprinzip fiir uns interes-
sant? Dieses Prinzip kommt in den Beweisen einiger wichtiger mathematischer Behauptungen zum
Einsatz, so zum Beispiel in unserem Beweis des berithmten Fundamentalsatzes der Arithmetik, den
wir in Unterabschnitt 3.3.2 besprechen.

Definition 3.2 (untere Schranke):

Seien D eine Menge und A C D eine nichtleere Teilmenge von D. Jedes Element s € D,
welches s < a fiir alle a € A erfiillt, heisst untere Schranke von A. Eine untere Schranke
von A muss selbst nicht ein Element von A sein.

Wir erkennen nun: Ein Element m € R heisst Minimum von A € R, falls m eine untere Schranke
von A ist und zusétzlich m € A gilt.

Beispiel 3.3: (a) Die Zahlen —5,0, 3,4 sind Beispiele von unteren Schranken der Menge
A:={4,7,9,18}. Da 4 € A und 4 eine untere Schranke von A ist, gilt

min(A) = 4.

(b) Die Menge Z der ganzen Zahlen besitzt keine untere Schranke.
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[#' Aufgabe 3.6

Welches ist die grosste untere Schranke des halboffenen Intervalls

0,1] ={zeR;0<x<1}?

= Aufgabe 3.7 ~

(a) Sei A C N eine Teilmenge der natiirlichen Zahlen. Angenommen n € N sei eine untere
Schranke von A, wobei aber n selbst nicht Element der Menge A ist (n ist also nicht
das Minimum von A). Begriinden Sie, warum auch der Nachfolger n + 1 eine untere
Schranke von A ist.

(b) Sei A C N eine Teilmenge der natiirlichen Zahlen mit der Eigenschaft, dass jede na-
tiirliche Zahl eine untere Schranke von A ist. Beweisen Sie, dass A die leere Menge ist.
Tipp: Nehmen Sie an, A sei nichtleer. Dann enthélt A also (zumindest) ein Element
m € A. Betrachten Sie nun die natiirliche Zahl m + 1.

\

Wir verwenden nun das Prinzip der vollstdndigen Induktion, um das Wohlordnungsprinzip zu bewei-
sen. Wir haben den Beweis dieses Satzes inzwischen recht gut vorbereitet. Dennoch ist der Beweis
recht anspruchsvoll! Nehmen Sie sich Zeit, um die einzelnen Schritte zu studieren.

Theorem 3.1 (Wohlordnungsprinzip):
Jede nichtleere Teilmenge der natiirlichen Zahlen besitzt ein Minimum.

Beweis 3.1:
Wir beweisen den Satz durch Widerspruch. Angenommen eine Teilmenge A C N sei nichtleer
und besitze kein Minimum. Dann definieren wir zu A die ,,Hilfsmenge“

N :={n € N; n ist untere Schranke von A }

aller unteren Schranken von A. Mit dem Prinzip der vollstdndigen Induktion beweisen wir, dass
jede natiirliche Zahl eine untere Schranke von A ist, dass also N = N gilt. In Aufgabe 3.6 haben
Sie bereits bewiesen, dass dies nur mdoglich ist, falls A die leere Menge ist. Um N = N durch die
vollstdndige Induktion zu beweisen, miissen wir, wie immer, zwei Bedingungen priifen:

1. 0e N,

2. Ist n € N, dann enthélt N auch den Nachfolger v(n) = n + 1 von n. (Ist n eine untere
Schranke von A, dann ist auch n + 1 eine untere Schranke von A.)

Wir priifen diese beiden Bedingungen separat:

1. 0 ist die kleinste Zahl in N und somit gilt 0 < a fiir jedes Element a € A. Damit ist 0 eine
untere Schranke von A und wir haben 0 € N gezeigt. v/

2. Es sei n € N und somit n eine untere Schranke von A. Beachten Sie, dass n nicht in A
liegt, denn sonst wiirde die Menge A die Zahl n als ihr Minimum besitzen (doch A besitzt
geméss Annahme kein Minimum). Damit ist n € N eine untere Schranke von A, wobei aber
n selbst nicht Element der Menge A ist. In Aufgabe 3.7 haben Sie gezeigt, dass dann auch
n + 1 eine untere Schranke von A und somit ein Element von N ist. v’

Aus dem Prinzip der vollstdndigen Induktion folgt nun, dass N = N gilt. Also ist jede natiirliche
Zahl eine untere Schranke von A. Somit ist A C N eine Teilmenge der natiirlichen Zahlen mit
der Eigenschaft, dass jede natiirliche Zahl eine untere Schranke von A ist. In Aufgabe 3.7 haben
Sie gezeigt, dass A somit die leere Menge ist. Damit haben wir den gewiinschten Widerspruch
A # () und A = () gefunden. Somit besitzt jede nichtleere Teilmenge von N ein Minimum.
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3.3.2 Fundamentalsatz der Arithmetik

Die Tatsache, dass jede Teilmenge der natiirlichen Zahlen ein Minimum besitzt, erlaubt uns, den
berihmten Fundamentalsatz der Arithmetik zu beweisen.

Theorem 3.2:

Fundamentalsatz der Arithmetik (Primfaktorzerlegung) Ausser 0 und 1 kann jede natiirliche
Zahl als Produkt endlich vieler Primzahlen dargestellt werden. Diese Darstellung ist bis auf
die Reihenfolge der Faktoren eindeutig und wird Primfaktorzerleqgung genannt. Erlaubt sind
auch Produkte, die nur aus einem Faktor bestehen.

Beispiel 3.4: (a) Die Zahl 63 besitzt die Primfaktorzerlegung 63 = 3 -3 -7 und die Zahl
286 die Darstellung 286 =2 -11 - 13.

(b) Die Primfaktorzerlegung der Primzahl 19 ist 19 selbst. Sie besteht also aus dem Produkt

mit nur dem einen Faktor 19. Jede Primzahl p ist also bereits in Primfaktoren zerlegt.

Beweis 3.2:

Wir wollen nun den Fundamentalsatz (Theorem 3.2) beweisen. Dies tun wir unter der Ver-
wendung des Wohlordnungsprinzips. Allerdings zeigen wir nur, dass immer eine Zerlegung in
Primfaktoren existiert. Auf den Beweis der Eindeutigkeit verzichten wir an dieser Stelle.
Angenommen die Behauptung sei falsch. Dann gibt es eine nattrliche Zahl > 2, welche keine
Primfaktorzerlegung besitzt. Mit anderen Worten: Die Menge

A:={neN; n>2und n besitzt keine Primfaktorzerlegung }

ist nichtleer. Dann liegt in A aber geméss Theorem 3.1 eine kleinste Zahl ng > 2, welche nicht
in Primfaktoren zerlegt werden kann. Insbesondere ist ng keine Primzahl. Da ng keine Primzahl
ist, existieren natiirliche Zahlen n und m, sodass ng = n-m und n,m > 1. Es ist klar, dass die
Faktoren n und m jeweils kleiner als das Produkt ng sind. Da aber ng die kleinste natiirliche Zahl
ist, welche keine Primfaktorzerlegung besitzt, kénnen sowohl n als auch m jeweils als Produkt
endlich vieler Primzahlen geschrieben werden. Dann ist aber auch ng als Produkt von n und m
ein Produkt endlich vieler Primzahlen. Dieses Produkt wire dann aber eine Primfaktorzerlegung
von ng. Das ist ein Widerspruch.

= Aufgabe 3.8

Die Zahl 30031 lasst sich als Produkt

30031 = P1p2

zweier verschiedener Primfaktoren p; und ps schreiben. Schreiben Sie ein Python-Programm,
welches p; und py berechnet.
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[#' Aufgabe 3.9

Der griechische Mathematiker Fuklid von Alerandria bewies bereits im 3. Jahrhundert v.
Chr., dass unendlich viele Primzahlen existieren. Dazu nahm er (indirekter Beweis) an, die
Menge P aller Primzahlen sei endlich. Wir kénnen P also schreiben als

P ={p1,p2,p3,---+Pn}-
Nun betrachtete Euklid das Produkt dieser n Primzahlen und addierte dazu 1:
m:=pi-p2-p3-... pp+ 1

Betrachten Sie die so entstandene Zahl m. Welche Eigenschaften hat m geméss unseren
Annahmen? Vervollstdndigen Sie den Beweis.

Bemerkung 3.2:
Beachten Sie, dass das Vorgehen in Aufgabe 3.9 in keinster Weise ein Rezept zur Konstruktion
von Primzahlen liefert. Beispielsweise gilt

2-3-5-7-11-13+1 = 30031,

doch Sie haben in Aufgabe 3.8 bereits gezeigt, dass 30031 keine Primzahl ist.
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3.4 Leicht verallgemeinertes Induktionsprinzip

Wie Sie sofort nachpriifen kénnen, ist die mathematische Aussage n? —2n—1 > 0 fiir die natiirlichen
Zahlen n = 0,1, 2 falsch. Nun méchten Sie aber beweisen, dass die Aussage fiir alle n € Nmit n > 3
gilt. Unser Beweisverfahren in Zusammenfassung 3.1 muss also dahingehend angepasst werden, dass
es uns auch erlaubt, den Induktionsanfang bei einer beliebigen Zahl ng € N anzusetzen, wobei ng
auch grosser als 0 sein darf. Diese sehr geringfiigige (aber wichtige) Verallgemeinerung fassen wir in
dem folgenden Satz zusammen:

~

Theorem 3.3 ((leicht verallgemeinertes) Induktionsprinzip):
Sei ng € N und fiir jedes n € N mit n > ng sei A(n) eine Aussage. Zudem gelte:
(i) A(np) ist richtig.
(ii) Fiir jede Zahl n € N mit n > ng folgt aus der Richtigkeit von A(n) die Richtigkeit von
A(n +1).
Dann ist A(n) fir jedes n > ng richtig.

Beweis 3.3:

Der Beweis ist fast komplett analog zu der Begriindung in Aufgabe 3.3. Der einzige Unterschied
besteht darin, dass wir einen Index ,,verschieben* miissen. Intuitiv gesprochen, méchten wir, dass
wir immer noch bei 0 beginnen, anstelle von A(0) aber bereits A (ng) betrachten. Wir definieren
also die Menge N der um ,,ng verschobenen Aussagen*

N :={neN; A(n+ng) ist richtig }.

Beachten Sie, dass fir n = 0 dadurch bereits die Aussage A (0 + ng) = A (ng) gemeint ist. Mit
dem Induktionsaxiom 2.5 folgt sofort N = N und somit ist A(n) fir jedes n > ng richtig.

Bemerkung 3.3:
Wir werden das leicht verallgemeinerte Induktionsprinzip von Theorem 3.3 ebenfalls einfach
nur Induktionsprinzip nennen.
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3.5 Ubungsaufgaben zum Induktionsprinzip

[#' Aufgabe 3.10

Setzen Sie ng := 3 und beweisen Sie die Korrektheit der Ungleichung n? —2n — 1 > 0 fiir alle
n € N mit n > ng mittels vollstdndiger Induktion.

