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Kapitel 1

Vorwissen

Diese Unterlagen behandeln anspruchsvolle Inhalte der Informatik und Mathematik. Um ihnen
gerecht zu werden, bedarf es einer mathematisch präzisen Ausdrucksweise. Den überwiegenden Teil
der benötigten mathematischen Werkzeuge werden die Lesenden typischerweise in den ersten Jahren
des Gymnasiums kennengelernt haben. Einige der von uns benötigten Konzepte werden den meisten
Lesenden jedoch vermutlich noch nicht bekannt sein. Diese Konzepte wollen wir in diesem Kapitel
einführen. Wir werden dies in kompakter Form tun und an verschiedenen Stellen auf artifiziell
wirkende (forcierte) Beispiele bewusst verzichten.

1.1 Mathematik

1.1.1 Direkter und indirekter Beweis

Seien A und C mathematische Aussagen. Wir möchten beweisen, dass die Aussage

A ⇒ C

(A impliziert C) gilt. Solch ein Beweis kann im Wesentlichen auf zwei Arten erbracht werden:
entweder durch einen direkten Beweis oder einen indirekten Beweis.

1.1.1.1 Direkter Beweis

Der direkte Beweis macht von folgender logischen Tatsache Gebrauch: Impliziert A eine weitere
Aussage B

A ⇒ B

und B impliziert wiederum C:

B ⇒ C,

dann impliziert A auch C. Zusammengefasst gilt also:

((A ⇒ B) und (B ⇒ C)) ⇒ (A ⇒ C) . (1.1)

Um die Richtigkeit der Implikation A ⇒ C zu beweisen, zerlegt man die Implikation in bereits als
für richtig befundene „Teilaussagen“ A ⇒ B und B ⇒ C, also

(A ⇒ B) und (B ⇒ C).
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Danach folgt die Implikation A ⇒ C aus Ausdruck 1.1. Diese Strategie kann wiederholt angewendet
werden und man erhält eine „Kette“ logischer Implikationen (Schlüsse):

((A ⇒ B1) und (B1 ⇒ B2) und (B2 ⇒ B3) und . . . und (Bn ⇒ C)) ⇒ (A ⇒ C).

Dabei können die Begründungen der Implikationen A ⇒ B1, Bn ⇒ C sowie Bk ⇒ Bk+1 für jedes
k ∈ {1, 2, . . . , n − 1} als logische „Zwischenschritte“ verstanden werden.

1.1.1.2 Indirekter Beweis

Ein indirekter Beweis (Beweis durch Widerspruch) beginnt mit der Annahme, dass die Aussage C
falsch sei, dass also ¬C (nicht C) richtig ist. Nun wird einzig, unter Verwendung der Richtigkeit von
A und ¬C sowie bereits als wahr erkannter mathematischer Aussagen, die Richtigkeit einer Aussage
B abgeleitet, von der bereits bekannt ist, dass sie falsch ist. Dadurch haben wir einen „Widerspruch“
erhalten und können folgern, dass ¬C nicht richtig sein kann und somit C wahr sein muss. Damit
ist, wie gewünscht, die Implikation A ⇒ C nachgewiesen.

1.1.2 Kontraposition

Seien A und B mathematische Aussagen. Logisch äquivalent zur Behauptung A ⇒ B ist die Aussage
¬B ⇒ ¬A, welche Kontraposition der Implikation A ⇒ B genannt wird. Der Beweis für A ⇒ B
ist demnach auch erbracht, falls man zeigen kann, dass aus der Annahme, die Folgerungen seien
nicht erfüllt, folgt, dass auch die Voraussetzungen nicht erfüllt sein können. Gelegentlich fällt es
einem leichter, die Kontraposition ¬B ⇒ ¬A einer Implikation A ⇒ B zu zeigen.

Beispiel 1.1:
Sei A die Aussage „Es hat geregnet.“ und B die Aussage „Die Strasse ist nass.“. Die Implikation
A ⇒ B bedeutet: „Falls es geregnet hat, ist die Strasse nass.“

Falls die Strasse nass ist, muss das umgekehrt nicht bedeuten, dass es geregnet hat. Beispielsweise
könnte die Strasse auch von der Strassenreinigung nass gemacht worden sein. Was wir aber sicherlich
sagen können, ist, dass falls die Strasse nicht nass ist, es auch nicht geregnet haben kann, was genau
¬B ⇒ ¬A bedeutet.

1.1.3 Funktionen

1.1.3.1 Definition einer Funktion

Definition 1.1 (Funktion als Vorschrift):
Seien X und Y Mengen. Wir sagen, dass eine Funktion auf X mit Werten in Y definiert ist,
wenn aufgrund einer Vorschrift (Regel) f jedem Element x ∈ X genau ein Element y ∈ Y
zugehörig ist.

Wir sagen dann, dass die Menge X die Definitionsmenge der Funktion ist.

Das Symbol x, das benutzt wird, um ein allgemeines Element dieser Menge zu beschreiben, wird
Argument oder unabhängige Variable der Funktion genannt.

Das Element y0 ∈ Y , das einem Argument x0 ∈ X zugeordnet wird, wird Wert der Funktion in x0
genannt oder auch Wert der Funktion an der Stelle x = x0 und f(x0) geschrieben. Die Menge Y
wird Zielmenge der Funktion genannt.

Bei Änderung der Argumente x ∈ X verändern sich im Allgemeinen die Resultate y = f(x) ∈ Y in
Abhängigkeit von den Werten x. Aus diesem Grund wird die Grösse y = f(x) oft auch abhängige
Variable genannt.
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Definition 1.2 (Bild einer Funktion):
Die Menge

im (f) := { y ∈ Y ; es existiert ein x ∈ X mit y = f(x) }

von Werten, die von einer Funktion f für alle Elemente in der Menge X angenommen werden,
wird Bild (englisch: image) oder Wertemenge der Funktion f : X → Y genannt. Häufig wird
im (f) alternativ als f(X) geschrieben, wobei X die Definitionsmenge von f ist.

1.1.3.2 Surjektion, Injektion, Bijektion

In diesen Unterlagen werden wir häufig über Funktionen sprechen. Insbesondere werden wir die
folgenden drei Eigenschaften von Funktionen mehrmals verwenden.

Definition 1.3 (surjektiv, injektiv, bijektiv):
Seien X und Y Mengen und f : X → Y eine Funktion.

• f heisst surjektiv (eine Surjektion), falls im (f) = Y .
Intuitiv gesprochen, nimmt eine surjektive Funktion jeden Wert in der Zielmenge an.
Zu beliebigem y ∈ Y existiert (mindestens) ein x ∈ X, sodass y = f(x).

• f heisst injektiv (eine Injektion), falls für x1, x2 ∈ X aus x1 6= x2 stets f(x1) 6= f(x2)
folgt.
Zwei verschiedene Eingaben erzeugen stets verschiedene Ausgaben.

• f heisst bijektiv (eine Bijektion), falls f sowohl surjektiv als auch injektiv ist.
Da f surjektiv ist, existiert zu jedem y ∈ Y ein x ∈ X mit f(x) = y. Da f injektiv
ist, kann es kein anderes x̃ ∈ X mit x̃ 6= x geben, sodass f(x̃) = y. Dadurch stellt eine
Bijektion eine „Eins-zu-eins-Zuweisung“ zwischen den Elementen aus X und Y dar.

X

Y

(a) surjektiv, nicht injektiv

X

Y

(b) injektiv, nicht surjektiv

X

Y

(c) bijektiv

Abbildung 1.1: schematische Darstellung der Eigenschaften in Definition 1.3

X
Y

1
23
9
7
4

7
30
0
6

(a) surjektiv, nicht injektiv

X
Y

1
4
0
6

1
9
8
7
4

(b) injektiv, nicht surjektiv

X Y

10
3
15
1

1
5
8
15

(c) bijektiv

Abbildung 1.2: Diagramm-Darstellung der Eigenschaften in Definition 1.3

Betrachten Sie Abbildung 1.1. Diese stellt die in Definition 1.3 beschriebenen Eigenschaften für
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eine Funktion f : X → Y schematisch dar. Abbildung 1.1a zeigt eine Funktion, die surjektiv, aber
nicht injektiv ist, Abbildung 1.1b eine Funktion, die injektiv, aber nicht surjektiv ist. Schliesslich
wird in Abbildung 1.1c eine bijektive Funktion dargestellt. Abbildung 1.2 illustriert Surjektivität,
Injektivität und Bijektivität für einfache Funktionen auf konkreten endlichen Mengen. Surjektivität,
Injektivität und Bijektivität sind Eigenschaften, welche eine gegebene Funktion entweder haben
kann oder nicht.

1.1.3.3 Folgen

Definition 1.4 (Folge):
Ist X eine beliebige Menge und f : N → X eine Funktion, welche auf N definiert ist und
Werte in X annimmt, dann wird f eine Folge (in X) genannt. Ist g : D → X eine Funktion
und D ( N eine endliche Teilmenge der natürlichen Zahlen, so wird g endliche Folge in X
genannt.

Häufig schreibt man (xn)n∈N, (xn) oder auch (x0, x1, x2, . . . ) für die Folge f . Dabei bezeichnet
xn := f(n) das n-te Glied der Folge f = (x0, x1, x2, . . . ) für jedes n ∈ N.

Beispiel 1.2:
Die Funktion f : N → Z mit n 7→ 2n ist die Folge der geraden natürlichen Zahlen.

1.2 Programmieren in Python
Wir werden hier keine Einführung in die Python-Programmiersprache geben. Wir führen im Folgen-
den einige Details der Python-Sprache auf, welche wir in den Übungsaufgaben der nächsten Kapitel
verwenden werden.

• Der Modulo-Operator % (Prozent-Symbol) kann in der Form a % b verwendet werden und
liefert den ganzzahligen Rest bei der Division von a mit b. Beispielsweise sind die folgenden
Ausdrücke wahr:

7 % 3 == 1, 5 % 8 == 5, 22 % 4 == 2, 42 % 6 == 0.
Wir werden den Modulo-Operator zur Überprüfung auf Teilbarkeit verwenden. Denn b ist
offensichtlich genau dann ein Teiler von a, falls a % b == 0 gilt.

• Eine Liste in Python wird durch eckige Klammern gekennzeichnet. Beispielsweise ist [3,2,2,7]
eine Liste mit 4 Einträgen. Eine leere Liste (Liste ohne Einträge) wird durch „leere ecki-
ge Klammern“ [] bezeichnet. Mit dem Aufruf L.append(x) wird ein Eintrag x hinten (von
rechts) in eine bereits bestehende Liste L eingefügt (angehängt). Mit L[-1] wird der letzte (am
weitesten rechts stehende) Eintrag der Liste L bezeichnet. Der Ausdruck L[:-1] bezeichnet
alle Einträge der Liste mit Ausnahme des letzten.

• In Python existiert die Möglichkeit, Argumenten einer Funktion ein Default-Argument zu
geben.

# Default-Argument in Python
def eineFunktion(a, b = 5):

print(a + b)

eineFunktion(3,6) # gibt den Wert 9 aus
eineFunktion(3) # Aufruf mit Default-Argument b = 5: gibt den Wert 8 aus

Programm 1.1: Default-Argument
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Dieses Default-Argument wird genau dann verwendet, falls kein Wert für dieses Argument
(explizit) angegeben wird.

• Die Operation math.ceil(x) wird Aufrundungs-Operation genannt und gibt die kleinste
ganze Zahl, die grösser oder gleich x ist. Beispielsweise gelten math.ceil(3.2) = 4 und
math.ceil(3) = 3. Um diese Operation verwenden zu können, muss die Bibliothek math
durch den Befehl import math vor dem Gebrauch dieser Operation ins Programm eingefügt
werden.

In Programm 1.2 haben wir die obigen Punkte noch einmal zusammengefasst.

# gibt die durch 19 teilbaren Zahlen in {0,1,2,...,99} aus:
for k in range(100):

if (k % 19) == 0:
print(k) # gibt aus: 0 19 38 57 76 95

# Listen
L = [3, 7, 2, 3]
L.append(99) # L ist nun [3, 7, 2, 3, 99].
print(L[-1]) # gibt aus: 99
print(L[:-2]) # gibt aus: 3, 7, 2

# Default-Argument
def person(vorname, nachname = 'Nachname unbekannt', alter = '-'):

print('Vorname: ', vorname, ', ' , 'Nachname: ', nachname, ', ', 'Alter: ',
alter, sep='')

person('Sandra') # gibt aus: Vorname: Sandra, Nachname: Nachname unbekannt, Alter:
-

person('Toni', 'Wildeisen') # gibt aus: Vorname: Toni, Nachname: Wildeisen, Alter:
-

# Importieren einer Bibliothek und Verwendung der Aufrundungs-Funktion
import math # Einfügen der Bibliothek 'math'
print(math.ceil(3.00002)) # gibt aus: 4

Programm 1.2: Vorwissen Python

7
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Kapitel 2

Die natürlichen Zahlen

2.1 Historische Betrachtung der natürlichen Zahlen
Die natürlichen Zahlen werden so genannt, da sie auf „natürliche Weise“ beim Zählen verwendet
werden. Auf dem Gebiet der heutigen Demokratischen Republik Kongo wurde im 20. Jahrhundert
ein Knochen, der sogenannte Ishango-Knochen, gefunden. Dieser Knochen wird auf die Zeit vor etwa
18’000 bis 20’000 Jahren vor unserer Zeitrechnung datiert. In dem Knochen sind ganz offensichtlich
von Menschen einige Kerben eingeritzt worden. Die Bedeutung dieser Kerben ist nicht klar. Es wird
jedoch angenommen, dass diese Kerben eine bestimmte Anzahl festhalten.

Stellen wir uns vor, dass die Kerben die Anzahl der gefangenen Fische ( ) an einem bestimmten
Tag darstellen. Gefangene Fische durch Kerben in einem Knochen zu repräsentieren, verlangt be-
reits einen recht hohen Grad an Abstraktion! Schliesslich haben gefangene Fische und Kerben in
einem Knochen auf den ersten Blick keinen offensichtlichen Zusammenhang. Anstelle von Kerben
in einem Knochen könnte die Fangmenge eines Tages auch durch die entsprechende Anzahl von
Kieselsteinen oder durch (abstraktere) römische Numerale repräsentiert werden. Wichtig für uns
ist, dass die konkrete Wahl der Darstellung, zumindest rein mathematisch betrachtet, unwichtig ist.
Schliesslich stellen die verschiedenen Darstellungen alle dieselbe Anzahl von Fischen dar. Betrach-
ten Sie Tabelle 2.1. Mit dem Symbol meinen wir nicht ein Fisch-Emoji, sondern den eigentlich
gefangenen Fisch. Die direkte Darstellung der Anzahl der gefangenen Fische durch sich selbst ist
offensichtlich am wenigsten abstrakt. Die Darstellung durch Kerben oder Kieselsteine bedarf bereits
einer nicht unerheblichen Abstraktion. Dhttps://www.youtube.com/watch?v=c8l7K67idZcie Dar-
stellungen durch das römische, dezimale und binäre Zahlensysteme sind noch eine Stufe abstrakter.

Fische Kieselsteine römisch binär dezimal
(keine) (keine) nichts (nihil) 0 0

• I 1 1
•• II 10 2

••• III 11 3
•••• IV 100 4

••••• V 101 5
•••••• VI 110 6

••••••• VII 111 7
•••••••• VIII 1000 8

••••••••• IX 1001 9

Tabelle 2.1: mögliche Darstellungen der Anzahl gefangener Fische
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Die Zahl Null hat eine lange und kontroverse Geschichte hinter sich. Vermutlich hatten die Römer
kein explizites eigenes Symbol für die Null. Wir werden jedoch die Null als die erste (kleinste)
natürliche Zahl auffassen.

2.2 Unendlichkeit der natürlichen Zahlen und konstruktive Induk-
tion

Bereits aufgrund der kurzen Anekdote über die gefangenen Fische und Kieselsteine in Abschnitt 2.1
kann man sich denken, dass es unendlich viele natürliche Zahlen geben muss. Wieder denken wir
uns eine natürliche Zahl als genau das Symbol, welches eine bestimme Anzahl an Kieselsteinen
darstellt. Dann ist klar, dass es keine grösste natürliche Zahl geben kann, denn schliesslich kann
stets ein weiterer Kieselstein hinzugefügt werden, was uns eine noch grössere Zahl liefert. Zu jeder
natürlichen Zahl n, angefangen mit der 0, erhalten wir (durch Hinzufügen eines Kieselsteins) eine
weitere natürliche Zahl. Diese neue Zahl werden wir den Nachfolger von n nennen. Die folgenden
Überlegungen dieses Kapitels formalisieren diese Vorstellungen und stellen diese mathematisch prä-
zise dar. Doch auch ohne mathematische Formeln können wir das folgende Gedankenexperiment
durchführen. Angenommen Sie sind in der Lage Folgendes zu tun:

• Sie können eine Treppe mit 0 Stufen (ohne Stufen) bauen.
• Falls Sie bereits eine Treppe mit einer beliebigen (natürlichen) Anzahl von Stufen gebaut

haben, dann können Sie diese Treppe um eine Stufe erweitern (siehe Abbildung 2.1).

Dann werden Sie es für glaubhaft halten, dass Sie eine Treppe mit beliebig vielen Stufen bauen
können. Wie dieses Gedankenexperiment mit der mathematischen Definition der natürlichen Zahlen
zusammenhängt, werden Sie im nächsten Abschnitt sehen.

Abbildung 2.1: Erweiterung einer Treppe um eine weitere Stufe.

2.3 Die Peano-Axiome
Uns ist vollkommen bewusst, dass Sie bereits seit Ihrer Kindheit mit dem Konzept der natürlichen
Zahlen vertraut sind. Sie konnten vermutlich schon als Kleinkind Gegenstände zählen und lernten
spätestens in der Grundschule die Addition und Multiplikation natürlicher Zahlen kennen. Für diese
einfachen Anwendungen reicht eine rein intuitive Beschreibung der natürlichen Zahlen vollkommen
aus.
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Sie werden jedoch festgestellt haben, dass mit fortschreitender schulischer Reife eine präzise Definiti-
on von Begriffen und Konzepten zunehmend an Bedeutung gewinnt. Auf der Stufe des Gymnasiums
wird der bis dorthin rein intuitiv geprägte Begriff der natürlichen Zahlen durch das Konzept der
Mengen formalisiert. Ab dann wird von der Menge der natürlichen Zahlen, bezeichnet durch das
Symbol N, gesprochen.

2.4 Informale Definition der natürlichen Zahlen
In Lehrbüchern des Gymnasiums (siehe zum Beispiel [1]1) wird die Menge der natürlichen Zahlen
typischerweise wie folgt definiert:

Definition 2.1 (Informale Definition der natürlichen Zahlen):
Die Menge

N := {0, 1, 2, 3, 4, . . .}

wird als die Menge der natürlichen Zahlen bezeichnet.

Man beginnt also bei 0 und zählt dann unbegrenzt weit nach vorne. In einem gewissen Sinne
beantwortet Definition 2.1 die Frage, was natürliche Zahlen sind: Eine natürliche Zahl ist ein Element
der Menge N. Dennoch ist die Definition nicht sehr befriedigend, denn sie beantwortet nicht die
Frage, was N selbst ist. [2] Wir werden nicht von dieser Definition Gebrauch machen, sondern eine
nützlichere Definition entwickeln.

Der folgende Abschnitt ist teilweise inspiriert durch die entsprechenden Teile in den hervorragenden
Büchern [2] und [3].

Bei näherer Betrachtung wirft die informale Definition 2.1 insbesondere die folgenden drei Fragen
auf:

1. Woher wissen wir, dass wir beliebig lange weiter vorwärts zählen können, ohne schliesslich
(wie bei einer Uhr) wieder bei der 0 anzukommen?

2. Wie sollen nun Operationen wie die Addition, Multiplikation und die Potenz definiert werden?

Die zweite Frage wollen wir zuerst besprechen. Komplizierte Operationen können durch einfache-
re Operationen ausgedrückt werden. So ist Potenzieren lediglich wiederholtes Multiplizieren und
Multiplizieren wiederum wiederholtes Addieren. Zum Beispiel sind 53 nichts weiter als drei Fünfer
miteinander multipliziert und 6 · 3 lediglich sechs Dreien miteinander addiert. Wie sieht es mit der
Addition aus? Die Addition kann durch wiederholtes Inkrementieren oder Vorwärtszählen realisiert
werden. Bei der Addition 4 + 3 wird die Vier dreimal inkrementiert (wir zählen von der Vier aus
dreimal vorwärts). Inkrementieren scheint eine fundamentale Operation zu sein, welche sich nicht
auf eine noch einfachere Operation reduzieren lässt.

Eine sinnvolle Definition der natürlichen Zahlen scheint also das Inkrementieren als fundamentales
Konzept zu verwenden. Für eine natürliche Zahl n werden wir im Folgenden mit ν(n) das Inkrement
von n bezeichnen. Wir werden ν(n) auch den Nachfolger von n nennen. Zum Beispiel gilt 3 =
ν(2), 4 = ν(3) = ν(ν(2)) und so weiter. Das Inkrementieren liefert uns also einen „Zählvorgang“,
der bei 0 beginnt. Die bisherigen Überlegungen lassen vermuten, dass wir N als die Menge mit den
Elementen

0, ν(0), ν(ν(0)), ν(ν(ν(0))), ν(ν(ν(ν(0)))), ν(ν(ν(ν(ν(0))))), . . .

1Dieses Buch bietet allerdings auch eine alternative Definition der natürlichen Zahlen an.
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ansehen wollen. Diese Menge enthält 0 und alle Objekte, welche aus 0 durch Inkrementieren erhalten
werden können. Sie wissen bereits, dass fundamentale (nicht beweisbare) Annahmen in der Mathe-
matik als Axiome bezeichnet werden. Bislang haben wir zwei fundamentale Annahmen bezüglich
der Menge N der natürlichen Zahlen getroffen. Diese fassen wir in zwei Axiomen zusammen:

Axiom 2.1:
Die 0 liegt in N.

Axiom 2.2:
Falls n in N liegt, dann liegt auch der Nachfolger ν(n) von n in der Menge N.

Dies sind die ersten zwei von insgesamt fünf Axiomen, welche zusammen bekannt sind als die
Peano-Axiome der natürlichen Zahlen. Die Peano-Axiome sind benannt nach dem italienischen
Mathematiker Giuseppe Peano, welcher diese Axiome im Jahr 1889 formulierte.

Bemerkung 2.1:

• Beachten Sie, dass Axiom 2.2 lediglich aussagt, dass der Nachfolger ν(n) einer natür-
lichen Zahl n wieder eine natürliche Zahl ist. Das Axiom sagt nichts darüber aus, wie
dieser Nachfolger lautet.