@ Aufgabe 3.11

I r

Sie vermuten, dass die Zahl n® —n fiir jede natiirliche Zahl n > 2 durch 3 teilbar ist. Beweisen
Sie diese Behauptung durch vollstdndige Induktion. Finden Sie auch einen direkten Beweis
(welcher nicht das Induktionsprinzip verwendet)? Tipp fiir den direkten Beweis: Schreiben
Sie die Zahl n3 — n als Produkt dreier Faktoren.

‘ r
J

[#' Aufgabe 3.12 Bernoullische Ungleichung

Es sei z € R mit x > —1 eine reelle Zahl. Fiir jede natiirliche Zahl n gilt die Bernoullische
Ungleichung (1 4 z)" > 1 4 nax.

Abbildung 3.1: Jakob I Bernoulli (1654-1705) war ein Schweizer Mathematiker und Mitglied
der angesehenen Gelehrtenfamilie Bernoulli.

25


mailto:thomas.graf@edu.zh.ch

Induktion und Rekursion O Thomas Graf, Informatik, 2026

[#' Aufgabe 3.13

In die Ebene wurden n € N verschiedene Geraden gelegt. Die Geraden teilen die Ebene in
verschiedene Bereiche. Wir sagen, dass zwei Bereiche benachbart sind, falls sie sich eine (mog-
licherweise unendlich lange) Grenzlinie teilen. Falls zwei Bereiche lediglich einen Grenzpunkt
teilen (keine Grenzlinie), sind sie nicht benachbart.

Wir haben zwei Farben zur Verfiigung und miissen jeden Bereich mit genau einer dieser Far-
ben einfirben. Eine Farbung wird zuldssig genannt, falls zusatzlich keine zwei benachbarten
Bereiche mit derselben Farbe gefarbt wurden. In Abbildung 3.2 ist eine mogliche zuléssige
Féarbung fir zwei Geraden (n = 2) gezeigt.

Skizzieren Sie eine zuldssige Farbung fiir n = 3 fiir den Fall, dass sich alle drei Geraden
jeweils gegenseitig schneiden. Beweisen Sie anschliessend durch vollstandige Induktion, dass
es immer moglich ist, die verschiedenen Bereiche mit nur zwei Farben so zu firben, dass keine
zwei benachbarten Bereiche von derselben Farbe sind.

g2 92
g1 g1
(a) zwei sich schneidende Geraden (b) zuléssige Farbung fiir n = 2

Abbildung 3.2: Beispiel einer zuldssigen Farbung fiir n = 2. Beachten Sie, dass die beiden

Bereiche sich nur einen Grenzpunkt (keine Grenzlinie) teilen und somit nicht be-
nachbart sind. Das Gleiche gilt fiir die beiden blauen Bereiche. Zwei sich schneidende Geraden
teilen die Ebene in vier Bereiche ein. Zwei parallele Geraden teilen die Ebene in drei Bereiche
ein.
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[#' Aufgabe 3.14

Die Idee fiir das folgende scheinbare Paradoxon wird haufig dem ungarischen Mathematiker
George Polya zugeschrieben. Pélya war von 1914 bis 1940 Professor der Mathematik an der
ETH Ziirich. Das scheinbare Paradoxon besteht darin, dass vermeintlich korrekt bewiesen
wird, dass alle Pferde dieselbe Farbe haben (alle Zahlen sind gleich / alle Maddchen haben
dieselbe Augenfarbe).

Erkléren Sie ganz préazise, an welcher Stelle / welchen Stellen die folgende Argumentation
fehlerhaft ist.

Behauptung:

Wir verwenden Theorem 3.3 um zu beweisen, dass alle Pferde dieselbe Farbe haben. Dazu
definieren wir fiir jedes n € N* die Aussage A(n) als

A(n) : <= In einer Menge von n Pferden haben alle dieselbe Farbe.

Wir behaupten die Richtigkeit von A(n) fir alle n € N*.

Beweis 3.4: (a) Induktionsanfang: A(1) ist richtig, denn in einer Menge mit nur einem
Pferd haben offensichtlich alle Pferde dieselbe Farbe. Somit stimmt die Aussage fiir
n = 1.
(b) Induktionsschluss:
(i) Induktionsvoraussetzung: Es sei n > 1 eine natiirliche Zahl und A(n) sei richtig.
Das heisst, in einer Menge von n Pferden haben alle dieselbe Farbe.
(ii) Induktionsschritt (n — n+1): Durch Hinzuftigen eines weiteren (neuen) Pferdes
p’ zu einer Menge von n Pferden erhalten wir eine Menge von n + 1 Pferden.
Nun nehmen wir ein Pferd p, welches aber nicht p’ ist (p # p'), aus der Menge
heraus und erhalten dadurch wieder eine Menge von n Pferden. In dieser neuen
Menge, die p’ enthélt, haben geméss Induktionsvoraussetzung alle Pferde die-
selbe Farbe. Damit hat aber das neue Pferd p’ dieselbe Farbe wie die n anderen.
Nun fiigen wir das entfernte Pferd p wieder zur Menge hinzu und erhalten ei-
ne Menge mit n + 1 Pferden, welche alle dieselbe Farbe haben. Dies zeigt den
Induktionsschritt.
Damit ist die Richtigkeit von A(n) fiir alle n € N* gezeigt. Somit sind in jeder (beliebigen)
endlichen Menge von Pferden nur Pferde derselben Farbe enthalten. Das geht aber nur,
wenn tatsichlich alle Pferde dieselbe Farbe haben.
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3.6 Starke Induktion

Das Induktionsprinzip (Theorem 3.3) verlangt, dass zum Nachweis der Richtigkeit von A(n + 1),
nebst bereits bekanntem Wissen, lediglich die Richtigkeit von A(n) verwendet werden darf. Manch-
mal wére es aber sehr niitzlich, zum Nachweis von A(n+1) nebst A(n) zusétzlich noch die Aussagen
A(k) mit k& < n annehmen zu diirfen. Durch diese zusétzlichen Annahmen wird der Nachweis der
Korrektheit von A(n + 1) entweder erleichtert oder bleibt genauso schwierig wie im bisherigen In-
duktionsschritt. Sicherlich wird der Nachweis dadurch nicht schwieriger. Man sagt dann, dass wir
starkere Annahmen treffen.

Theorem 3.4 (starke Induktion):
Sei ng € N und fir jedes n € N mit n > ng sei A(n) eine Aussage. Zudem gelte:
(i) A(no) ist richtig.
(ii) Fir jede Zahl n € N mit n > ny gilt:
Aus der Richtigkeit der Aussagen A(k) fiir ng < k < n folgt die Richtigkeit von A(n+1).
Dann ist A(n) fiir jedes n > ng richtig.

Bemerkung 3.4:

Die starke Induktion besagt im Grunde, dass wir uns den Nachweis des Induktionsschritts
(im Vergleich zu Theorem 3.3) durch zusétzliche (stdrkere) Annahmen vereinfachen diirfen
und trotzdem die komplette Aussagekraft von Theorem 3.3 behalten.

Beispiel 3.5:

Auf einer Auslandsreise sprechen wir mit anderen Touristen iiber Wahrungen verschiedener
Lander. Der US-Amerikaner Doug kennt sich gut mit der Geschichte seines Landes aus und
erzéahlt uns, dass fiir eine gewisse Zeit in den noch jungen vereinigten Staaten 4-Dollarmiinzen
und 5-Dollarmiinzen geprigt wurden. Diese kunstvollen Miinzen sind in Abbildung 3.3 ge-
zeigt.

(a) 4-Dollarmiinze ,Stella® (b) 5-Dollarmiinze , Half Eagle®

Abbildung 3.3: US-amerikanische 4-Dollar- und 5-Dollarmiinze

Doug findet es schade, dass diese Miinzen nicht mehr gepriagt werden. Schliesslich liesse sich
jeder ganzzahlige Dollar-Betrag, der grosser als 11 Dollar ist, alleine durch eine Kombination
dieser beiden Miinzen auszahle — dies natiirlich nur unter der Annahme, dass beliebig viele
Exemplare von beiden Miinzen zur Verfiigung stehen.

Als kritische Menschen sind wir nicht bereit, Doug einfach so zu glauben. Um Dougs Behaup-
tung zu tberpriifen, verwenden wir die starke Induktion (Theorem 3.4). Wir definieren fiir
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jedes n € N die Aussage A(n) als

A(n) : <= ,Der Dollar-Betrag n kann durch eine Kombination aus 4-Dollarmiinzen und
5-Dollarmiinzen ausbezahlt werden.”

Dougs Behauptung besagt also, dass A(n) fir jedes n € N mit n > 12 gilt.

Der Betrag ng = 12 kann wegen 12 = 3 -4+ 0 - 5 durch drei 4er und null 5er ausbezahlt
werden. Somit stimmt A(ng) = A(12). Zum Nachweis von A(ng + 1) = A(13) diirften wir
A(12) verwenden. Zum Nachweis von A(14) diirften wir A(12) und A(13) verwenden und
zum Nachweis von A(15) gar A(12),.4(13) und A(14). Wir sehen jedoch sofort, dass

13=2-441-5, 14=1-442.5, 15=0-4+4+3"5,

und somit sind nebst A(12) auch A(13),.4(14) und A(15) nachgewiesen.

Sei nun n € N mit n > 15. Wir beweisen, dass aus der Richtigkeit von A(k) fir 12 < k <n
die Richtigkeit von A(n+ 1) folgt. Wir betrachten den Dollar-Betrag n + 1 — 4. Offensichtlich
gilt 12 < n+1—4 < n. Gemiss (starker) Induktionsannahme kann der Betrag n+1—4 aber
durch eine Kombination aus 4-Dollarmiinzen und 5-Dollarmiinzen ausbezahlt werden. Dies
ist die Aussage A(n+1—4) = A(n — 3). Durch das Hinzufiigen einer einzigen 4-Dollarmiinze
zu dieser Kombination erhalten wir eine gewiinschte Auszahlung des Dollar-Betrags n + 1.

[#' Aufgabe 3.15

Diese Aufgabe bezieht sich auf Beispiel 3.5. Schreiben Sie ein einfaches Python-Programm,
welches fiir einen gegebenen ganzzahligen Dollar-Betrag n > 12 sdmtliche moglichen Auszah-
lungen durch 4-Dollarmiinzen und 5-Dollarmiinzen ausgibt.

Tipp: Verwenden Sie eine geschachtelte Schleife (eine Doppel-Schleife).

\.