• Manche Autorinnen und Autoren ziehen es vor, den „Zählvorgang“ nicht bei 0, sondern
bei 1 zu beginnen. Dies ist mathematisch ohne Bedeutung. [3]

• Wir definieren 1 := ν(0), 2 := ν(1) = ν(ν(0)), 3 := ν(2) = ν(ν(ν(0))) und so weiter.
Anstelle von

0, ν(0), ν(ν(0)), ν(ν(ν(0))), ν(ν(ν(ν(0)))), ν(ν(ν(ν(ν(0))))), . . .

schreiben wir üblicherweise 0, 1, 2, 3, 4, 5, . . .
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In Abschnitt 2.1 haben wir bereits begründet, warum die konkrete Darstellung einer Zahl nicht von
Bedeutung ist. Wir haben Tabelle 2.1 um eine Spalte erweitert:

Fische Kieselsteine römisch binär dezimal Nachfolger
(keine) (keine) nichts (nihil) 0 0 0

• I 1 1 ν(0)

•• II 10 2 ν(ν(0))

••• III 11 3 ν(ν(ν(0)))

•••• IV 100 4 ν(ν(ν(ν(0))))

••••• V 101 5 ν(ν(ν(ν(ν(0)))))

•••••• VI 110 6 ν(ν(ν(ν(ν(ν(0))))))

••••••• VII 111 7 ν(ν(ν(ν(ν(ν(ν(0)))))))

•••••••• VIII 1000 8 ν(ν(ν(ν(ν(ν(ν(ν(0))))))))

••••••••• IX 1001 9 ν(ν(ν(ν(ν(ν(ν(ν(ν(0)))))))))

Tabelle 2.2: Illustration des Nachfolgers einer natürlichen Zahl. Beachten Sie, dass 0 nicht Nachfolger
einer anderen natürlichen Zahl ist.

Abbildung 2.2: Giuseppe Peano (1858-1932)

EDIT Aufgabe 2.1

Beweisen Sie, dass 2 eine natürliche Zahl ist. Verwenden Sie dazu lediglich die beiden ersten
Peano-Axiome.

Bereits Giuseppe Peano stellte fest, dass diese ersten beiden Axiome nicht ausreichend sind, um
unsere intuitive Vorstellung der natürlichen Zahlen einzufangen. Es könnte sein, dass wir bei dem
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Vorwärtszählen schliesslich wieder bei 0 ankommen. Betrachten wir dazu ein Modell der natürlichen
Zahlen, welches von 3 zurück zur 0 zählt, genauer: ν(0) ist 1, ν(1) ist 2, ν(2) ist 3, aber ν(3) ist wieder
0 (und gemäss der Definition von 4 auch gleich der 4). So erfüllt also auch die Menge {0, 1, 2, 3} die
ersten zwei Peano-Axiome und könnte als Menge der natürlichen Zahlen angesehen werden.

EDIT Aufgabe 2.2

Welches ist die kleinste Menge, welche die ersten zwei Peano-Axiome erfüllt?

Die Axiome 2.1 und 2.2 erlauben also auch Mengen, welche wir sicherlich nicht als Modelle der natür-
lichen Zahlen anschauen möchten. Wir müssen die erlaubten Nachfolger der Elemente der Mengen
weiter einschränken. Auf jeden Fall stellen wir fest, dass die 0 nicht Nachfolger einer natürlichen
Zahl sein soll und fordern deshalb:

Axiom 2.3:
Die 0 selbst ist nicht Nachfolger einer natürlichen Zahl. Es gilt also ν(n) 6= 0 für jede natürliche
Zahl n.

Bemerkung 2.2:
Wir bezeichnen mit N× die Menge der natürlichen Zahlen ohne die 0. Für jede natürliche
Zahl n soll der Nachfolger ν(n) von n wieder eine natürliche Zahl sein. Da gemäss Axiom 2.3
die 0 nicht Nachfolger einer natürlichen Zahl ist, können wir uns ν als Funktion

ν : N → N×,

n 7→ ν(n)

denken. Diese erhält eine natürliche Zahl n als Eingabe und liefert die natürliche Zahl ν(n),
welche nicht die 0 ist, als Ausgabe.

EDIT Aufgabe 2.3

Beweisen Sie, dass 0 6= 3 gilt. Verwenden Sie lediglich die ersten drei Peano-Axiome.

Betrachten Sie ein Zahlensystem, welches 0 enthält und für das gilt: ν(0) ist 1, ν(1) ist 2, ν(2) ist 3,
aber ν(3) bleibt 3 (also 4 = 3, 5 = 3, 6 = 3 und so weiter). Es ist auch ein Zahlensystem vorstellbar,
welches von 3 zurück zu 1 geht, also ν(3) = 1, ν(1) = 2, ν(2) = 3, ν(3) = 1 und so weiter. Die beiden
Beispiele erfüllen alle drei ersten Peano-Axiome. Das Problem ist, dass die ersten drei Peano-Axiome
erlauben, dass verschiedene natürliche Zahlen gleiche Nachfolger haben können. Diese Möglichkeit
wollen wir also ausschliessen. Dazu fügen wir das vierte Peano-Axiom hinzu:

Axiom 2.4:
Unterschiedliche natürliche Zahlen haben unterschiedliche Nachfolger. Sind also n, m natür-
liche Zahlen und n 6= m, dann gilt ν(n) 6= ν(m). Die Kontraposition dieser Aussage lautet:
Gilt ν(n) = ν(m), dann folgt n = m.

EDIT Aufgabe 2.4

Verwenden Sie die ersten vier Peano-Axiome, um zu beweisen, dass 1 6= 4 gilt.
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Wir wollen N als die Menge verstehen, welche die 0 enthält und alle Objekte, welche aus 0 durch
Inkrementieren erhalten werden kann. Diese Intuition wird schliesslich auf geniale Weise durch das
fünfte Peano-Axiom formalisiert. Dieses letzte Peano-Axiom formuliert auf mathematisch präzise
Weise, was mit „aus 0 durch Inkrementieren erhalten werden kann“, gemeint ist:

Axiom 2.5:
Enthält eine Teilmenge N ⊆ N das Element 0 und mit jedem n ∈ N auch den Nachfolger
ν(n) von n, so gilt N = N.

2.4.1 Kompakte Formulierung der Peano-Axiome

Unser Wissen über Funktionen und ihre Eigenschaften erlaubt uns, die fünf Axiome 2.1 bis 2.5,
kompakt und sehr präzise in der folgenden Definition zusammenzufassen:

Definition 2.2 (Formale Definition der natürlichen Zahlen):
Die natürlichen Zahlen sind eine Menge N, in der ein Element 0 ∈ N ausgezeichnet ist
und für die es eine Funktion ν : N → N× (siehe Bemerkung 2.2) mit den folgenden zwei
Eigenschaften gibt:

(N0) Die Funktion ν ist injektiv.
(N1) Enthält eine Teilmenge N ⊆ N das Element 0 und mit jedem n ∈ N auch den Nachfolger

ν(n) von n, so gilt N = N.

Dabei bezeichnet N× := N \ {0} die Menge der natürlichen Zahlen ohne die 0. Das Element ν(n)
heisst Nachfolger von n und ν heisst Nachfolgerfunktion. Die Eigenschaft (N1) ist identisch zum
Axiom 2.5 und wird auch Induktionsaxiom genannt.

EDIT Aufgabe 2.5

Weisen Sie nach, dass Definition 2.2 zu den Peano-Axiomen äquivalent ist.

Trophy Aufgabe (Challenge) 2.6

Erfüllt auch die Menge {0, 2, 4, 6, . . .} der geraden natürlichen Zahlen die Peano-Axiome?

Trophy Aufgabe (Challenge) 2.7

Begründen Sie, dass die Nachfolgerfunktion ν : N → N× bijektiv ist.

Tipp: Verwenden Sie die beiden Eigenschaften N0 und N1 in Definition 2.2.

14

mailto:thomas.graf@edu.zh.ch


Induktion und Rekursion « Thomas Graf, Informatik, 2026

Bemerkung 2.3:

(a) Aus den grundlegenden Axiomen der Mengenlehre folgt, dass es in der Tat Systeme
(N, 0, ν) gibt, welche die Peano-Axiome erfüllen. Diese Modelle der natürlichen Zahlen
sind bis auf die Benennung der Elemente gleichwertig und ergeben dieselbe Mathema-
tik. Beispielsweise könnte man anstelle der arabischen Zahlenschrift auch die römische
Zahlenschrift verwenden. Die konkrete Wahl der Symbole ist mathematisch nicht von
Bedeutung. Deshalb ist es sinnvoll, von den natürlichen Zahlen zu sprechen.

(b) Die aus der Schule bekannten Rechenregeln in den natürlichen Zahlen (zum Beispiel
das Distributivgesetz) lassen sich allein durch logische Folgerungen aus den Peano-
Axiomen beweisen. Diese Beweise werden zum Beispiel in dem Buch [4] geführt, welches
im Jahr 1930 erschien. Im Vorwort dieses Buchs schreibt der Autor Edmund Landau
unter anderem:

• „Ich setze nur logisches Denken und die deutsche Sprache als bekannt voraus;
nichts aus der Schulmathematik oder gar der höheren Mathematik.“

• „Bitte vergiss alles, was Du auf der Schule gelernt hast; denn Du hast es nicht
gelernt.“

Wir werden diese (recht umfangreichen) Beweise hier nicht führen. Besonders interes-
sierten Lesenden empfehlen wir in diesem Zusammenhang die entsprechenden Teile in
den Büchern [4, 2, 3] zu studieren.

Abbildung 2.3: Edmund Landau (1877-1938)
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Kapitel 3

Das Induktionsprinzip

Axiom 2.5 wird Prinzip der vollständigen Induktion genannt. Dieses Kapitel wird sich mit
diesem wichtigen Prinzip befassen. Sie werden sehen, welche enorm weitreichenden Konsequenzen
das Axiom 2.5 (Induktionsaxiom) der natürlichen Zahlen hat. Die Notation dieses Kapitels sowie
einige Beweise stammen aus Kapitel 5 in [3].

3.1 Einführende Beispiele

3.1.1 Teilbarkeit durch 2

Ihre gute Freundin Anika behauptet, eine mathematische Entdeckung gemacht zu haben. Sie hat
nämlich bemerkt, dass, wenn zu dem Quadrat n2 einer natürlichen Zahl n die Zahl n addiert wird,
die entstandene Summe stets gerade ist. Sie behauptet also, dass für jede natürliche Zahl n die Zahl
n2 + n gerade ist.

EDIT Aufgabe 3.1

Anika hat in der Vergangenheit schon öfters mathematische Behauptungen aufgestellt. Nicht
selten haben sich diese bei genauerer Untersuchung als falsch erwiesen. Bevor Sie also viel
Zeit in die genauere Analyse Anikas neuer Behauptung investieren, möchten Sie eine kurze
„Plausibilitätsprüfung“ durchführen. Schreiben Sie dazu ein Python-Programm, welches für
die ersten 100 natürlichen Zahlen n ∈ { m ∈ N ; 0 ≤ m < 100 } überprüft, ob n2 + n jeweils
gerade ist.

Das folgende Beispiel zeigt in aller Ausführlichkeit, wie das Prinzip der vollständigen Induktion
verwendet werden kann, um eine mathematische Vermutung zu beweisen.

Beispiel 3.1:
Wir betrachten erneut die Vermutung Ihrer Freundin Anika:

Für jedes n ∈ N ist die Zahl n2 + n gerade.

Wie lässt sich eine solche Vermutung überprüfen? Sicherlich können wir die Vermutung für ei-
nige natürliche Zahlen „von Hand“ durch simples „Nachrechnen“ überprüfen. In Aufgabe 3.1
haben Sie die Vermutung mit einem Computerprogramm für die ersten 100 natürlichen Zahlen
überprüft. Das Problem ist jedoch, dass wir (selbst unter Verwendung von Supercomputern)
immer nur endlich viele Zahlen überprüfen können. Wenn wir die Vermutung für 100 Milli-
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arden Zahlen geprüft haben, bleiben immer noch unendlich viele Zahlen, die wir noch nicht
betrachtet haben. Was wir benötigen, ist ein mathematisches Argument, welches grundsätz-
lich erklärt, warum die Vermutung stimmen muss. Ein solches mathematisches Argument
liefert uns das Prinzip der vollständigen Induktion. Um dieses direkt anwenden zu können,
definieren wir die „Hilfsmenge“

N :=
{

n ∈ N ; n2 + n ist gerade
}

.

Die so definierte Menge N enthält genau die natürlichen Zahlen, für welche die Zahl n2 + n
gerade ist, für welche also die Vermutung gilt. Somit ist die Vermutung bewiesen, wenn wir
nachweisen können, dass alle natürlichen Zahlen in N liegen, dass also die Gleichheit N = N
gilt. Es gilt somit:

(für jedes n ∈ N ist die Zahl n2 + n gerade) ⇐⇒ (N = N).

Nun besagt das Prinzip der vollständigen Induktion (Axiom 2.5), dass für eine Teilmenge
N ⊆ N tatsächlich N = N gilt, falls zwei Bedingungen erfüllt sind:

1. 0 ∈ N ,
2. ist n ∈ N , dann enthält N auch den Nachfolger ν(n) = n + 1.

Wir prüfen diese beiden Bedingungen separat:

1. In der Tat gilt 0 ∈ N , denn 02 + 0 = 0 und 0 ist gerade. X
2. Sei n ∈ N und somit n2 + n eine gerade Zahl. Wir müssen beweisen, dass auch ν(n) =

(n + 1) ∈ N gilt, dass also auch (n + 1)2 + (n + 1) eine gerade Zahl ist. Dazu betrachten
wir die folgende Berechnung:

(n + 1)2 + (n + 1) = n2 + 2n + 1 + (n + 1) = n2 + 3n + 2 =
n2 + n + (2n + 2) = n2 + n + 2(n + 1).

Betrachten wir den Ausdruck n2 + n+2(n+1). Wir wissen, dass die Zahl n2 + n gerade
ist (da n in der Menge N liegt). Die Zahl 2(n + 1) ist offensichtlich ebenfalls gerade.
Somit ist (n + 1)2 + (n + 1) als Summe zweier gerader Zahlen ebenfalls gerade. (Da die
Zahl n2 + n gerade ist, existiert eine natürliche Zahl k, sodass n2 + n = 2k. Dann ist
die Summe (n + 1)2 + (n + 1) = 2k + 2(n + 1) = 2(k + n + 1) das Doppelte der Zahl
k + n + 1 und somit gerade). X

Damit sind die Bedingungen des Prinzips der vollständigen Induktion erfüllt und die Gleich-
heit N = N (und dadurch die ursprüngliche Vermutung Anikas) bewiesen.

EDIT Aufgabe 3.2

Verwenden Sie das Prinzip der vollständigen Induktion, um zu beweisen, dass n5 − n für jede
natürliche Zahl n durch 5 teilbar ist.

3.1.2 Klingende Gläser

In dem Gasthaus Inn of the Prancing Pony stossen n Gäste auf das neue Jahr an. Jede Person
stösst mit jeder anderen (nicht mit sich selbst) genau einmal an. Wie viele Male klingen die Gläser
(wie viele Male wird angestossen)? Die folgende elegante Überlegung gibt uns eine Formel, um
die gesuchte Zahl rasch zu berechnen. Jede der n Personen stösst offensichtlich mit genau (n − 1)
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Personen an (mit allen anderen). Damit klingen die Gläser also n(n − 1)-mal. Die Formel ist so
aber noch nicht richtig, denn wir haben jedes Klingen doppelt gezählt (anstatt nur einfach). Stösst
nämlich Person A mit Person B an, dann haben wir dieses Anstossen einmal aus Sicht von A gezählt
und noch einmal aus Sicht von B. Somit müssen wir die gesuchte Zahl n(n − 1) noch durch den
Faktor 2 teilen. Die gesuchte Zahl ist also n(n − 1)/2.

Beispiel 3.2:
Diese Formel wollen wir nun mithilfe des Prinzips der vollständigen Induktion überprüfen.
Dazu definieren wir, wie bereits in Beispiel 3.1, die Behauptung in geeigneter Form. Für jedes
n ∈ N definieren wir also die Aussage A(n) als:

A(n) : ⇐⇒

Stossen n Personen (alle mit allen) an, klingen die Gläser genau n(n − 1)
2 Male.

Um das Prinzip der vollständigen Induktion direkt anwenden zu können, definieren wir erneut
eine „Hilfsmenge“ N der Form

N := { n ∈ N ; A(n) ist wahr } .

Somit ist die Vermutung bewiesen, wenn wir nachweisen können, dass alle natürlichen Zahlen
in N liegen, dass also die Gleichheit N = N gilt. Erneut prüfen wir die beiden Bedingungen
des Induktionsaxioms separat:

1. Die behauptete Formel besagt, dass n = 0 Personen genau 0 · (0−1) = 0-mal anstossen.
Diese ist offensichtlich korrekt und somit haben wir 0 ∈ N begründet. X

2. Sei n ∈ N und somit A(n) wahr. Wir müssen beweisen, dass auch ν(n) = (n + 1) ∈ N
gilt, dass also bei (n + 1) Personen genau (n + 1)n/2 Male die Gläser klingen.
Dazu stellen wir uns vor, dass erst n Personen im Restaurant sind und diese bereits
alle miteinander angestossen haben. Da A(n) wahr ist, wissen wir also, dass die Gläser
bereits genau n(n − 1)/2 Male klangen. Nun kommt eine weitere Person hinzu. Diese
Person stösst mit allen n bereits Anwesenden an. Damit klingen die Gläser genau n
weitere Male und insgesamt also

n(n − 1)
2 + n = n(n − 1) + 2n

2 = n(n − 1 + 2)
2 = (n + 1)n

2

Male. X

Somit ist die intuitiv gefundene Formel formal mithilfe des Prinzips der vollständigen Induk-
tion nachgewiesen.

3.2 Erklimmen einer Leiter
In Beispiel 3.1 und dem Beweis von Theorem 3.1 haben wir das Prinzip der vollständigen Induktion
als Beweistechnik verwendet. Dabei haben wir jeweils auf geschickte Weise eine „Hilfsmenge“ N
definiert und gezeigt, dass N die Menge aller natürlichen Zahlen N ist. Nun möchten wir aber ma-
thematische Aussagen beweisen und nicht unbedingt über Mengen sprechen. Deshalb ist es intuitiv
einfacher, im Beweisverfahren der vollständigen Induktion den Begriff der Menge durch den Begriff
der Aussage zu ersetzen. Um dies konkreter zu machen, betrachten wir nochmals Beispiel 3.1. In

18

mailto:thomas.graf@edu.zh.ch


Induktion und Rekursion « Thomas Graf, Informatik, 2026

dem Beispiel kann man für jedes n ∈ N die Aussage A(n) definieren als

A(n) : ⇐⇒ Die Zahl n2 + n ist gerade.

In der Sprache der Aussagen erhalten wir das folgende rezeptartige Beweisverfahren:

Zusammenfassung 3.1 (Beweis durch vollständige Induktion):
Für jedes n ∈ N sei A(n) eine Aussage. Wir wollen beweisen, dass A(n) für jedes n ∈ N richtig
ist. Der Beweis kann mithilfe des Prinzips der vollständigen Induktion erbracht werden, indem
wie folgt vorgegangen wird:

(a) Induktionsanfang: Es wird gezeigt, dass A(0) richtig ist.
(b) Induktionsschluss: Dieser besteht aus zwei Teilen:

(i) Induktionsvoraussetzung: Es sei n eine natürliche Zahl und A(n) sei richtig.
(ii) Induktionsschritt (n → n + 1): Man zeigt, dass aus der Induktionsvoraussetzung

(i), logischen Schlüssen und bereits als wahr erkannten Aussagen die Richtigkeit
von A(n + 1) abgeleitet werden kann.

Damit ist die Richtigkeit von A(n) für alle n ∈ N gezeigt.

Beachten Sie, dass das Prinzip der vollständigen Induktion dem Axiom 2.5 entspricht und als solches
nicht bewiesen werden kann. Was wir aber anbieten können, ist eine Metapher, welche das Prinzip
veranschaulicht:

Bemerkung 3.1 (Metapher der Leiter):
Die vollständige Induktion beweist, dass wir auf einer Leiter beliebig weit hochsteigen können,
indem sie beweist, dass wir den untersten Tritt (Induktionsanfang) erreichen können und, dass
wir von jedem Tritt den nächsthöheren Tritt erreichen können (Induktionsschluss).

EDIT Aufgabe 3.3

Erklären Sie, wie das rezeptartige Beweisverfahren in Zusammenfassung 3.1 aus Axiom 2.5
folgt. Tipp: Definieren Sie die „Hilfsmenge“

N := { n ∈ N ; A(n) ist richtig }

aller natürlichen Zahlen, für welche A(n) richtig ist.

EDIT Aufgabe 3.4

Beweisen Sie durch vollständige Induktion, dass für jede natürliche Zahl n die Zahl 5n − 1
durch 4 teilbar ist.

3.3 Zwei bedeutende Sätze über natürliche Zahlen
Das Prinzip der vollständigen Induktion ist in der Mathematik und Informatik von enormer Bedeu-
tung. Wir wollen in diesem anspruchsvollen Abschnitt noch mehr verdeutlichen, wie weitreichend
die Beweiskraft dieses Prinzips ist. Dazu möchten wir zwei bedeutende Sätze der Mathematik be-
sprechen und zeigen, wie diese aus dem Prinzip der vollständigen Induktion folgen.
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3.3.1 Wohlordnungsprinzip

Beachten Sie, dass die Menge der ganzen Zahlen Z kein Minimum (kleinstes Element) besitzt. Zu
jeder ganzen Zahl m ist offensichtlich m − 1 ebenfalls eine ganze Zahl, die (noch) kleiner ist als m.
Die Teilmenge {−3, −1, 0, 7} von Z hingegen besitzt −3 als Minimum.

Definition 3.1 (Minimum):
Es sei A eine nichtleere Menge, in der sich Elemente durch die Relation ≤ vergleichen lassen.
Ein Element m ∈ A heisst Minimum von A, falls

m ≤ x

für alle x ∈ A gilt. Das Minimum einer Menge A muss selbst Element von A sein. Beachten
Sie, dass A offensichtlich höchstens ein Minimum enthalten kann. Dieses wird mit min(A)
bezeichnet.

EDIT Aufgabe 3.5

(a) Welches ist das Minimum von N?
(b) Erklären Sie, warum das halboffene Intervall

(0, 1] := { x ∈ R ; 0 < x ≤ 1 }

kein Minimum besitzt.

Wir haben gesehen, dass durchaus nicht jede Menge ein Minimum besitzt. Das sogenannte Wohl-
ordnungsprinzip der natürlichen Zahlen garantiert uns aber, dass jede Teilmenge von N, welche
nicht die leere Menge ist, ein Minimum besitzt. Die leere Menge besitzt keine Elemente und somit
offensichtlich auch kein minimales Element. Weshalb ist das Wohlordnungsprinzip für uns interes-
sant? Dieses Prinzip kommt in den Beweisen einiger wichtiger mathematischer Behauptungen zum
Einsatz, so zum Beispiel in unserem Beweis des berühmten Fundamentalsatzes der Arithmetik, den
wir in Unterabschnitt 3.3.2 besprechen.

Definition 3.2 (untere Schranke):
Seien D eine Menge und A ⊆ D eine nichtleere Teilmenge von D. Jedes Element s ∈ D,
welches s ≤ a für alle a ∈ A erfüllt, heisst untere Schranke von A. Eine untere Schranke
von A muss selbst nicht ein Element von A sein.