Wir sind noch einen Beweis von Theorem 3.4 schuldig:

Beweis 3.5:
Wir beweisen Theorem 3.4. Angenommen der Satz sei falsch und somit .4(n) nicht jedes n > ng
richtig. Dann ist die Menge

N:={neN; n>nyund A(n) ist falsch }

nichtleer. Geméss Theorem 3.1 besitzt die Menge N ein minimales Element m. Da A(ny) wegen
Bedingung (i) richtig ist, muss m > ng gelten. Es existiert eine eindeutige natiirliche Zahl n mit
n 4+ 1 = m. Aufgrund der Definition von m gilt, dass die Aussagen A(k) fir alle nattirlichen
Zahlen k mit ny < k < n richtig sind. Dann garantiert Bedingung (ii) aber die Richtigkeit von
A(n + 1) = A(m). Doch dies ist nach der Definition von m unmdéglich und wir haben einen
Widerspruch gefunden.
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g Aufgabe 3.16

Der junge Tim besitzt beliebig viele Holzklotze der Lénge 7 und beliebig viele der Lénge 8.
Klotze anderer Langen hat er keine.

(a) Tim weiss, dass sein Pliischkrokodil die Léange 38 hat. Nun méchte er mit seinen Klotzen
eine Strecke derselben Lénge bauen. Doch bislang blieben alle seine Versuche erfolglos.
Helfen Sie Tim, indem Sie ein Python-Programm schreiben, welches Thnen angibt, wie
viele Klétze der Liange 7 und wie viele der Lénge 8 bendtigt werden, um die Strecke zu
bauen.

(b) Weisen Sie nach, dass es mit Tims Klotzen nicht moglich ist, eine Strecke der Lange 41 zu
bauen. Schreiben Sie dazu ein Python-Programm, welches alle denkbaren Méglichkeiten
ausprobiert.

(c) Beweisen Sie mithilfe von Theorem 3.4 zur starken Induktion, dass jede Strecke der
Lénge n € N mit n > 42 mit Tims Kl6tzen gebaut werden kann.

[#' Aufgabe 3.17 kommutative Verkniipfung

Seien + und - assoziative und kommutative Verkniipfungen auf einer Menge X, welche das
Distributivgesetz

(x4+y) - z=z-24+y-2z

fir z,y,z € X erfiillen. Beweisen Sie mithilfe von Theorem 3.4 zur starken Induktion die
Richtigkeit des ,verallgemeinerten“ Distributivgesetztes:

n

An) : = ci (k) = Z (czk)

k=0 k=0

fir alle n € N. Dabei sind ¢ € X und (zj) eine Folge in X.
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3.7 Losungen der Aufgaben
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Kapitel 4

Rekursion

4.1 Fakultat

Drei (unterscheidbare) Personen A, B und C stellen sich in der Mensa in einer Warteschlange an.
Wie viele verschiedene Warteschlangen sind moglich? In der vordersten Position der Warteschlan-
ge platzieren wir eine der drei Personen A, B oder C'. Fiir die vorderste Position haben wir also
drei Wahlmoglichkeiten. In der mittleren Position muss genau eine der verbleibenden zwei Perso-
nen positioniert werden (zwei Wahlmoglichkeiten). Die hinterste Position muss schliesslich von der
noch verbleibenden Person besetzt werden (eine Moglichkeit). Insgesamt gibt es also (geméss den
Rechengesetzen der Kombinatorik)

3-2-1=6
verschiedene Moglichkeiten, drei Personen in einer Reihe anzuordnen. Analog sieht man ein, dass es
n-n—1)-...-3-2-1

Moglichkeiten gibt, n € N Personen in einer Warteschlange anzuordnen. Es gibt eine Moglichkeit,
0 Personen anzuordnen, nadmlich in der ,leeren Warteschlange®.

Beispiel 4.1:
Es gibt 5-4-3-2-1 =120 Moglichkeiten, fiinf Personen in einer Reihe anzuordnen.

Da das Produkt n-(n—1)-...-3-2-1 hdufig in Erscheinung tritt, besitzt es einen eigenen Namen:
Die Fakultdt von n und wird n! oder fak(n) geschrieben. So ist zum Beispiel 5! = 5-4-3-2-1 = 120.

@ Aufgabe 4.1

Wir gehen davon aus, dass Sie bereits das Produkt 12! berechnet haben. Wie kénnen Sie
dieses Vorwissen einsetzen, um 13! relativ schnell zu berechnen? Wie lisst sich fir n € N*
die Fakultdt n! aus (n — 1)! berechnen?

Die in Aufgabe 4.1 gemachte Beobachtung ist zwar einfach, hat aber dennoch bedeutende Implika-
tionen. Um 5! zu berechnen, miissen wir lediglich multiplizieren konnen und wissen, wie 4! berechnet
wird. Das Problem der Berechnung von 5! lasst sich also auf eine Multiplikation und die Berechnung
von 4! reduzieren. Doch genau gleich verhélt es sich mit dem Problem der Berechnung von 4!. Diese
Reduktion auf immer kleinere, aber gleichartige Probleme kann so lange fortgefiihrt werden, bis wir
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bei 0! ankommen. Betrachten Sie die folgende Berechnung:

5!=5-4-3-2-1
—_——

41
4'=4.3-2-1
3!
31=3.2-1
<~
=2. 1
-
1!
=1-0 =1
X

Durch ,,Riickwértseinsetzen* erhalten wir nun den Wert fir 5!:

=1-01=1
=2-11=2-1=2
31=3-21=3-2=6

41=4.31=4-6=24
S5l=5-41=5-24 =120.

Nach diesen Betrachtungen ist plausibel, dass Folgendes eine sinnvolle Definition der Fakultdt ist:

Definition 4.1 (Fakultit):
Es sei n eine natiirliche Zahl. Dann definieren wir die Fakultat n! von n durch:

(4.1)

| 1, falls n = 0, (Rekursionsanfang)
n!:=
n(n—1)!, falls n > 1. (Rekursionsschritt)

Beachten Sie, dass Definition 4.1 der Fakultit selbst die Fakultédt verwendet! Eine auf diese Weise
definierte Funktion wird rekursiv genannt.

4.2 Finde den Star! (konstruktive Induktion)

Das folgende Beispiel stammt aus [6].

Definition 4.2 (finde den Star):

In einem Raum befinden sich n € N Personen mit n > 2 ist. Wir wollen den Star unter diesen
n Personen finden. Ein Star ist definiert als eine Person, welche niemanden anderen kennt,
jedoch von allen gekannt wird. Die einzige erlaubte Operation, um einen Star zu identifizieren,
ist, eine Person A zu fragen:

,Kennst Du Person B7“,

wobei A # B gilt. Das Problem finde den Star besteht nun darin, den Star unter den n
Personen in dem Raum zu identifizieren oder herauszufinden, dass es gar keinen Star unter
diesen n Personen gibt. Es ist also nicht garantiert, ob unter den n Personen ein Star ist!
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[#' Aufgabe 4.2

Begriinden Sie, warum es unter n Personen in einem Raum nicht zwei verschiedene Stars
geben kann.

Wir wollen das Problem finde den Star mit moglichst wenigen Fragen (Operationen) finden. Eine
naive Losung besteht darin, jede Person tiber jede andere zu befragen (,alle mit allen“) . Fir n = 4
konnte ein Resultat einer solchen Befragung wie folgt aussehen:

1 2 3 4

1 - Ja Nein Nein
2 Nein - Nein Nein
3 Ja Ja - Nein
4 Ja Ja Ja -

Dabei bedeutet der Eintrag Nein, dass Person 2 die Person 4 nicht kennt und somit die Frage
,2Kennst Du Person 47“ mit ,,Nein“ beantwortet. Hier ist Person 2 der Star. Bei n Personen werden
bei diesem Vorgehen offensichtlich genau n(n — 1) Fragen gestellt (jede der n Personen wird zu allen
n — 1 anderen befragt).

Wir wollen versuchen, die Anzahl der Fragen zu reduzieren. Dazu wenden wir ein Vorgehen an,
welches manchmal konstruktive Induktion genannt wird. Wir zerlegen das Problem, den Star unter
n Personen zu finden, in kleinere Probleme:

e Fir n = 2 geniigen zwei Fragen.
o Sei n > 2: Schicke eine Person A weg. Finde nun den Star unter n — 1 Personen (kleineres
Problem). Uberpriife danach A mit 2(n — 1) Fragen.

Doch dieses Vorgehen kénnen wir weiter fortsetzen und dieselbe Strategie auf das Problem mit
n — 1 Personen (das kleinere Problem) anwenden. Schliesslich gelangen wir zu dem Problem mit 2
Personen, fiir welches zwei Fragen geniigen. Insgesamt stellen wir also fest:

F(n) =
2(n—-1)+F(n—1)=
2ln—1)+2(n—2)+ F(n—2) =
2n—1)+2(n—2)+2(n—3)+ F(n—3) =

2(n—1)+2(n—2)+2(n—-3)+2n—4)+...+2=
214243+ ... 4 (n—2) + (n— 1)) IemeLEam
n(n — 1))
2 (A 1) =
("

n(n —1).
Somit haben wir gegentiber der urspriinglichen naiven Losung (befrage alle zu allen) nichts gewon-
nen. Zum Gliick ist es aber kein grosser Aufwand unseren Ansatz der konstruktiven Induktion stark

zu verbessern und somit zu retten. Die Idee der Verbesserung besteht darin, sicherzustellen, dass
die Person, welche wir aus dem Raum schicken, kein Star ist.
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@ Aufgabe 4.3

Erklaren Sie, warum eine einzige Frage an eine beliebige Person im Raum stets geniigt, um
eine Person zu identifizieren, welche sicherlich kein Star ist.

Zum Schluss bleiben zwei Personen, von denen moglicherweise eine Person X der Star ist. Wir
iiberpriifen mit jeder Person, die draussen ist, ob X ein Star sein kann. Mit dieser Verbesserung
erhalten wir F/(2) =2 und F(n) =14 F(n — 1) + 2 fir n > 3, also insgesamt:

2 falls n = 2
Fin)=1{" s (4.2)
1+F(n—1)+2, fallsn>3.

Ahnlich wie bei unserer Betrachtung der Fakultéit, sehen wir auch hier, dass sich die Bestimmung der
Anzahl benétigter Fragen F'(n) bei n Personen auf die Bestimmung des kleineren (aber analogen)
Problems F(n — 1) reduzieren lésst.

4 Aufgabe 4.4 .

Wir haben fiir die benétigten Fragen F'(n) fir einen Raum mit n Personen die Beziehung
in Gleichung (4.2) gefunden. Wir vermuten, dass wir den Wert fiir F'(n) durch wiederholte
Reduktion auf kleinere Probleme wie folgt ,entpacken* kénnen:

F(n)=3+Fn-1)=2-3+F(n—2)=...=3-(n—2)+2=3n—4.

Beweisen Sie durch vollstdndige Induktion, dass F'(n) := 3n — 4 tatsichlich Gleichung (4.2)
erfillt. Berechnen Sie schliesslich, wie viele Fragen wir mit diesem Verfahren bei n = 1000
Personen benétigen.
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4.3 Rekursion in Algorithmen

In diesem Abschnitt wollen wir beginnen zu verstehen, wie Probleme rekursiv mithilfe von Pro-
grammen gelost werden konnen. Zum Einstieg betrachten wir nochmals die (rekursive) Definition
der Fakultat in Gleichung (4.1). Lassen Sie uns an dieser Stelle wagemutig sein! Wir iibersetzen die
Definition direkt in die Python-Programmiersprache und lassen uns von dem Ergebnis iiberraschen:

def factorial(n):
if n ==
return 1 # Rekursionsanfang
else:
return n * factorial(n - 1) # Rekursionsschritt

Programm 4.1: rekursive Fakultéits-Funktion

Wir haben Definition 4.1 praktisch eins zu eins ,abgetippt®. Beachten Sie, dass in der Definition
der Funktion factorial die Funktion factorial selbst verwendet wird. Wie und warum funktio-
niert dieses Vorgehen? Programm 4.2 zeigt schematisch auf, wie der Funktionsaufruf factorial (3)
abgearbeitet wird. Beachten Sie die Ahnlichkeit zu unserer Diskussion in Abschnitt 4.1.

## anfangliche Aufrufe ##

# Aufruf O:
factorial(3)
return 3 * factorial(2) # Rekursionsschritt (Zeile 5)
I
|
v
# Aufruf 1:
factorial(2)
return 2 * factorial(l) # Rekursionsschritt (Zeile 5)
|
|
v
# Aufruf 2:
factorial(1)
return 1 * factorial(0) # Rekursionsschritt (Zeile 5)
|
|
v
# Aufruf 3:
factorial(0)
return 1 # Rekursionsanfang (Zeile 2)

## Rickwartseinsetzen ##

factorial(1) = 1 * factorial(0) =1 * 1 =1
factorial(2) = 2 * factorial(l) =2 * 1 = 2
factorial(3) = 3 * factorial(2) =3 * 2 =6

Programm 4.2: rekursive Berechnung der Fakultét

Der anféngliche Aufruf factorial(3) 16st (rekursiv) in seinem return auf (seiner) Zeile 5 den Aufruf
factorial(2) aus. Dieser 10st rekursiv einen weiteren Funktionsaufruf aus. Dies geht so lange weiter,
bis zum ersten Mal ein Aufruf den Rekursionsanfang (Zeile 2) erreicht. Danach kénnen die noch
ausstehenden return-Statements endlich komplettiert werden (Riickwértseinsetzen).
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@ Aufgabe 4.5

J

Seien a € R und n eine natirliche Zahl. Wir definieren den Potenzausdruck a™ rekursiv durch

n

{1, falls n = 0, (Rekursionsanfang)
a =

a-a" ', falls n > 1. (Rekursionsschritt)

Implementieren Sie eine Python-Funktion def potenz(a,n), welche a™ geméss dieser rekursiven
Definition berechnet.

= Aufgabe 4.6

I r
J

Implementieren Sie eine Python-Funktion def factorial_loop(n), welche
nl=n-(n—1)-...-3-2-1

nicht rekursiv, sondern mithilfe einer einzigen Schleife (for-loop) berechnet.

[# Aufgabe 4.7 The One \

Sie arbeiten fiir eine respektable Softwareentwicklungsfirma. Thr Arbeitskollege Thomas A.
Anderson hat folgende Python-Funktion zu Threm Softwareprojekt hinzugefiigt:

# m und n sind natiirliche Zahlen.
def unbekannt(m,n):
if m ==
return 0O
else:
return unbekannt(m-1,n) + n

(a) Handelt es sich bei unbekannt um eine rekursiv oder nicht rekursiv definierte Funktion?
Begriinden Sie Thre Antwort.
(b) Thomas A. Anderson hat sich schon einige Tage nicht in der Firma blicken lassen und
Sie konnen ihn telefonisch nicht erreichen. Abgesehen von dem Kommentar in Zeile
1 hat er die Funktion unbekannt nicht dokumentiert und der Name der Funktion hilft
uns nicht weiter. Erkldren Sie genau, was die Funktion tut und geben Sie ihr einen
treffenden Namen.
Tipp: Berechnen Sie die Werte
e unbekannt(0,4),
e unbekannt(1,4),
e unbekannt(2,4),
e und unbekannt(3,4)
,von Hand“ und leiten Sie daraus ab, was die Funktion tut.
(c) Was ist der Riickgabewert von unbekannt (100,50) 7
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g Aufgabe 4.8

In Python ist eine Liste L von reellen Zahlen gegeben. Schreiben Sie eine Python-Funktion
sum_rek(L), welche rekursiv die Summe der Zahlen in der Liste berechnet. Es kann angenom-
men werden, dass die Linge der Liste > 1 ist.

Beispiel 1:
Eingabe: L = [1,3,2,10]
Ausgabe: 16

Beispiel 2:
Eingabe: L = [1,-1,2,5,4]
Ausgabe: 11

\

= Aufgabe 4.9

Ein Wort heisst Palindrom, falls das Wort vorwarts und riickwarts genau gleich gelesen wird.
Beispiele:

e neben

¢ Rentner

e Otto

o Lagerregal.

Das leere Wort, also das Wort der Lénge 0, ist ebenfalls ein Palindrom. Schreiben Sie ein
rekursives Python-Programm, welches entscheidet, ob ein gegebenes Wort w ein Palindrom
ist oder nicht.

= Aufgabe 4.10

I r

Schreiben Sie eine Python-Funktion summe(n), welche die Summe

n
Zk:=0+1+...+n
k=0

der ersten n + 1 natiirlichen Zahlen 0,1, ..., n rekursiv berechnet.

I r

= Aufgabe 4.11

Schreiben Sie eine Python-Funktion produkt(n), welche das Produkt

i Bi=1-8-...-n°
II
k=1

fiir n € N* rekursiv berechnet.

7~
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4.4 Fibonacci-Folge

In der zweiten Fassung des Buches Liber abbaci (,,Buch der Rechenkunst“) beschrieb der italienische
Mathematiker Leonardo da Pisa, bekannt als Fibonacci, das Wachstum einer Kaninchenpopulation.

o Jedes geschlechtsreife Paar Kaninchen wirft pro Monat genau ein Paar Kaninchen (ein Weib-
chen und ein Méannchen). Die Austragungszeit (Dauer der Schwangerschaft) dauert bei Ka-
ninchen also immer genau einen Monat. Jeden Monat kommt also eine neue Generation von
Kaninchen zur Welt.

e Ein neugeborenes Paar von Kaninchen wird erst am Ende seines ersten Lebensmonats ge-
schlechtsreif und wirft entsprechend erst Ende seines zweiten Lebensmonats sein erstes Paar
Kaninchen.

¢ Kein Kaninchen stirbt, kein Kanninchen verlasst das betrachtete System und kein Kanninchen
wird, ausser durch Geburt, in das System hineingebracht.

Sei GG, die Anzahl der geschlechtsreifen Kaninchenpaare und g, die Anzahl der nicht geschlechts-
reifen Kaninchenpaare der Generation n fiir n € N. Beachten Sie, dass die gesamte Anzahl der
Kaninchenpaare der Generation n damit der Summe F;, := G, + g, entspricht. Betrachten wir nun
die obigen Regeln fiir das Wachstum einer Kaninchenpopulation fiir alle n € N. Es gilt

Gni2 = Gnt1 + gn+1, (4.3)

da die geschlechtsreifen Kaninchen G,,4+1 der Generation n 4+ 1 auch einen Monat spéter noch ge-
schlechtsreif sein werden und die nicht geschlechtsreifen Kaninchen g,41 der Generation n+ 1 einen
Monat spéter geschlechtsreif sein werden. Vollig analog begriindet man die Gleichung

Gn+1 = Gn + gn- (4.4)
Des Weiteren gilt offensichtlich
In+2 = Gn—i—l‘ (4.5)

Wir haben also drei Gleichungen fiir die Population:

Gn+2 = Gn+1 + gn+1 (46)
In+2 = Gn+1 (4'8)

Das Einsetzen von Gleichung 4.7 in Gleichung 4.6 liefert:

Gni2 = Gn + gn + gnt1
<
Gri2 + gn+2 = Gny1 + gn1 + Gn + gn -
P Frrt F

Fiir die Gesamtzahl der Population der Kaninchenpaare gilt also
Fn+2 :Fn+1+Fn

flir alle n € N. Fiir Generation n = 0 definieren wir Gy := 0 und gg := 0. Zu Beginn, also
in der Generation n = 1, wird ein erstes Paar von Kaninchen in das System eingefiihrt. Dieses
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erste Paar wird erst nach einem Monat geschlechtsreif. Es gilt also G; = 0 und g; = 1. Somit
besteht die Generation n = 2 immer noch aus nur einem Paar Kaninchen: Go = 1 und ¢g» = 0.
Die Generation n = 3 aus zwei Paaren: Gg3 = 1 und g3 = 1. Logisch fortgefithrt findet man die
sogenannte Fibonacci-Folge:

Fo=0,F =1,F=1F=2F =3F=>5 F; =8,
Fr =13, Fs = 21, Fy = 34, Fig = 55, Fi1 = 89, . ..

Beginnend mit den ,Startwerten“ Fy := 0 und F; := 1 ergibt sich Fj,;o also fiir jedes n € N aus der
Summe der beiden unmittelbaren Vorgéanger F, 1 und F),, also

Fn+2 :Fn+1+Fn-
Definition 4.3 (Fibonacci-Folge):

Die Fibonacci-Folge ist rekursiv definiert durch

0, falls n = 0, (Rekursionsanfang)
F, =11, falls n = 1, (Rekursionsanfang)
F,_1+ F,_o, falls n> 2. (Rekursionsschritt)

Abbildung 4.1: Leonardo da Pisa (1170-1240), auch Fibonacci genannt
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[#' Aufgabe 4.12

Implementieren Sie eine Python-Funktion def fibonacci(n), welche fiir gegebenes n € N das
n-te Glied der Fibonacci-Folge rekursiv berechnet. Geben Sie schliesslich die ersten 25 Glieder
der Fibonacci-Folge aus.

= Aufgabe 4.13

I r

Versuchen wir Fyy mit der Python-Funktion aus Aufgabe 4.12 zu berechnen, stellen wir
fest, dass die Berechnung bereits recht lange dauert. Erkldren Sie, warum die Berechnung
der Glieder der Fibonacci-Folge mithilfe der Definition 4.3 sehr aufwendig ist. Wie viele
Funktionsaufrufe werden fiir die Berechnung von F(5) benéttigt? Wie viele fiir F'(10)?

I r
J

@' Aufgabe 4.14

Uberlegen Sie sich, wie Sie die ersten 30 Glieder der Fibonacci-Folge ,von Hand“ berechnen
wiirden. Verwenden Sie diese Intuition um eine Python-Funktion

def fibonacci_fast(n)

zu schreiben, welche fiir gegebenes n € N das n-te Glied der Fibonacci-Folge deutlich schneller
und auf nicht rekursive Weise berechnet. Berechnen Sie mithilfe dieser Funktion das Folgeglied
Fioo-

[#' Aufgabe 4.15

Wir bezeichnen fiir n € N mit F;, die n-te Fibonacci-Zahl. Betrachten Sie die Gleichung

Fo2=1+) F (4.9)
k=0

fur n € N.