Wir erkennen nun: Ein Element m ∈ R heisst Minimum von A ∈ R, falls m eine untere Schranke
von A ist und zusätzlich m ∈ A gilt.

Beispiel 3.3: (a) Die Zahlen −5, 0, 3, 4 sind Beispiele von unteren Schranken der Menge
A := {4, 7, 9, 18}. Da 4 ∈ A und 4 eine untere Schranke von A ist, gilt

min(A) = 4.

(b) Die Menge Z der ganzen Zahlen besitzt keine untere Schranke.
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EDIT Aufgabe 3.6

Welches ist die grösste untere Schranke des halboffenen Intervalls

(0, 1] := { x ∈ R ; 0 < x ≤ 1 }?

EDIT Aufgabe 3.7

(a) Sei A ⊆ N eine Teilmenge der natürlichen Zahlen. Angenommen n ∈ N sei eine untere
Schranke von A, wobei aber n selbst nicht Element der Menge A ist (n ist also nicht
das Minimum von A). Begründen Sie, warum auch der Nachfolger n + 1 eine untere
Schranke von A ist.

(b) Sei A ⊆ N eine Teilmenge der natürlichen Zahlen mit der Eigenschaft, dass jede na-
türliche Zahl eine untere Schranke von A ist. Beweisen Sie, dass A die leere Menge ist.
Tipp: Nehmen Sie an, A sei nichtleer. Dann enthält A also (zumindest) ein Element
m ∈ A. Betrachten Sie nun die natürliche Zahl m + 1.

Wir verwenden nun das Prinzip der vollständigen Induktion, um das Wohlordnungsprinzip zu bewei-
sen. Wir haben den Beweis dieses Satzes inzwischen recht gut vorbereitet. Dennoch ist der Beweis
recht anspruchsvoll! Nehmen Sie sich Zeit, um die einzelnen Schritte zu studieren.

Theorem 3.1 (Wohlordnungsprinzip):
Jede nichtleere Teilmenge der natürlichen Zahlen besitzt ein Minimum.

Beweis 3.1:
Wir beweisen den Satz durch Widerspruch. Angenommen eine Teilmenge A ⊆ N sei nichtleer
und besitze kein Minimum. Dann definieren wir zu A die „Hilfsmenge“

N := { n ∈ N ; n ist untere Schranke von A }

aller unteren Schranken von A. Mit dem Prinzip der vollständigen Induktion beweisen wir, dass
jede natürliche Zahl eine untere Schranke von A ist, dass also N = N gilt. In Aufgabe 3.6 haben
Sie bereits bewiesen, dass dies nur möglich ist, falls A die leere Menge ist. Um N = N durch die
vollständige Induktion zu beweisen, müssen wir, wie immer, zwei Bedingungen prüfen:

1. 0 ∈ N ,
2. Ist n ∈ N , dann enthält N auch den Nachfolger ν(n) = n + 1 von n. (Ist n eine untere

Schranke von A, dann ist auch n + 1 eine untere Schranke von A.)
Wir prüfen diese beiden Bedingungen separat:

1. 0 ist die kleinste Zahl in N und somit gilt 0 ≤ a für jedes Element a ∈ A. Damit ist 0 eine
untere Schranke von A und wir haben 0 ∈ N gezeigt. X

2. Es sei n ∈ N und somit n eine untere Schranke von A. Beachten Sie, dass n nicht in A
liegt, denn sonst würde die Menge A die Zahl n als ihr Minimum besitzen (doch A besitzt
gemäss Annahme kein Minimum). Damit ist n ∈ N eine untere Schranke von A, wobei aber
n selbst nicht Element der Menge A ist. In Aufgabe 3.7 haben Sie gezeigt, dass dann auch
n + 1 eine untere Schranke von A und somit ein Element von N ist. X

Aus dem Prinzip der vollständigen Induktion folgt nun, dass N = N gilt. Also ist jede natürliche
Zahl eine untere Schranke von A. Somit ist A ⊆ N eine Teilmenge der natürlichen Zahlen mit
der Eigenschaft, dass jede natürliche Zahl eine untere Schranke von A ist. In Aufgabe 3.7 haben
Sie gezeigt, dass A somit die leere Menge ist. Damit haben wir den gewünschten Widerspruch
A 6= ∅ und A = ∅ gefunden. Somit besitzt jede nichtleere Teilmenge von N ein Minimum.
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3.3.2 Fundamentalsatz der Arithmetik

Die Tatsache, dass jede Teilmenge der natürlichen Zahlen ein Minimum besitzt, erlaubt uns, den
berühmten Fundamentalsatz der Arithmetik zu beweisen.

Theorem 3.2:
Fundamentalsatz der Arithmetik (Primfaktorzerlegung) Ausser 0 und 1 kann jede natürliche
Zahl als Produkt endlich vieler Primzahlen dargestellt werden. Diese Darstellung ist bis auf
die Reihenfolge der Faktoren eindeutig und wird Primfaktorzerlegung genannt. Erlaubt sind
auch Produkte, die nur aus einem Faktor bestehen.

Beispiel 3.4: (a) Die Zahl 63 besitzt die Primfaktorzerlegung 63 = 3 · 3 · 7 und die Zahl
286 die Darstellung 286 = 2 · 11 · 13.

(b) Die Primfaktorzerlegung der Primzahl 19 ist 19 selbst. Sie besteht also aus dem Produkt
mit nur dem einen Faktor 19. Jede Primzahl p ist also bereits in Primfaktoren zerlegt.

Beweis 3.2:
Wir wollen nun den Fundamentalsatz (Theorem 3.2) beweisen. Dies tun wir unter der Ver-
wendung des Wohlordnungsprinzips. Allerdings zeigen wir nur, dass immer eine Zerlegung in
Primfaktoren existiert. Auf den Beweis der Eindeutigkeit verzichten wir an dieser Stelle.
Angenommen die Behauptung sei falsch. Dann gibt es eine natürliche Zahl ≥ 2, welche keine
Primfaktorzerlegung besitzt. Mit anderen Worten: Die Menge

A := { n ∈ N ; n ≥ 2 und n besitzt keine Primfaktorzerlegung }

ist nichtleer. Dann liegt in A aber gemäss Theorem 3.1 eine kleinste Zahl n0 ≥ 2, welche nicht
in Primfaktoren zerlegt werden kann. Insbesondere ist n0 keine Primzahl. Da n0 keine Primzahl
ist, existieren natürliche Zahlen n und m, sodass n0 = n · m und n, m > 1. Es ist klar, dass die
Faktoren n und m jeweils kleiner als das Produkt n0 sind. Da aber n0 die kleinste natürliche Zahl
ist, welche keine Primfaktorzerlegung besitzt, können sowohl n als auch m jeweils als Produkt
endlich vieler Primzahlen geschrieben werden. Dann ist aber auch n0 als Produkt von n und m
ein Produkt endlich vieler Primzahlen. Dieses Produkt wäre dann aber eine Primfaktorzerlegung
von n0. Das ist ein Widerspruch.

EDIT Aufgabe 3.8

Die Zahl 30031 lässt sich als Produkt

30031 = p1p2

zweier verschiedener Primfaktoren p1 und p2 schreiben. Schreiben Sie ein Python-Programm,
welches p1 und p2 berechnet.
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EDIT Aufgabe 3.9

Der griechische Mathematiker Euklid von Alexandria bewies bereits im 3. Jahrhundert v.
Chr., dass unendlich viele Primzahlen existieren. Dazu nahm er (indirekter Beweis) an, die
Menge P aller Primzahlen sei endlich. Wir können P also schreiben als

P = {p1, p2, p3, . . . , pn} .

Nun betrachtete Euklid das Produkt dieser n Primzahlen und addierte dazu 1:

m := p1 · p2 · p3 · . . . · pn + 1.

Betrachten Sie die so entstandene Zahl m. Welche Eigenschaften hat m gemäss unseren
Annahmen? Vervollständigen Sie den Beweis.

Bemerkung 3.2:
Beachten Sie, dass das Vorgehen in Aufgabe 3.9 in keinster Weise ein Rezept zur Konstruktion
von Primzahlen liefert. Beispielsweise gilt

2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031,

doch Sie haben in Aufgabe 3.8 bereits gezeigt, dass 30031 keine Primzahl ist.
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3.4 Leicht verallgemeinertes Induktionsprinzip
Wie Sie sofort nachprüfen können, ist die mathematische Aussage n2 −2n−1 > 0 für die natürlichen
Zahlen n = 0, 1, 2 falsch. Nun möchten Sie aber beweisen, dass die Aussage für alle n ∈ N mit n ≥ 3
gilt. Unser Beweisverfahren in Zusammenfassung 3.1 muss also dahingehend angepasst werden, dass
es uns auch erlaubt, den Induktionsanfang bei einer beliebigen Zahl n0 ∈ N anzusetzen, wobei n0
auch grösser als 0 sein darf. Diese sehr geringfügige (aber wichtige) Verallgemeinerung fassen wir in
dem folgenden Satz zusammen:

Theorem 3.3 ((leicht verallgemeinertes) Induktionsprinzip):
Sei n0 ∈ N und für jedes n ∈ N mit n ≥ n0 sei A(n) eine Aussage. Zudem gelte:

(i) A (n0) ist richtig.
(ii) Für jede Zahl n ∈ N mit n ≥ n0 folgt aus der Richtigkeit von A(n) die Richtigkeit von

A(n + 1).
Dann ist A(n) für jedes n ≥ n0 richtig.

Beweis 3.3:
Der Beweis ist fast komplett analog zu der Begründung in Aufgabe 3.3. Der einzige Unterschied
besteht darin, dass wir einen Index „verschieben“ müssen. Intuitiv gesprochen, möchten wir, dass
wir immer noch bei 0 beginnen, anstelle von A(0) aber bereits A (n0) betrachten. Wir definieren
also die Menge N der um „n0 verschobenen Aussagen“

N := { n ∈ N ; A (n + n0) ist richtig } .

Beachten Sie, dass für n = 0 dadurch bereits die Aussage A (0 + n0) = A (n0) gemeint ist. Mit
dem Induktionsaxiom 2.5 folgt sofort N = N und somit ist A(n) für jedes n ≥ n0 richtig.

Bemerkung 3.3:
Wir werden das leicht verallgemeinerte Induktionsprinzip von Theorem 3.3 ebenfalls einfach
nur Induktionsprinzip nennen.
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3.5 Übungsaufgaben zum Induktionsprinzip

EDIT Aufgabe 3.10

Setzen Sie n0 := 3 und beweisen Sie die Korrektheit der Ungleichung n2 − 2n − 1 > 0 für alle
n ∈ N mit n ≥ n0 mittels vollständiger Induktion.

EDIT Aufgabe 3.11

Sie vermuten, dass die Zahl n3 −n für jede natürliche Zahl n ≥ 2 durch 3 teilbar ist. Beweisen
Sie diese Behauptung durch vollständige Induktion. Finden Sie auch einen direkten Beweis
(welcher nicht das Induktionsprinzip verwendet)? Tipp für den direkten Beweis: Schreiben
Sie die Zahl n3 − n als Produkt dreier Faktoren.

EDIT Aufgabe 3.12 Bernoullische Ungleichung

Es sei x ∈ R mit x ≥ −1 eine reelle Zahl. Für jede natürliche Zahl n gilt die Bernoullische
Ungleichung (1 + x)n ≥ 1 + nx.