(a) Beschreiben Sie die Aussage von Gleichung (4.9) in Thren eigenen Worten.
(b) Beweisen Sie Gleichung (4.9).
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4.5 Technische Umsetzung rekursiver Programme

In diesem Abschnitt werden wir den Ubergang von der rein mathematischen Betrachtung rekursiver
Algorithmen zu deren technischer Umsetzung vollziehen. Dazu betrachten wir ein Beispiel eines
eleganten rekursiven Algorithmus, welcher fiir eine gegebene natiirliche Zahl n sdmtliche bindren
Strings der Léange n ausgibt. Insbesondere sollte der Algorithmus fiir die gegebenen Eingaben in
den folgenden Testféllen die angegebenen Ausgaben erzeugen:

TESTFALL 0
Eingabe: n = 0
Ausgaben:

(Es wird eine leere Zeile (leerer String) ausgegeben.)
TESTFALL 1
Eingabe: n = 1
Ausgaben:

0

1

TESTFALL 2
Eingabe: n = 2
Ausgaben:

00

01

10

11

TESTFALL 3
Eingabe: n = 3
Ausgaben:

000

001

010

011

100

101

110

111

Programm 4.3: binédre Strings rekursiv ausgeben

Sie sind gerne eingeladen, an dieser Stelle vorerst nicht weiterzulesen und den Algorithmus selbst
zu schreiben.

Unser Vorschlag fiir einen entsprechenden rekursiven Algorithmus ist in Programm 4.4 gegeben.
def binaryStrings(n, w = ''):
if n ==
print(w)
return
binaryStrings(n-1, w + '0')
binaryStrings(n-1, w + '1')
#return # optional

Programm 4.4: binaryStrings

Zur Vereinfachung und Konkretisierung der Beschreibung der technischen Realisation rekursiver
Algorithmen werden wir sémtliche Betrachtungen dieses Abschnitts auf den Algorithmus in Pro-
gramm 4.4 beziehen. Der Algorithmus beginnt mit dem leeren String und baut alle gesuchten Strings
durch systematisches ,,Anhangen“ von Nullen und Einsen auf. Zur Abkiirzung schreiben wir anstelle
von binaryString(...) im Folgenden £(...).

Betrachten wir den Aufruf £(2,''), um alle Strings der Linge 2 auszugeben. Die Arbeitsschritte,
welche der Funktionsaufruf £(2,'') einleitet, sind in Abbildung 4.2 dargestellt. Die Knoten
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stellen Funktionsaufrufe (Aufrufe von f) dar. Die Knoten stellen Aufrufe der Python-
Funktion print dar. Beim Schritt mit Nummer 0 erfolgt der anfingliche Aufruf £(2,''). In diesem
Aufruf wird in Programmzeile 5 der Funktionsaufruf £(1,'0') ausgelost (Schritt 1). Beachten Sie,
dass der urspriingliche Aufruf £(2,'') seine Arbeit noch nicht abgeschlossen hat! In Programmzeile
5 des Funktionsaufrufs £(1,'0"') wird nun der Aufruf £(0,'00') ausgelost. In diesem Aufruf ist
die if-Bedingung auf Programmzeile 2 erfiillt, sodass die Ausgabe print('00') erfolgt (Schritt
3) und der return-Aufruf auf Programmzeile 4 erfolgt. Der Aufruf £(0,'00') ist beendet und er
springt zurtick zum Aufruf £(1,'0') (Schritt 4). Der Funktionsaufruf £ (1, '0') kann nun (endlich)
zu Programmzeile 6 gelangen und den Aufruf £(0,'01') auslésen (Schritt 5).

0 (anfénglicher Aufruf)

Abbildung 4.2: schematische Darstellung der Arbeitsschritte zur rekursiven Ausgabe aller bindren
Strings der Lénge 2

Erst nachdem auch £(0,'01') seine Arbeit beendet hat (Schritte 6 und 7), erreicht der Aufruf
£(1,'0") seine Programmzeile 7 und springt zuriick zum urspriinglichen Aufruf £(2,'"') (Schritt
7). Dieser erreicht nun Programmezeile 6 und ruft £(1,'1') auf (Schritt 9). Die Schritte in dieser
yrechten“ Hélfte von Abbildung 4.2 lassen sich nun analog beschreiben. Erst nach der Riickgabe
des Aufrufs £(1,'1"') in Schritt 16 kann schliesslich der urspriingliche Aufruf £(2,'"') seine Arbeit
beenden.
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Zusammenfassung 4.1:

Wie werden rekursive Programme in Computern realisiert? In Computern wird fiir jeden
Funktionsaufruf (Prozedur) ein Abschnitt im Speicher angelegt. Dieser Speicherabschnitt
wird Stack-Frame genannt. Darin darf die Funktion Speicherplatz zum Beispiel fiir lokale Va-
riablen belegen. Deshalb bendtigen rekursive Programme mit zahlreichen rekursiven Aufrufen
viel Platz im Speicher.

Ruft eine Prozedur A eine andere Prozedur B auf, so wird im Stack-Frame von Prozedur B
eine sogenannte Ricksprung-Adresse gespeichert. Diese Adresse gibt an, wo im Speicher die
Prozedur A beginnt. Dadurch wird ermoglicht, dass Prozedur B zu Prozedur A ,zuriicksprin-
gen“ kann (jump and link). Mehr Details beziiglich der Funktionsweise von Computern und
rekursiven Programmen finden Sie in den hervorragenden Texten [7] und [8].
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4.6 Losungen der Aufgaben
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Kapitel 5

Binare Strings ohne
aufeinanderfolgende Einsen

In Programm 4.4 haben wir bereits eine Python-Funktion geschrieben, welche rekursiv alle binéren
Strings einer gegebenen Lénge n ausgibt. Es wird sich ein interessanter und iiberraschender Zusam-
menhang zur Fibonacci-Folge ergeben, wenn wir nicht alle bindren Strings der Linge n ausgeben,
sondern nur die bindren Strings der Lénge n, welche nicht das Muster 11 (Eins-Eins) enthalten.
Wir interessieren uns also nur fiir die bindren Strings, welche nicht zwei aufeinanderfolgende Einsen
enthalten.

[#' Aufgabe 5.1 \

Andern Sie Programm 4.4 dahingehend ab, dass fiir gegebenes n € N genau die biniren
Strings der Lange n ohne aufeinanderfolgende Einsen ausgegeben werden. Beginnen Sie auch
hier wieder mit dem leeren String und bauen Sie die gesuchten Strings rekursiv auf. Geben
Sie Ihrer Funktion die Signatur

print_binary_without_11(n, w = '').

TESTFALL 0
Eingabe: n = 0, Ausgaben:

(Es wird eine leere Zeile (leerer String) ausgegeben.)
TESTFALL 1

Eingabe: n = 1, Ausgaben:

0

1

TESTFALL 2

Eingabe: n = 2, Ausgaben:

00

01

10

TESTFALL 3

Eingabe:
000

001

010

100

101

B

= 3, Ausgaben:

Programm 5.1: bindre Strings ohne 11 rekursiv ausgeben
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5.1 Anzahl der bindren Strings ohne 11

Sei n eine natiirliche Zahl. Wir bezeichnen mit L,, die Menge aller bindren Strings der Léinge n, die
nicht den Teilstring 11 enthalten, und setzen N(n) = |L,|. Wir wollen N(n), also die Anzahl der
Elemente in L,, rekursiv bestimmen. Offensichtlich gilt N(0) = 1, denn nur der leere String hat die
Lénge 0 und dieser enthalt nicht den Teilstring 11. Des Weiteren gilt N(1) = 2, da die Strings 0
und 1 beide nicht den Teilstring 11 enthalten.

@ Aufgabe 5.2 .

Vervollstéandigen Sie Tabelle 5.1.

cnuxc.ow.—lc>|3
Tt W N

Tabelle 5.1: Tabelle fir N(n)

\

Betrachten wir nun einen bindren String w der Lange n + 1 mit n > 1. Angenommen w liegt in
Ly 1, dann enthélt offensichtlich auch keiner der Teilstrings von w das Muster 11. Dann kénnen
wir w € L,41 schreiben als

w = xab,
wobei x € L,,_1 und a,b € {0,1}.

[#' Aufgabe 5.3 |

Wir nehmen an, dass die Anzahlen N(n) und N(n — 1) fiir ein n mit n > 1 bereits bekannt
sind. Wir haben soeben begriindet, dass wir w in L,; schreiben kénnen als

w = zab,

wobei z € L,,—1 und a,b € {0,1}. Unterscheiden Sie zwei Fille b = 0 und b = 1 fiir das
Symbol b. Driicken Sie N(n + 1) durch N(n) und N(n — 1) aus.

5.2 Explizite und rekursive Darstellungen von Folgen
Wir betrachten die rekursiv definierte Folge

ag — —1,
Un+1 = Ay + 4.
FEin Folgenglied mit grosserem Index, wie zum Beispiel asggg, zu berechnen, ist recht mithsam. In die-
ser rekursiven Darstellung miissten fiir die Berechnung von asggo ndmlich alle Glieder aq, as, . . . , a4999

zuerst bestimmt werden. Wie konnen wir spéte Folgenglieder (mit hohen Indizes) effizienter berech-
nen? Die folgende Aufgabe 5.4 wird sich mit dieser Frage beschéftigen.
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[# Aufgabe 5.4

Finden Sie eine ,Formel“, welche a, mit lediglich einer Multiplikation und einer Addition
berechnet, ohne zuerst die Vorgénger ai,as,...,a, bestimmen zu miissen. Berechnen Sie
mithilfe dieser Formel das Folgenglied asggg.

Die in Aufgabe 5.4 gefundene (nicht rekursive) Darstellung von a, wird explizite Darstellung
von a, genannt.

g Aufgabe 5.5 .

Beweisen Sie durch vollstandige Induktion, dass a, = n? — 2n eine explizite Darstellung der
rekursiv definierten Folge

ap=0, a,=ap—1+2n—3

fur n € N* ist.

. J

Die rekursive Darstellung ?? ist nicht geeignet, um N (n) fir grosse Werte von n zu berechnen. Die
Fibonacci-Folge wurde bereits im Jahr 1202 von Leonardo da Pisa verwendet, um das Wachstum
einer Kaninchenpopulation zu beschreiben. Dennoch gelang es (hochstwahrscheinlich) erst in der
ersten Hélfte des 18. Jahrhunderts, eine explizite Darstellung dieser wichtigen Folge zu finden. Diese
Darstellung zu finden ist also alles andere als einfach. Diese explizite Darstellung ist als Formel von
Moivre-Binet bekannt und besagt

F(n) = (1) (5.1)

wobei ¢ 1= 1+2

S

Gleichung (5.1) enthélt die irrationale Zahl v/5. Ist es nicht erstaunlich, dass F(n) fiir alle n € N eine
natiirliche Zahl ist? In der anspruchsvollen Aufgabe 5.7 haben Sie die Gelegenheit zu beweisen, dass
die Formel von Moivre-Binet tatséchlich die Fibonacci-Zahlen berechnet (und somit ausschliesslich
natiirliche Zahlen generiert).