Abbildung 3.1: Jakob I Bernoulli (1654-1705) war ein Schweizer Mathematiker und Mitglied
der angesehenen Gelehrtenfamilie Bernoulli.
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EDIT Aufgabe 3.13

In die Ebene wurden n ∈ N verschiedene Geraden gelegt. Die Geraden teilen die Ebene in
verschiedene Bereiche. Wir sagen, dass zwei Bereiche benachbart sind, falls sie sich eine (mög-
licherweise unendlich lange) Grenzlinie teilen. Falls zwei Bereiche lediglich einen Grenzpunkt
teilen (keine Grenzlinie), sind sie nicht benachbart.

Wir haben zwei Farben zur Verfügung und müssen jeden Bereich mit genau einer dieser Far-
ben einfärben. Eine Färbung wird zulässig genannt, falls zusätzlich keine zwei benachbarten
Bereiche mit derselben Farbe gefärbt wurden. In Abbildung 3.2 ist eine mögliche zulässige
Färbung für zwei Geraden (n = 2) gezeigt.

Skizzieren Sie eine zulässige Färbung für n = 3 für den Fall, dass sich alle drei Geraden
jeweils gegenseitig schneiden. Beweisen Sie anschliessend durch vollständige Induktion, dass
es immer möglich ist, die verschiedenen Bereiche mit nur zwei Farben so zu färben, dass keine
zwei benachbarten Bereiche von derselben Farbe sind.

g1

g2

(a) zwei sich schneidende Geraden

g1

g2

(b) zulässige Färbung für n = 2

Abbildung 3.2: Beispiel einer zulässigen Färbung für n = 2. Beachten Sie, dass die beiden
goldenen Bereiche sich nur einen Grenzpunkt (keine Grenzlinie) teilen und somit nicht be-
nachbart sind. Das Gleiche gilt für die beiden blauen Bereiche. Zwei sich schneidende Geraden
teilen die Ebene in vier Bereiche ein. Zwei parallele Geraden teilen die Ebene in drei Bereiche
ein.
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EDIT Aufgabe 3.14

Die Idee für das folgende scheinbare Paradoxon wird häufig dem ungarischen Mathematiker
George Pólya zugeschrieben. Pólya war von 1914 bis 1940 Professor der Mathematik an der
ETH Zürich. Das scheinbare Paradoxon besteht darin, dass vermeintlich korrekt bewiesen
wird, dass alle Pferde dieselbe Farbe haben (alle Zahlen sind gleich / alle Mädchen haben
dieselbe Augenfarbe).

Erklären Sie ganz präzise, an welcher Stelle / welchen Stellen die folgende Argumentation
fehlerhaft ist.

Behauptung:

Wir verwenden Theorem 3.3 um zu beweisen, dass alle Pferde dieselbe Farbe haben. Dazu
definieren wir für jedes n ∈ N× die Aussage A(n) als

A(n) : ⇐⇒ In einer Menge von n Pferden haben alle dieselbe Farbe.

Wir behaupten die Richtigkeit von A(n) für alle n ∈ N×.

Beweis 3.4: (a) Induktionsanfang: A(1) ist richtig, denn in einer Menge mit nur einem
Pferd haben offensichtlich alle Pferde dieselbe Farbe. Somit stimmt die Aussage für
n = 1.

(b) Induktionsschluss:
(i) Induktionsvoraussetzung: Es sei n ≥ 1 eine natürliche Zahl und A(n) sei richtig.

Das heisst, in einer Menge von n Pferden haben alle dieselbe Farbe.
(ii) Induktionsschritt (n → n+1): Durch Hinzufügen eines weiteren (neuen) Pferdes

p′ zu einer Menge von n Pferden erhalten wir eine Menge von n + 1 Pferden.
Nun nehmen wir ein Pferd p̃, welches aber nicht p′ ist (p̃ 6= p′), aus der Menge
heraus und erhalten dadurch wieder eine Menge von n Pferden. In dieser neuen
Menge, die p′ enthält, haben gemäss Induktionsvoraussetzung alle Pferde die-
selbe Farbe. Damit hat aber das neue Pferd p′ dieselbe Farbe wie die n anderen.
Nun fügen wir das entfernte Pferd p̃ wieder zur Menge hinzu und erhalten ei-
ne Menge mit n + 1 Pferden, welche alle dieselbe Farbe haben. Dies zeigt den
Induktionsschritt.

Damit ist die Richtigkeit von A(n) für alle n ∈ N× gezeigt. Somit sind in jeder (beliebigen)
endlichen Menge von Pferden nur Pferde derselben Farbe enthalten. Das geht aber nur,
wenn tatsächlich alle Pferde dieselbe Farbe haben.
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3.6 Starke Induktion
Das Induktionsprinzip (Theorem 3.3) verlangt, dass zum Nachweis der Richtigkeit von A(n + 1),
nebst bereits bekanntem Wissen, lediglich die Richtigkeit von A(n) verwendet werden darf. Manch-
mal wäre es aber sehr nützlich, zum Nachweis von A(n+1) nebst A(n) zusätzlich noch die Aussagen
A(k) mit k < n annehmen zu dürfen. Durch diese zusätzlichen Annahmen wird der Nachweis der
Korrektheit von A(n + 1) entweder erleichtert oder bleibt genauso schwierig wie im bisherigen In-
duktionsschritt. Sicherlich wird der Nachweis dadurch nicht schwieriger. Man sagt dann, dass wir
stärkere Annahmen treffen.

Theorem 3.4 (starke Induktion):
Sei n0 ∈ N und für jedes n ∈ N mit n ≥ n0 sei A(n) eine Aussage. Zudem gelte:

(i) A (n0) ist richtig.
(ii) Für jede Zahl n ∈ N mit n ≥ n0 gilt:

Aus der Richtigkeit der Aussagen A(k) für n0 ≤ k ≤ n folgt die Richtigkeit von A(n+1).
Dann ist A(n) für jedes n ≥ n0 richtig.

Bemerkung 3.4:
Die starke Induktion besagt im Grunde, dass wir uns den Nachweis des Induktionsschritts
(im Vergleich zu Theorem 3.3) durch zusätzliche (stärkere) Annahmen vereinfachen dürfen
und trotzdem die komplette Aussagekraft von Theorem 3.3 behalten.

Beispiel 3.5:
Auf einer Auslandsreise sprechen wir mit anderen Touristen über Währungen verschiedener
Länder. Der US-Amerikaner Doug kennt sich gut mit der Geschichte seines Landes aus und
erzählt uns, dass für eine gewisse Zeit in den noch jungen vereinigten Staaten 4-Dollarmünzen
und 5-Dollarmünzen geprägt wurden. Diese kunstvollen Münzen sind in Abbildung 3.3 ge-
zeigt.

(a) 4-Dollarmünze „Stella“ (b) 5-Dollarmünze „Half Eagle“

Abbildung 3.3: US-amerikanische 4-Dollar- und 5-Dollarmünze

Doug findet es schade, dass diese Münzen nicht mehr geprägt werden. Schliesslich liesse sich
jeder ganzzahlige Dollar-Betrag, der grösser als 11 Dollar ist, alleine durch eine Kombination
dieser beiden Münzen auszahle — dies natürlich nur unter der Annahme, dass beliebig viele
Exemplare von beiden Münzen zur Verfügung stehen.

Als kritische Menschen sind wir nicht bereit, Doug einfach so zu glauben. Um Dougs Behaup-
tung zu überprüfen, verwenden wir die starke Induktion (Theorem 3.4). Wir definieren für
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jedes n ∈ N die Aussage A(n) als

A(n) : ⇐⇒ „Der Dollar-Betrag n kann durch eine Kombination aus 4-Dollarmünzen und
5-Dollarmünzen ausbezahlt werden.“

Dougs Behauptung besagt also, dass A(n) für jedes n ∈ N mit n ≥ 12 gilt.

Der Betrag n0 = 12 kann wegen 12 = 3 · 4 + 0 · 5 durch drei 4er und null 5er ausbezahlt
werden. Somit stimmt A(n0) = A(12). Zum Nachweis von A(n0 + 1) = A(13) dürften wir
A(12) verwenden. Zum Nachweis von A(14) dürften wir A(12) und A(13) verwenden und
zum Nachweis von A(15) gar A(12), A(13) und A(14). Wir sehen jedoch sofort, dass

13 = 2 · 4 + 1 · 5, 14 = 1 · 4 + 2 · 5, 15 = 0 · 4 + 3 · 5,

und somit sind nebst A(12) auch A(13), A(14) und A(15) nachgewiesen.

Sei nun n ∈ N mit n ≥ 15. Wir beweisen, dass aus der Richtigkeit von A(k) für 12 ≤ k ≤ n
die Richtigkeit von A(n + 1) folgt. Wir betrachten den Dollar-Betrag n + 1 − 4. Offensichtlich
gilt 12 ≤ n + 1 − 4 ≤ n. Gemäss (starker) Induktionsannahme kann der Betrag n + 1 − 4 aber
durch eine Kombination aus 4-Dollarmünzen und 5-Dollarmünzen ausbezahlt werden. Dies
ist die Aussage A(n + 1 − 4) = A(n − 3). Durch das Hinzufügen einer einzigen 4-Dollarmünze
zu dieser Kombination erhalten wir eine gewünschte Auszahlung des Dollar-Betrags n + 1.

EDIT Aufgabe 3.15

Diese Aufgabe bezieht sich auf Beispiel 3.5. Schreiben Sie ein einfaches Python-Programm,
welches für einen gegebenen ganzzahligen Dollar-Betrag n ≥ 12 sämtliche möglichen Auszah-
lungen durch 4-Dollarmünzen und 5-Dollarmünzen ausgibt.

Tipp: Verwenden Sie eine geschachtelte Schleife (eine Doppel-Schleife).

Wir sind noch einen Beweis von Theorem 3.4 schuldig:

Beweis 3.5:
Wir beweisen Theorem 3.4. Angenommen der Satz sei falsch und somit A(n) nicht jedes n ≥ n0
richtig. Dann ist die Menge

N := { n ∈ N ; n ≥ n0 und A(n) ist falsch }

nichtleer. Gemäss Theorem 3.1 besitzt die Menge N ein minimales Element m. Da A(n0) wegen
Bedingung (i) richtig ist, muss m > n0 gelten. Es existiert eine eindeutige natürliche Zahl n mit
n + 1 = m. Aufgrund der Definition von m gilt, dass die Aussagen A(k) für alle natürlichen
Zahlen k mit n0 ≤ k ≤ n richtig sind. Dann garantiert Bedingung (ii) aber die Richtigkeit von
A(n + 1) = A(m). Doch dies ist nach der Definition von m unmöglich und wir haben einen
Widerspruch gefunden.
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EDIT Aufgabe 3.16

Der junge Tim besitzt beliebig viele Holzklötze der Länge 7 und beliebig viele der Länge 8.
Klötze anderer Längen hat er keine.

(a) Tim weiss, dass sein Plüschkrokodil die Länge 38 hat. Nun möchte er mit seinen Klötzen
eine Strecke derselben Länge bauen. Doch bislang blieben alle seine Versuche erfolglos.
Helfen Sie Tim, indem Sie ein Python-Programm schreiben, welches Ihnen angibt, wie
viele Klötze der Länge 7 und wie viele der Länge 8 benötigt werden, um die Strecke zu
bauen.

(b) Weisen Sie nach, dass es mit Tims Klötzen nicht möglich ist, eine Strecke der Länge 41 zu
bauen. Schreiben Sie dazu ein Python-Programm, welches alle denkbaren Möglichkeiten
ausprobiert.

(c) Beweisen Sie mithilfe von Theorem 3.4 zur starken Induktion, dass jede Strecke der
Länge n ∈ N mit n ≥ 42 mit Tims Klötzen gebaut werden kann.