= Aufgabe 5.6

Berechnen Sie F(0) und F(1) mithilfe von Gleichung (5.1). Uberzeugen Sie sich, dass F(0)
und F'(1) die ersten beiden Fibonacci-Zahlen und somit insbesondere natiirliche Zahlen sind.
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@ Aufgabe 5.7

(1) Beweisen Sie durch starke Induktion, dass die n-te Fibonacci-Zahl F,, durch den Ausdruck
F(n) in Gleichung (5.1) gegeben ist.

Hinweis:

e Definieren Sie zuerst
a:=1—¢p

und beachten Sie, dass

a=1—¢p=1

145 _2-1-V5 15
2 2 2

¢ Beweisen und verwenden Sie nun die beiden Gleichungen

p*=1+0,
?=1+a.

Bemerkung 5.1 (Moivre-Binet):

Die Formel von Moivre-Binet enthélt Terme, welche Computer aufgrund ihrer (nur) endlichen
Arithmetik nicht exakt darstellen konnen. Eine einfache Beobachtung macht die Formel aber
auch fir die Berechnung in endlicher Arithmetik gut zugénglich. Wir schreiben zuerst

g (g
P ="—0 =G 5

Die Fibonacci-Zahl F), unterscheidet sich von der Zahl 5\0/% also lediglich um den Term =)

V5

Doch wie gross ist dieser Term? Fiir den Exponenten n = 0 reduziert er sich auf

1 1
‘\/5‘ )
Fiir den Exponenten n = 1 reduziert sich der Term auf
L—¢
il
Wegen |1 — ¢| < 1 gilt

‘1 —o| . 1 < 1
Vil Vs o2
Was dndert sich aber, wenn wir allgemeine Exponenten n € N zulassen? Tatsachlich gilt: Je

grosser der Exponent ist, desto kleiner ist der Term! Aufgrund der Abschitzung |1 — ¢| < 1
wissen wir ndmlich, dass die geometrische Folge

(1) 1 1
’\/5 :%\(1—90)77:%\1—90’”
strikt monoton fallend ist. Damit gilt also fiir alle natiirlichen Exponenten n € N
‘ (L—p)"] 1
V5

5"
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Wir haben somit nachgewiesen, dass

pt 1 _ et (-9 "
=< IT== <=4 =
Vh 2 W5 5 V5
—_— —
Fy
e 1
— < F,—- = < -,
n \/5 2
oder anders geschrieben:
" _ 1
F,— —=|<=.

Der Abstand von ¢"/+/5 zu der ganzen Zahl F}, ist also kleiner als 1/2. Es liegt damit keine
ganze Zahl so nahe bei ¢"/y/5 wie F},. Die n-te Fibonacci-Zahl F}, entspricht somit ¢"//5,
gerundet auf die néchste ganze Zahl:

F, = [f/ﬂ fiir alle n € N. (5.2)

Damit ist nun auch klar ersichtlich, dass die Fibonacci-Folge exponentiell wéchst!

g Aufgabe 5.8 ~

Verwenden Sie die Formel von Moivre-Binet, um eine explizite Darstellung von N(n) zu
finden und schreiben Sie eine Python-Funktion def N(n), welche N(n) fiir gegebenes n € N
berechnet. Verwenden Sie dazu Gleichung (5.2).
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5.3 Losungen der Aufgaben
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Kapitel 6

Sortieren (*)

Fines der héufigsten algorithmischen Probleme ist das Sortieren.

Definition 6.1 (Sortierproblem):

mydefinition:Sortierproblem Sei S eine Menge, deren Elemente durch die Relation < ver-
glichen werden kénnen (< heisst dann totale Ordnung auf S). Das Sortierproblem lautet
dann:

Eingabe: Eine endliche Folge von n € N* Elementen a1, as,...,a, aus S.
Ausgabe: Eine Umordnung a,d),...,a), der Eingabe, sodass a} < a5 < ... < af (die
Elemente der Eingabe sind nun aufsteigend sortiert).

Abbildungen 6.1 und 6.2 zeigen zwei einfache Beispiele von Eingaben und entsprechenden Ausgaben
des Sortierproblems.

Eingabe

[=[ee[e]e[o]m]e

Ausgabe

[o]oo]ee]eo[w]=]o

Abbildung 6.1: Eingabe und Ausgabe eines kleinen Sortierproblems mit ganzen Zahlen
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Eingabe

Abbildung 6.2: Eingabe und Ausgabe eines kleinen Sortierproblems mit Kleinbuchstaben des latei-
nischen Alphabets. Dabei wurde die {ibliche alphabetische Ordnung a < b < ... < z verwendet.

6.1 Sortieren mit dem merge sort Algorithmus

Natiirlich ist das Bediirfnis nach schnellen Algorithmen besonders gross, falls diese Probleme 16-
sen, die zeitkritisch sind und héufig auftreten. Mittlerweile sind viele Sortieralgorithmen bekannt.
Ein beriihmter Vertreter dieser Algorithmen ist merge sort. Der Algorithmus merge sort arbeitet
rekursiv. Dabei macht er insbesondere von der Tatsache Gebrauch, dass sich zwei sortierte Listen
recht effizient zu einer ebenfalls sortierten Liste zusammenfiigen lassen. Es seien also zwei jeweils
bereits sortierte Listen L und r gegeben. Diese Listen besitzen die Lingen (Anzahl von Elemen-
ten) len(L) und len(R). Es ist nun nicht besonders aufwéndig, die beiden Listen L und R zu einer
neuen sortierten Liste M der Ldnge len(L) + len(R) zu vereinen (englisch: to merge).

[#' Aufgabe 6.1 .

Angenommen wir haben zwei jeweils bereits sortierte Listen L und r gegeben. Schreiben Sie
eine Python-Funktion merge(L, R), welche L und R zu einer einzigen sortierten Liste vereint.
Ihre Funktion soll unbedingt Gebrauch von der Tatsache machen, dass L und R bereits sortiert
sind.

Testfall O
Eingabe: L = [8, 12, 17], R = []
Ausgabe: [8, 12, 17]

Testfall 1
Eingabe: L = [2, 5, 13], R = [1, 2, 3, 7, 15, 20]
Ausgabe: [1, 2, 2, 3, 5, 7, 13, 15, 20]

Testfall 2
Eingabe: L = [1, 10, 100, 1000], R = [0, 5, 50]
Ausgabe: [0, 1, 5, 10, 50, 100, 1000]

Programm 6.1: Testfélle fiir die Funktion merge

Ihre Funktion braucht nicht zu tiberpriifen, ob L und R tatséchlich sortiert sind.
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[#' Aufgabe 6.2

Analysieren Sie den Algorithmus, welchen Sie in Aufgabe 6.1 geschrieben haben. Welche
Laufzeit hat dieser Algorithmus in Abhingigkeit von n = len(L) + len(R)?

Der merge sort Algorithmus teilt eine zu sortierende Liste rekursiv so lange in zwei Teile, bis nur noch
Listen der Lénge 1 vorliegen. Offensichtlich ist jede Liste der Lange 1 bereits sortiert. Schliesslich
werden bereits sortierte Listen mithilfe des merge Algorithmus zu der gesuchten sortierten Liste
zusammengefiigt. Mithilfe der bereits in Aufgabe 6.1 erstellten Routine merge lasst sich der berithmte
merge sort Algorithmus in nur wenigen Zeilen in Python beschreiben. Eine mégliche Implementation
ist in Programm 6.2 gegeben.

def merge_sort(A):

# sortiert die Liste A

if len(A) == 1: # Rekursionsanfang
return A # Listen der Lénge 1 sind schon sortiert.

# teile A in linke H&lfte und rechte Teile

if len(A) % 2 == 0: # falls len(A) gerade ist
middle = len(A) // 2

else: # falls len(A) ungerade ist
middle = (len(A) // 2) + 1

L = merge_sort(A[:middle])

R = merge_sort(A[middle:])

return merge(L, R)

Programm 6.2: Implementation der Funktion merge_sort

Den merge sort Algorithmus zu verstehen ist nicht einfach! Erfahrungsgemaéss ist es sehr hilfreich,
die einzelnen Schritte dieses Sortieralgorithmus fiir ein kleines Beispiel durchzugehen. Dazu haben
wir die Schritte von merge sort (ms) beim Sortieren der Liste [3, 2, 11 in Abbildung 6.3 schematisch
dargestellt. Mit m wird nattrlich der Algorithmus merge bezeichnet. Die schematische Darstellung
ist analog zu den Ausfithrungen in Abschnitt 4.5 zu verstehen.

0 (anfinglicher Aufruf)

Abbildung 6.3: schematische Darstellung der Arbeitsschritte von merge sort
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6.2 Analyse der Laufzeit von merge sort

Beachten Sie, dass der in Programm 6.2 gegebene Algorithmus durchaus in der Lage ist, Listen
beliebiger Langen n € N zu sortieren. Fir die nachfolgenden Untersuchungen wollen wir aber an-
nehmen, dass die Problemgrosse n stets eine Zweierpotenz ist, also n = 2* fiir ein £ € N. Ohne diese
Vereinfachungen werden in den Untersuchungen diverse Auf- und Abrundeoperationen notwendig
sein und die Darstellung wird technischer und weniger instruktiv. Zusétzlich méchten wir den tri-
vialen Fall n = 0 als Problemgrosse ausschliessen. Die folgenden Betrachtungen sind inspiriert durch
die entsprechenden Abschnitte in dem herausragenden Buch [9].

Die Laufzeit des merge sort Algorithmus setzt sich aus drei einzelnen Teilen zusammen:

Divide: Dieser Teil berechnet lediglich die Mitte der zu sortierenden Liste. Dazu ist offensichtlich
nur eine konstante Zeit ©(1) notwendig.

Conquer: Beim Aufruf des merge sort Algorithmus mit Problemgrésse n werden rekursiv zwei
Teilprobleme (derselben Art) mit jeweils halber Grosse n/2 aufgerufen. Dies tragt 27'(n/2)
zur Laufzeit bei.

Combine: Wie wir in Aufgabe 6.2 bereits festgestellt haben, bendtigt merge sort die lineare Zeit
©(n) fir die Vereinigung zweier Listen mit summierter Lange n = len(L) + len(R).

Zusammengefasst ist die Laufzeit T'(n) von merge sort im schlimmsten Fall also gegeben durch

o(1 falls n =1
7(n) = 4 O = (6.1)
2T'(n/2) + ©(n), fallsn > 2.
Gleichung (6.1) lasst sich natiirlich schreiben als
falls n =1
T(n)={ e (6.2)
2T (n/2) + cin, fallsn > 2.

Diesen Ausdruck kénnen wir mit der Definition ¢ := max {c¢, ¢} sogar nochmals vereinfachen zu

falls n =1,

T(n)=1{" (6.3)
2T (n/2) + cn, fallsn > 2,

da wir uns im Moment lediglich fiir eine obere Schranke fiir die Laufzeit T'(n) interessieren. Beachten

Sie, dass Gleichung (6.3) die Funktion 7' (Laufzeit) rekursiv definiert.

Wir wollen nun die eindeutige Lésung von Gleichung (6.3) durch intuitive Uberlegungen finden.
Betrachten Sie Abbildung 6.4.

e In der obersten ,Etage” fallen die Kosten cn fiir den merge zu einer Liste der Lange n an.

o In der zweitobersten ,Etage* fallen die Kosten ¢n/2 + ¢n/2 = cn fir zwei merges zu Listen
der Léngen n/2 an.

o Dies geht rekursiv so weiter.

o In der untersten , Etage“ wird iiberall der Rekursionsanfang erreicht und wir haben n-mal die
Kosten T'(1) = ¢, also cn.

Diese Uberlegung zeigt, dass jede ,,Etage genau cn zu den Gesamtkosten von merge sort beitrigt.
Nun stellt sich lediglich noch die Frage, wie viele , Etagen“ der Baum in Abbildung 6.4 hat. Diese
Frage ist aber mit der Frage verwandt, wie héufig eine Zweierpotenz 2* halbiert werden muss, bis das
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Resultat der Division durch 2 identisch zu 1 ist. Dies ist aber genau das, was uns der Logarithmus
zur Basis zwei beantwortet. Der Faktor 2 ist

log,(n) = logy (2’“) =k

Male in n enthalten. Das ist die Anzahl Teilungen. Der Baum hat somit logy(n) + 1 viele ,,Etagen®.
Die Laufzeit von merge sort ist also

en (logy(n) + 1)

und somit © (nlog(n)).

R et cn/2/ \cn/Q
/ \ / \ log(n)
cn <------ en/4 en/4 en/4 en/4
/N /N /NN
en <---- c ¢ é\n/é ¢ c c 7

Abbildung 6.4: Laufzeitanalyse von merge sort

= Aufgabe 6.3 ~

Zeigen Sie mithilfe der vollstdndigen Induktion, dass

T(n) = nlog,(n)

die rekursive Gleichung (Rekurrenz)

T(n) 2, falls n = 2,
n)=
2T (n/2) +n, falls n = 2" fiir ein k € N,k > 2 erfiillt.
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6.3 Losungen der Aufgaben
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Kapitel 7

Sudoku und Backtracking (*)

Sudokus sind Rétsel, welche sich seit den frithen 2000er Jahren international grosser Beliebtheit
erfreuen. Seit vielen Jahren gibt es Sudoku-Apps und man findet Sudokus auch oft abgedruckt
in Zeitschriften und Gratiszeitungen. Eines der zentralen Ziele dieses Kapitels wird sein, einen
rekursiven Losungsalgorithmus fiir Sudokus zu entwickeln. Zuerst miissen wir kurz erkliren, was
Sudokus iiberhaupt sind und wie die Spielregeln aussehen.

7.1 Spielregeln

Die Spielregeln fiir Sudokus lassen sich ganz einfach erkldren. Wir illustrieren sie anhand eines
konkreten (sehr schwierigen) Sudokus. Ein Sudoku besteht immer aus einem 9 x 9-Gitter. In Abbil-
dung 7.1 ist links das noch ungeloste Sudoku gezeigt und rechts das geloste (ausgefiillte). Bei einem
Sudoku sind zu Beginn einige Zahlen (Felder) vorgegeben. Diese, zu Beginn vorgegebenen Zahlen,
diirfen nicht gedndert werden. Das Sudoku ist gelost, wenn jedes der 81 Felder genau eine der 9
Ziffern 1,2,...,9 enthélt und zusétzlich die folgenden zwei Bedingungen erfiillt sind:

1. In jeder Zeile und jeder Spalte muss jede der 9 Ziffern 1,2,...,9 genau einmal vorkommen.

2. Beachten Sie, dass das 9 x 9-Gitter (siehe die fetten Linien) wiederum in 9 verschiedene 3 x 3-
Blocke aufgeteilt ist. In jedem dieser 3 x 3-Blocke miissen ebenfalls alle 9 Ziffern 1,2,...,9
genau einmal vorkommen.

7 319 2 81 117|14|5/3]19|6|2

8 5/2|6|8|7|9|3|1|4
9143 7 914131116|2]|5|8]|7
619 61911384275
3 51217 318|415(2|7]16|9]1
814 7151219]1|6]8|4]3

418 11319|2(4(8]|7|5|6

216 216|5|719|1]14]3]|8
11219 417181613 |5|1]2]9

ungelostes Sudoku Nr. 0 gelostes Sudoku Nr. 0

Abbildung 7.1: Sudoku Nr. 0

Normale 9 x 9-Sudokus sind mit ihren 81 Feldern recht gross und fiir didaktische Betrachtungen
eher unhandlich. Wir werden deshalb zuerst kleinere Sudokus der Grosse 4 x 4 untersuchen. Lassen
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Sie uns zunéchst die Regeln fiir Sudokus fiir allgemeine Dimensionen festhalten.

Bemerkung 7.1 (Spielregeln des (verallgemeinerten) Sudokus):

Ein (verallgemeinertes) Sudoku ist ein n? x n?-Gitter, wobei n eine natiirliche Zahl ist. Bei ei-
nem Sudoku sind zu Beginn einige Zahlen (Felder) vorgegeben. Diese zu Beginn vorgegebenen
Zahlen diirfen nicht geindert werden. Das Sudoku ist gelést, wenn jedes der n? - n? = n Fel-
der genau eine der Ziffern 1,2,...,n? enthilt und zusitzlich die folgenden zwei Bedingungen
erfiillt sind:

1. In jeder Zeile und in jeder Spalte muss jede der n? Ziffern 1,2,...,n? genau einmal
vorkommen.

2. Beachten Sie, dass das n? x n?-Gitter (siehe die fetten Linien) wiederum in n? verschie-
dene n x n-Blocke aufgeteilt ist. In jedem dieser n x n-Blocke miissen ebenfalls alle n?
Ziffern 1,2, ...,n? genau einmal vorkommen.

2

J

Das iibliche Sudoku (mit 81 Feldern) erhalten wir fiir n = 3. Wir werden zunéchst kleine Sudokus
mit n = 2, also mit nur 2* = 16 Feldern anschauen.

[#' Aufgabe 7.1

Finden Sie die (eindeutige) Losung des Sudokus in Abbildung 7.2. Dieses Sudoku wird als
einfach eingestuft.

\]
—
[\)
o

—_
w
oWl

214

ungeltstes Sudoku Nr. 2

Abbildung 7.2: Sudoku Nr. 2

7.2 Sudokus konnen mehr als eine Losung haben!

Betrachten Sie nochmals Abbildung 7.1 und vergewissern Sie sich, dass die Losung auf der rechten
Seite tatsdchlich alle geforderten Bedingungen erfiillt. Sudoku Nr. 0 erlaubt tbrigens nur diese
eine Losung. Die in Zeitschriften und Sudoku-Apps aufgefithrten Sudokus sind meist absichtlich so
konstruiert, dass sie eine eindeutige Losung besitzen. Entfernen wir aber beispielsweise die 9 in der
rechten unteren Ecke von Sudoku Nr. 0, so erhalten wir ein neues Ratsel:
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7 319 2 81 1|7|4|5/3]19|6|2

8 52161879431
9143 7 9141316|1|2]|5|8]|7
619 61911384275
3 5127 31814|5|2|7|6]1]9
814 71512]119|6]8|4]3

418 117|512(4|8]3|9|6

216 2168931754
1]2 41319|7]6|5]1|2|8

ungeltstes Sudoku Nr. 1 gelostes Sudoku Nr. 1

Abbildung 7.3: Sudoku Nr. 1

Sudoku Nr. 1 besitzt ebenfalls die Losung, welche bereits Losung von Sudoku Nr. 0 war (siehe
Abbildung 7.1). Neben dieser Losung besitzt Sudoku Nr. 1 aber noch weitere Losungen. Eine davon
ist rechts in Abbildung 7.3 gezeigt.

In Abbildung 7.4 ist ein Beispiel eines 4 x 4-Sudokus (,,Mini-Sudoku®“) gegeben. Dieses besitzt
iibrigens 4 verschiedene Losungen.

1 211143
314|121

3 2 413|112
3 112134

ungelostes Mini-Sudoku Nr. 0 eine Losung des Mini-Sudokus Nr. 0

Abbildung 7.4: Mini-Sudoku Nr. 0

[#' Aufgabe 7.2

Finden Sie die drei weiteren Losungen des Sudokus in Abbildung 7.4.

7.3 Darstellung von Sudokus in Python

In Python koénnen wir ein Sudoku durch eine ,zweidimensionale® Liste (oder Array) angeben. Bei-
spielsweise kann Sudoku Nr. 2 aus Aufgabe 7.1 in der folgenden Form in Python gespeichert werden:

sudokuNo2 = [

M
-

. . P
. e . “ e

-

O»J>OOO“<DO\1[\JO
OOO)O:PD—‘OOO
OHOO“(DU‘I(DO\I
OO\O.P“LO(AJI—‘OO

N O O N OO
[ v T e B e |

-

Programm 7.1: Abspeichern von Sudoku-Gittern in Python

Das Mini-Sudoku in Abbildung 7.4 kann folgendermassen in Python abgespeichert werden:

60


mailto:thomas.graf@edu.zh.ch

Induktion und Rekursion O Thomas Graf, Informatik, 2026

mini_sudokuNoO = [

[o 3 1 2 O E O] 2
[O 2 O 2 0 b O] 2
[0 s 3 s 0 k] 2] s
[0,0,3,0]
]
Programm 7.2: Abspeichern von Mini-Sudoku-Gittern in Python
Um ein n? x n?-Gitter ansehnlich in Python auszugeben (,pretty-print“), empfehlen wir, am Anfang

des Programms die Bibliothek numpy durch den Befehl import numpy as np einzubinden. Danach kann
das Gitter durch print(np.array(gitter)) iibersichtlich ausgegeben werden.

7.4 Erlaubte Felder

In Abbildung 7.5 ist nochmals das Sudoku vom Anfang des Kapitels gezeigt. Betrachten Sie das mit
einem blauen Fragezeichen 7 markierte Feld. Wir wissen (aufgrund der Eindeutigkeit der Losung
dieses konkreten Sudokus), dass in das markierte Feld die Ziffer 8 gesetzt werden muss. Nach den
Spielregeln von Sudoku wiirde jedoch im Moment nichts dagegen sprechen, eine 1 in dieses Feld
zu schreiben — auch wenn sich diese Wahl im Verlauf des Spiels als falsch herausstellen wird. Wir
sagen, dass die Wahl der Ziffer 1 fiir das blau markierte Feld (bei dem aktuellen Spielstand) erlaubt
ist. Die Wahl der Ziffer 6 ist beispielsweise nicht erlaubt, da diese Ziffer in der entsprechenden
Zeile bereits vorkommt. Ebenso wére die Wahl der Ziffer 5 nicht erlaubt, da diese Ziffer bereits im
entsprechenden 3 x 3-Block enthalten ist.