EDIT Aufgabe 3.17 kommutative Verknüpfung

Seien + und · assoziative und kommutative Verknüpfungen auf einer Menge X, welche das
Distributivgesetz

(x + y) · z = x · z + y · z

für x, y, z ∈ X erfüllen. Beweisen Sie mithilfe von Theorem 3.4 zur starken Induktion die
Richtigkeit des „verallgemeinerten“ Distributivgesetztes:

A(n) : ⇐⇒ c
n∑

k=0
(xk) =

n∑
k=0

(cxk)

für alle n ∈ N. Dabei sind c ∈ X und (xk) eine Folge in X.
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3.7 Lösungen der Aufgaben

31

mailto:thomas.graf@edu.zh.ch


Kapitel 4

Rekursion

4.1 Fakultät
Drei (unterscheidbare) Personen A, B und C stellen sich in der Mensa in einer Warteschlange an.
Wie viele verschiedene Warteschlangen sind möglich? In der vordersten Position der Warteschlan-
ge platzieren wir eine der drei Personen A, B oder C. Für die vorderste Position haben wir also
drei Wahlmöglichkeiten. In der mittleren Position muss genau eine der verbleibenden zwei Perso-
nen positioniert werden (zwei Wahlmöglichkeiten). Die hinterste Position muss schliesslich von der
noch verbleibenden Person besetzt werden (eine Möglichkeit). Insgesamt gibt es also (gemäss den
Rechengesetzen der Kombinatorik)

3 · 2 · 1 = 6

verschiedene Möglichkeiten, drei Personen in einer Reihe anzuordnen. Analog sieht man ein, dass es

n · (n − 1) · . . . · 3 · 2 · 1

Möglichkeiten gibt, n ∈ N Personen in einer Warteschlange anzuordnen. Es gibt eine Möglichkeit,
0 Personen anzuordnen, nämlich in der „leeren Warteschlange“.

Beispiel 4.1:
Es gibt 5 · 4 · 3 · 2 · 1 = 120 Möglichkeiten, fünf Personen in einer Reihe anzuordnen.

Da das Produkt n · (n − 1) · . . . · 3 · 2 · 1 häufig in Erscheinung tritt, besitzt es einen eigenen Namen:
Die Fakultät von n und wird n! oder fak(n) geschrieben. So ist zum Beispiel 5! = 5 ·4 ·3 ·2 ·1 = 120.

EDIT Aufgabe 4.1

Wir gehen davon aus, dass Sie bereits das Produkt 12! berechnet haben. Wie können Sie
dieses Vorwissen einsetzen, um 13! relativ schnell zu berechnen? Wie lässt sich für n ∈ N×

die Fakultät n! aus (n − 1)! berechnen?

Die in Aufgabe 4.1 gemachte Beobachtung ist zwar einfach, hat aber dennoch bedeutende Implika-
tionen. Um 5! zu berechnen, müssen wir lediglich multiplizieren können und wissen, wie 4! berechnet
wird. Das Problem der Berechnung von 5! lässt sich also auf eine Multiplikation und die Berechnung
von 4! reduzieren. Doch genau gleich verhält es sich mit dem Problem der Berechnung von 4!. Diese
Reduktion auf immer kleinere, aber gleichartige Probleme kann so lange fortgeführt werden, bis wir
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bei 0! ankommen. Betrachten Sie die folgende Berechnung:

5! = 5 · 4 · 3 · 2 · 1︸ ︷︷ ︸
4!

4! = 4 · 3 · 2 · 1︸ ︷︷ ︸
3!

3! = 3 · 2 · 1︸︷︷︸
2!

2! = 2 · 1︸︷︷︸
1!

1! = 1 · 0!︸︷︷︸
1

= 1

Durch „Rückwärtseinsetzen“ erhalten wir nun den Wert für 5!:

1! = 1 · 0! = 1
2! = 2 · 1! = 2 · 1 = 2
3! = 3 · 2! = 3 · 2 = 6
4! = 4 · 3! = 4 · 6 = 24
5! = 5 · 4! = 5 · 24 = 120.

Nach diesen Betrachtungen ist plausibel, dass Folgendes eine sinnvolle Definition der Fakultät ist:

Definition 4.1 (Fakultät):
Es sei n eine natürliche Zahl. Dann definieren wir die Fakultät n! von n durch:

n! :=
{

1, falls n = 0, (Rekursionsanfang)
n(n − 1)!, falls n ≥ 1. (Rekursionsschritt)

(4.1)

Beachten Sie, dass Definition 4.1 der Fakultät selbst die Fakultät verwendet! Eine auf diese Weise
definierte Funktion wird rekursiv genannt.

4.2 Finde den Star! (konstruktive Induktion)
Das folgende Beispiel stammt aus [6].

Definition 4.2 (finde den Star):
In einem Raum befinden sich n ∈ N Personen mit n ≥ 2 ist. Wir wollen den Star unter diesen
n Personen finden. Ein Star ist definiert als eine Person, welche niemanden anderen kennt,
jedoch von allen gekannt wird. Die einzige erlaubte Operation, um einen Star zu identifizieren,
ist, eine Person A zu fragen:

„Kennst Du Person B?“,

wobei A 6= B gilt. Das Problem finde den Star besteht nun darin, den Star unter den n
Personen in dem Raum zu identifizieren oder herauszufinden, dass es gar keinen Star unter
diesen n Personen gibt. Es ist also nicht garantiert, ob unter den n Personen ein Star ist!
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EDIT Aufgabe 4.2

Begründen Sie, warum es unter n Personen in einem Raum nicht zwei verschiedene Stars
geben kann.

Wir wollen das Problem finde den Star mit möglichst wenigen Fragen (Operationen) finden. Eine
naive Lösung besteht darin, jede Person über jede andere zu befragen („alle mit allen“) . Für n = 4
könnte ein Resultat einer solchen Befragung wie folgt aussehen:

- 1 2 3 4
1 - Ja Nein Nein
2 Nein - Nein Nein
3 Ja Ja - Nein
4 Ja Ja Ja -

Dabei bedeutet der Eintrag Nein, dass Person 2 die Person 4 nicht kennt und somit die Frage
„Kennst Du Person 4?“ mit „Nein“ beantwortet. Hier ist Person 2 der Star. Bei n Personen werden
bei diesem Vorgehen offensichtlich genau n(n−1) Fragen gestellt (jede der n Personen wird zu allen
n − 1 anderen befragt).

Wir wollen versuchen, die Anzahl der Fragen zu reduzieren. Dazu wenden wir ein Vorgehen an,
welches manchmal konstruktive Induktion genannt wird. Wir zerlegen das Problem, den Star unter
n Personen zu finden, in kleinere Probleme:

• Für n = 2 genügen zwei Fragen.
• Sei n > 2: Schicke eine Person A weg. Finde nun den Star unter n − 1 Personen (kleineres

Problem). Überprüfe danach A mit 2(n − 1) Fragen.

Doch dieses Vorgehen können wir weiter fortsetzen und dieselbe Strategie auf das Problem mit
n − 1 Personen (das kleinere Problem) anwenden. Schliesslich gelangen wir zu dem Problem mit 2
Personen, für welches zwei Fragen genügen. Insgesamt stellen wir also fest:

F (n) =
2(n − 1) + F (n − 1) =
2(n − 1) + 2(n − 2) + F (n − 2) =
2(n − 1) + 2(n − 2) + 2(n − 3) + F (n − 3) =

...
2(n − 1) + 2(n − 2) + 2(n − 3) + 2(n − 4) + . . . + 2 =

2(1 + 2 + 3 + . . . + (n − 2) + (n − 1)) kleiner Gauss=

2
(

n(n − 1)
2

)
=

n(n − 1).

Somit haben wir gegenüber der ursprünglichen naiven Lösung (befrage alle zu allen) nichts gewon-
nen. Zum Glück ist es aber kein grosser Aufwand unseren Ansatz der konstruktiven Induktion stark
zu verbessern und somit zu retten. Die Idee der Verbesserung besteht darin, sicherzustellen, dass
die Person, welche wir aus dem Raum schicken, kein Star ist.
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EDIT Aufgabe 4.3

Erklären Sie, warum eine einzige Frage an eine beliebige Person im Raum stets genügt, um
eine Person zu identifizieren, welche sicherlich kein Star ist.

Zum Schluss bleiben zwei Personen, von denen möglicherweise eine Person X der Star ist. Wir
überprüfen mit jeder Person, die draussen ist, ob X ein Star sein kann. Mit dieser Verbesserung
erhalten wir F (2) = 2 und F (n) = 1 + F (n − 1) + 2 für n ≥ 3, also insgesamt:

F (n) =
{

2, falls n = 2,
1 + F (n − 1) + 2, falls n ≥ 3.

(4.2)

Ähnlich wie bei unserer Betrachtung der Fakultät, sehen wir auch hier, dass sich die Bestimmung der
Anzahl benötigter Fragen F (n) bei n Personen auf die Bestimmung des kleineren (aber analogen)
Problems F (n − 1) reduzieren lässt.

EDIT Aufgabe 4.4

Wir haben für die benötigten Fragen F (n) für einen Raum mit n Personen die Beziehung
in Gleichung (4.2) gefunden. Wir vermuten, dass wir den Wert für F (n) durch wiederholte
Reduktion auf kleinere Probleme wie folgt „entpacken“ können:

F (n) = 3 + F (n − 1) = 2 · 3 + F (n − 2) = . . . = 3 · (n − 2) + 2 = 3n − 4.

Beweisen Sie durch vollständige Induktion, dass F (n) := 3n − 4 tatsächlich Gleichung (4.2)
erfüllt. Berechnen Sie schliesslich, wie viele Fragen wir mit diesem Verfahren bei n = 1000
Personen benötigen.
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4.3 Rekursion in Algorithmen
In diesem Abschnitt wollen wir beginnen zu verstehen, wie Probleme rekursiv mithilfe von Pro-
grammen gelöst werden können. Zum Einstieg betrachten wir nochmals die (rekursive) Definition
der Fakultät in Gleichung (4.1). Lassen Sie uns an dieser Stelle wagemutig sein! Wir „übersetzen“ die
Definition direkt in die Python-Programmiersprache und lassen uns von dem Ergebnis überraschen:

def factorial(n):
if n == 0:

return 1 # Rekursionsanfang
else:

return n * factorial(n - 1) # Rekursionsschritt
Programm 4.1: rekursive Fakultäts-Funktion

Wir haben Definition 4.1 praktisch eins zu eins „abgetippt“. Beachten Sie, dass in der Definition
der Funktion factorial die Funktion factorial selbst verwendet wird. Wie und warum funktio-
niert dieses Vorgehen? Programm 4.2 zeigt schematisch auf, wie der Funktionsaufruf factorial(3)
abgearbeitet wird. Beachten Sie die Ähnlichkeit zu unserer Diskussion in Abschnitt 4.1.
## anfängliche Aufrufe ##

# Aufruf 0:
factorial(3)
return 3 * factorial(2) # Rekursionsschritt (Zeile 5)

|
|
v

# Aufruf 1:
factorial(2)
return 2 * factorial(1) # Rekursionsschritt (Zeile 5)

|
|
v

# Aufruf 2:
factorial(1)
return 1 * factorial(0) # Rekursionsschritt (Zeile 5)

|
|
v

# Aufruf 3:
factorial(0)
return 1 # Rekursionsanfang (Zeile 2)

## Rückwärtseinsetzen ##
factorial(1) = 1 * factorial(0) = 1 * 1 = 1
factorial(2) = 2 * factorial(1) = 2 * 1 = 2
factorial(3) = 3 * factorial(2) = 3 * 2 = 6

Programm 4.2: rekursive Berechnung der Fakultät

Der anfängliche Aufruf factorial(3) löst (rekursiv) in seinem return auf (seiner) Zeile 5 den Aufruf
factorial(2) aus. Dieser löst rekursiv einen weiteren Funktionsaufruf aus. Dies geht so lange weiter,
bis zum ersten Mal ein Aufruf den Rekursionsanfang (Zeile 2) erreicht. Danach können die noch
ausstehenden return-Statements endlich komplettiert werden (Rückwärtseinsetzen).
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EDIT Aufgabe 4.5

Seien a ∈ R und n eine natürliche Zahl. Wir definieren den Potenzausdruck an rekursiv durch

an :=
{

1, falls n = 0, (Rekursionsanfang)
a · an−1, falls n ≥ 1. (Rekursionsschritt)

Implementieren Sie eine Python-Funktion def potenz(a,n), welche an gemäss dieser rekursiven
Definition berechnet.