Es sei also ein konkretes Gitter gegeben. Wir sagen, dass das Setzen einer Ziffer Z auf ein leeres
(unbesetztes) Feld F' des Gitters erlaubt ist, falls diese Ziffer Z weder in der entsprechenden Zeile
noch der Spalte noch dem entsprechenden n x n-Block von F' in dem gegebenen Gitter vorkommt.

7 319 2 811|714|15|3]|9|6]|2

8 512161879314
943 7 91413|1|6|2]|5|8]|7
69 61911384275
3 5 7 318[4|5[2|7]6]|9]1
8|4 7151219|1|6|8|4)|3

4|8 113|924 |8]|7|5]6

216 2165171911438
11219 4171816351129

ungelostes Sudoku Nr. 0 gelostes Sudoku Nr. 0

Abbildung 7.5: nochmals Sudoku Nr. 2
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@ Aufgabe 7.3 .

Wir befassen uns in dieser Aufgabe nur mit 4 x 4-Gittern. Entwickeln Sie eine Python-
Funktion

def erlaubt(zeile, spalte, ziffer, gitter),

welche fiir ein gegebenes noch leeres (markiert durch die Zahl 0) Feld mit Zeilenindex zeile
(von 0 bis 3) und Spaltenindex spalte (von 0 bis 3) priift, ob das Platzieren einer gegebenen
Ziffer ziffer (von 1 bis 4) in einem gegebenen Gitter erlaubt ist. Hier sind einige Testfélle:

print (erlaubt (0, 3, 4, mini_sudokuNo0O)) # True

print(erlaubt(1, O, 1, mini_sudokuNoO)) # False
# (bereits eine 1 in dem ersten 2x2 Block)

print(erlaubt(1, 1, 3, mini_sudokuNoO)) # False
# (bereits eine 3 in der entsprechenden Spalte)

Programm 7.3: erlaubt oder nicht

Testen Sie Thre Funktion genau!

\ J

= Aufgabe 7.4 .

Verallgemeinern Sie die Funktion

def erlaubt(zeile, spalte, ziffer, gitter)

auf n2 x n2-Gitter.
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7.5 Backtracking

Wir wollen uns nun an die Entwicklung eines rekursiven Algorithmus zum Lésen von Sudokus
herantasten. Dazu beginnen wir mit der einfiihrenden Aufgabe 7.5, in der Sie einige gedankliche
Vorarbeiten leisten.

[#' Aufgabe 7.5 |

Betrachten Sie das folgende Sudoku.

(a) Fillen Sie die noch leeren Felder Zeile fiir Zeile von links nach rechts und von oben
nach unten aus. Beginnen Sie also mit dem Feld mit den Koordinaten (0,0) (oben
links) und beenden Sie IThre Arbeit mit dem Feld (3,3) (unten rechts). Zeichnen Sie
dabei die einzelnen ,Stationen“ (Gitter) auf, indem Sie das Diagramm in Abbildung 7.6
systematisch vervollstdndigen.

(b) Warum ist unser Vorgehen in Teil (a) fiir das gegebene Sudoku suboptimal? Schlagen
Sie eine effizientere Strategie vor.

1 4
3 1
2|3 4
1 4 1 4
3 1 3 1

Abbildung 7.6: einzelne Stationen
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Nun wollen wir die in Aufgabe 7.5 gemachten Beobachtungen etwas vertiefen. Betrachten Sie dazu
das neue Mini-Sudoku in Abbildung 7.7.

4 113]4]2

4 1 214131

3 ? 31|24
2 412113

ungelostes Mini-Sudoku Nr. 1 Loésung des Mini-Sudoku Nr. 1

Abbildung 7.7: Mini-Sudoku Nr. 1

Beim Losen eines Sudokus diirfen wir die Reihenfolge, in der wir die (noch) leeren Felder auffiillen,
beliebig wahlen. Um ganz konkret ein mogliches Vorgehen zu untersuchen, nehmen wir an, dass wir
die 11 leeren Felder des Sudokus in Abbildung 7.7 in der Reihenfolge

auszufullen versuchen.

Wir betrachten also zuerst das leere Feld mit den Koordinaten (2,3), welches mit einem blauen
Fragezeichen 7 markiert ist. Sie werden schnell erkennen, dass in diesem leeren Feld genau das
Setzen der beiden Ziffern 2 und 4 erlaubt ist. Wir stehen hier also vor einer Wahl. Die Situation ist
in Abbildung 7.8 dargestellt. Die Wahl der Ziffer 2 fiihrt uns zu Station (1). Hier haben wir fiir das
Feld (3, 3) ebenfalls eine Wahl, und zwar zwischen den Ziffern 3 und 4. Die Wahl der Ziffer 3 fiihrt
uns zu Station (2). Bei Station (3) stellen wir fest, dass fiir das leere Feld (0, 3) keine der vier Ziffern
gesetzt werden darf. Somit sind wir in eine Sackgasse geraten. Mindestens an einer ,, Abzweigung®
miissen wir also eine falsche Wahl getroffen haben! Wir gehen deshalb so weit den ,,Pfad“ entlang
zuriick, bis wir zur jlingst angetroffenen Abzweigung gelangen. Dies war in diesem Fall die Station
(1). Nun folgen wir von Station (1) aus der Wahl der Ziffer 4 zu Station (4). Bei Station (7) erkennen
wir, dass auch die zweite Wahl (die der Ziffer 4) bei Station (1) uns nicht weiterbringt. Erst jetzt
konnen wir sicher sein, dass die urspriingliche Wahl der Ziffer 2 bei Station (0) falsch gewesen war.
Dies fithrt uns zur korrekten Wahl der Ziffer 4 fiir das Feld (2,3) und somit zu Station (8).

Der Vorgang des ,,Zuriickgehens®“ entlang der gegangenen Wege wird Backtracking genannt. Im
néchsten Abschnitt werden wir einen eleganten Algorithmus vorstellen, welcher mithilfe von Back-
tracking auf rekursive Weise die Losungen eines Sudokus findet.
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Bemerkung 7.2 (Backtracking in einem Labyrinth):

Die Situation beim Backtracking in Sudokus kann vage mit der (rekursiven) Suche eines
Ausgangs (oder aller Ausgénge) aus einem Labyrinth verglichen werden. Wir suchen, begin-
nend bei Start, einen der Ausgénge aus einem Labyrinth. Dazu gehen wir so lange die Gange
entlang, bis wir entweder herausgefunden haben oder in einer Sackgasse angelangt sind. In
Abbildung 7.9 ist die Situation veranschaulicht. Der Weg Start — 0 — 1 ist eine Sackgasse.
Wir gehen darum einen Gang zuriick (also zu 0). Von 0 aus gibt es keine weitere Abzweigung
und wir gehen nochmals einen Gang zuriick, also zum Start. Nun gehen wir den neuen Weg
Start — 2 — 3 — 4. Doch auch 4 ist eine Sackgasse. Deshalb gehen wir einen Gang zuriick
zu 2. Von 2 aus nehmen wir den neuen Weg 2 — 5 — 6 und haben einen Ausgang gefunden.
Diesen gefundenen Weg Start — 2 — 5 — 6 konnen wir als Lésung ausgeben. Falls wir
(wie beim Sudoku) alle Losungen (Ausgéange) finden wollen, wiirden wir hier nicht bereits
abbrechen, sondern (rekursiv) weitersuchen.

Start
/\
0 2
7 T
3 5 7
A
8 10
| |
1(8) 4(S) 6(A) 9(S) 11 (A)

Abbildung 7.9: Navigation in einem Labyrinth
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7.6 Losungsalgorithmus fiir Sudoku

Unser Losungsalgorithmus verwendet die Funktion erlaubt sowie Backtracking in Kombination mit
Rekursion. Diese drei Komponenten sind Thnen inzwischen bekannt. Der vollsténdige Algorithmus
zum Loésen von Sudokus ist in Programm 7.5 gegeben. Mit der Definition

sudokuNoO = [

Lo ™

M

© O O O O O NOoON
[ S i}

Programm 7.4: Abspeichern von Sudoku-Gittern in Python

wird Thnen der Aufruf sudoku(sudokuNo0) alle (es gibt hier nur eine) Losungen von Sudoku Nr. 0
ausgeben. Die Funktion in Programm 7.5 verwendet die Funktion erlaubt, welche Sie in Aufgabe 7.4
geschrieben haben.

def sudoku(gitter):
# Gehe durch alle Felder im Gitter.
for zeile in range(9):
for spalte in range(9):
# Schaue, ob das Feld noch leer ist.
if gitter([zeile] [spalte] == O:
# leeres Feld gefunden

# Gehe durch alle 10 Ziffern 1 bis 9.
for ziffer in range(1,10):
# Priife, ob die Ziffer fiir dieses Feld erlaubt ist.
if erlaubt(zeile,spalte,ziffer,gitter):
# Die betrachtete Ziffer ist erlaubt.

# Schreibe diese Ziffer in das Feld.
gitter[zeile] [spalte] = ziffer

# Die Ziffer wurde ins Gitter geschrieben.
# Arbeite nun rekrusiv mit dem

# neuen Gitter weiter.

sudoku(gitter)

# Entferne die gesetzte Ziffer wieder.
gitter[zeile] [spalte] = 0

# leeres Feld, fir welches keine Ziffer passt
# => Sackgasse gefunden => Backtracking
return

# giltige Losung gefunden

print(np.array(gitter))

return
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Programm 7.5: Implementation der Funktion sudoku

J

= Aufgabe 7.6

Betrachten Sie die sudoku-Funktion in Programm 7.5. Es gibt genau zwei verschiedene Mog-
lichkeiten, die Zeile 24 in dieser Funktion zu erreichen. Nennen Sie diese beiden Méglichkeiten
und erkldren Sie jeweils die Bedeutung des Entfernens der gesetzten Ziffer in dem entspre-
chenden Fall.

= Aufgabe 7.7

I r

() Andern Sie die sudoku-Funktion in Programm 7.5 dahingehend ab, dass genau eine Losung
ausgegeben wird, falls das Sudoku mindestens eine Losung besitzt. Falls das Sudoku keine
Losung besitzt, so soll auch nichts ausgegeben werden.

I r

[#' Aufgabe 7.8

(1) Dies ist eine besonders schwierige Aufgabe. Wir betrachten das bekannte Damenproblem.
Das Problem besteht darin, 8 Damen auf einem 8 x 8-Schachbrett so zu platzieren, dass
sich keine zwei Damen gegenseitig bedrohen. Finden Sie Inspiration an unserem Sudoku-
Loser und schreiben Sie ein rekursives Programm, welches alle Lésungen des Damenpro-
blems ausgibt. Es gibt genau 92 unterschiedliche Losungen fiir den 8 x 8-Fall. Betrachten
Sie auch https://en.wikipedia.org/wiki/Eight_queens_puzzle#Counting_solutions_
for_other_sizes_n. Gelingt es Thnen, das allgemeine n x n-Problem fiir n € N zu l6sen?
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