EDIT Aufgabe 4.6

Implementieren Sie eine Python-Funktion def factorial_loop(n), welche

n! = n · (n − 1) · . . . · 3 · 2 · 1

nicht rekursiv, sondern mithilfe einer einzigen Schleife (for-loop) berechnet.

EDIT Aufgabe 4.7 The One

Sie arbeiten für eine respektable Softwareentwicklungsfirma. Ihr Arbeitskollege Thomas A.
Anderson hat folgende Python-Funktion zu Ihrem Softwareprojekt hinzugefügt:
# m und n sind natürliche Zahlen.
def unbekannt(m,n):

if m == 0:
return 0

else:
return unbekannt(m-1,n) + n

(a) Handelt es sich bei unbekannt um eine rekursiv oder nicht rekursiv definierte Funktion?
Begründen Sie Ihre Antwort.

(b) Thomas A. Anderson hat sich schon einige Tage nicht in der Firma blicken lassen und
Sie können ihn telefonisch nicht erreichen. Abgesehen von dem Kommentar in Zeile
1 hat er die Funktion unbekannt nicht dokumentiert und der Name der Funktion hilft
uns nicht weiter. Erklären Sie genau, was die Funktion tut und geben Sie ihr einen
treffenden Namen.
Tipp: Berechnen Sie die Werte

• unbekannt(0,4),
• unbekannt(1,4),
• unbekannt(2,4),
• und unbekannt(3,4)

„von Hand“ und leiten Sie daraus ab, was die Funktion tut.
(c) Was ist der Rückgabewert von unbekannt(100,50)?
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EDIT Aufgabe 4.8

In Python ist eine Liste L von reellen Zahlen gegeben. Schreiben Sie eine Python-Funktion
sum_rek(L), welche rekursiv die Summe der Zahlen in der Liste berechnet. Es kann angenom-
men werden, dass die Länge der Liste ≥ 1 ist.
Beispiel 1:
Eingabe: L = [1,3,2,10]
Ausgabe: 16

Beispiel 2:
Eingabe: L = [1,-1,2,5,4]
Ausgabe: 11

EDIT Aufgabe 4.9

Ein Wort heisst Palindrom, falls das Wort vorwärts und rückwärts genau gleich gelesen wird.
Beispiele:

• neben
• Rentner
• Otto
• Lagerregal.

Das leere Wort, also das Wort der Länge 0, ist ebenfalls ein Palindrom. Schreiben Sie ein
rekursives Python-Programm, welches entscheidet, ob ein gegebenes Wort w ein Palindrom
ist oder nicht.

EDIT Aufgabe 4.10

Schreiben Sie eine Python-Funktion summe(n), welche die Summe
n∑

k=0
k := 0 + 1 + . . . + n

der ersten n + 1 natürlichen Zahlen 0, 1, . . . , n rekursiv berechnet.

EDIT Aufgabe 4.11

Schreiben Sie eine Python-Funktion produkt(n), welche das Produkt
n∏

k=1
k3 := 1 · 8 · . . . · n3

für n ∈ N× rekursiv berechnet.
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4.4 Fibonacci-Folge
In der zweiten Fassung des Buches Liber abbaci („Buch der Rechenkunst“) beschrieb der italienische
Mathematiker Leonardo da Pisa, bekannt als Fibonacci, das Wachstum einer Kaninchenpopulation.

• Jedes geschlechtsreife Paar Kaninchen wirft pro Monat genau ein Paar Kaninchen (ein Weib-
chen und ein Männchen). Die Austragungszeit (Dauer der Schwangerschaft) dauert bei Ka-
ninchen also immer genau einen Monat. Jeden Monat kommt also eine neue Generation von
Kaninchen zur Welt.

• Ein neugeborenes Paar von Kaninchen wird erst am Ende seines ersten Lebensmonats ge-
schlechtsreif und wirft entsprechend erst Ende seines zweiten Lebensmonats sein erstes Paar
Kaninchen.

• Kein Kaninchen stirbt, kein Kanninchen verlässt das betrachtete System und kein Kanninchen
wird, ausser durch Geburt, in das System hineingebracht.

Sei Gn die Anzahl der geschlechtsreifen Kaninchenpaare und gn die Anzahl der nicht geschlechts-
reifen Kaninchenpaare der Generation n für n ∈ N. Beachten Sie, dass die gesamte Anzahl der
Kaninchenpaare der Generation n damit der Summe Fn := Gn + gn entspricht. Betrachten wir nun
die obigen Regeln für das Wachstum einer Kaninchenpopulation für alle n ∈ N. Es gilt

Gn+2 = Gn+1 + gn+1, (4.3)

da die geschlechtsreifen Kaninchen Gn+1 der Generation n + 1 auch einen Monat später noch ge-
schlechtsreif sein werden und die nicht geschlechtsreifen Kaninchen gn+1 der Generation n + 1 einen
Monat später geschlechtsreif sein werden. Völlig analog begründet man die Gleichung

Gn+1 = Gn + gn. (4.4)

Des Weiteren gilt offensichtlich

gn+2 = Gn+1. (4.5)

Wir haben also drei Gleichungen für die Population:

Gn+2 = Gn+1 + gn+1 (4.6)

Gn+1 = Gn + gn (4.7)

gn+2 = Gn+1 (4.8)

Das Einsetzen von Gleichung 4.7 in Gleichung 4.6 liefert:

Gn+2 = Gn + gn + gn+1

⇐⇒
Gn+2 + gn+2︸ ︷︷ ︸

Fn+2

= Gn+1 + gn+1︸ ︷︷ ︸
Fn+1

+ Gn + gn︸ ︷︷ ︸
Fn

.

Für die Gesamtzahl der Population der Kaninchenpaare gilt also

Fn+2 = Fn+1 + Fn

für alle n ∈ N. Für Generation n = 0 definieren wir G0 := 0 und g0 := 0. Zu Beginn, also
in der Generation n = 1, wird ein erstes Paar von Kaninchen in das System eingeführt. Dieses

39

mailto:thomas.graf@edu.zh.ch


Induktion und Rekursion « Thomas Graf, Informatik, 2026

erste Paar wird erst nach einem Monat geschlechtsreif. Es gilt also G1 = 0 und g1 = 1. Somit
besteht die Generation n = 2 immer noch aus nur einem Paar Kaninchen: G2 = 1 und g2 = 0.
Die Generation n = 3 aus zwei Paaren: G3 = 1 und g3 = 1. Logisch fortgeführt findet man die
sogenannte Fibonacci-Folge:

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8,

F7 = 13, F8 = 21, F9 = 34, F10 = 55, F11 = 89, . . .

Beginnend mit den „Startwerten“ F0 := 0 und F1 := 1 ergibt sich Fn+2 also für jedes n ∈ N aus der
Summe der beiden unmittelbaren Vorgänger Fn+1 und Fn, also

Fn+2 = Fn+1 + Fn.

Definition 4.3 (Fibonacci-Folge):
Die Fibonacci-Folge ist rekursiv definiert durch

Fn :=


0, falls n = 0, (Rekursionsanfang)
1, falls n = 1, (Rekursionsanfang)
Fn−1 + Fn−2, falls n ≥ 2. (Rekursionsschritt)

Abbildung 4.1: Leonardo da Pisa (1170-1240), auch Fibonacci genannt
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EDIT Aufgabe 4.12

Implementieren Sie eine Python-Funktion def fibonacci(n), welche für gegebenes n ∈ N das
n-te Glied der Fibonacci-Folge rekursiv berechnet. Geben Sie schliesslich die ersten 25 Glieder
der Fibonacci-Folge aus.

EDIT Aufgabe 4.13

Versuchen wir F40 mit der Python-Funktion aus Aufgabe 4.12 zu berechnen, stellen wir
fest, dass die Berechnung bereits recht lange dauert. Erklären Sie, warum die Berechnung
der Glieder der Fibonacci-Folge mithilfe der Definition 4.3 sehr aufwendig ist. Wie viele
Funktionsaufrufe werden für die Berechnung von F (5) benötigt? Wie viele für F (10)?

EDIT Aufgabe 4.14

Überlegen Sie sich, wie Sie die ersten 30 Glieder der Fibonacci-Folge „von Hand“ berechnen
würden. Verwenden Sie diese Intuition um eine Python-Funktion

def fibonacci_fast(n)

zu schreiben, welche für gegebenes n ∈ N das n-te Glied der Fibonacci-Folge deutlich schneller
und auf nicht rekursive Weise berechnet. Berechnen Sie mithilfe dieser Funktion das Folgeglied
F100.

EDIT Aufgabe 4.15

Wir bezeichnen für n ∈ N mit Fn die n-te Fibonacci-Zahl. Betrachten Sie die Gleichung

Fn+2 = 1 +
n∑

k=0
Fk (4.9)

für n ∈ N.

(a) Beschreiben Sie die Aussage von Gleichung (4.9) in Ihren eigenen Worten.
(b) Beweisen Sie Gleichung (4.9).
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4.5 Technische Umsetzung rekursiver Programme
In diesem Abschnitt werden wir den Übergang von der rein mathematischen Betrachtung rekursiver
Algorithmen zu deren technischer Umsetzung vollziehen. Dazu betrachten wir ein Beispiel eines
eleganten rekursiven Algorithmus, welcher für eine gegebene natürliche Zahl n sämtliche binären
Strings der Länge n ausgibt. Insbesondere sollte der Algorithmus für die gegebenen Eingaben in
den folgenden Testfällen die angegebenen Ausgaben erzeugen:
TESTFALL 0
Eingabe: n = 0
Ausgaben:

(Es wird eine leere Zeile (leerer String) ausgegeben.)
TESTFALL 1
Eingabe: n = 1
Ausgaben:
0
1
TESTFALL 2
Eingabe: n = 2
Ausgaben:
00
01
10
11
TESTFALL 3
Eingabe: n = 3
Ausgaben:
000
001
010
011
100
101
110
111

Programm 4.3: binäre Strings rekursiv ausgeben

Sie sind gerne eingeladen, an dieser Stelle vorerst nicht weiterzulesen und den Algorithmus selbst
zu schreiben.

Unser Vorschlag für einen entsprechenden rekursiven Algorithmus ist in Programm 4.4 gegeben.
def binaryStrings(n, w = ''):

if n == 0:
print(w)
return

binaryStrings(n-1, w + '0')
binaryStrings(n-1, w + '1')
#return # optional

Programm 4.4: binaryStrings

Zur Vereinfachung und Konkretisierung der Beschreibung der technischen Realisation rekursiver
Algorithmen werden wir sämtliche Betrachtungen dieses Abschnitts auf den Algorithmus in Pro-
gramm 4.4 beziehen. Der Algorithmus beginnt mit dem leeren String und baut alle gesuchten Strings
durch systematisches „Anhängen“ von Nullen und Einsen auf. Zur Abkürzung schreiben wir anstelle
von binaryString(...) im Folgenden f(...).

Betrachten wir den Aufruf f(2,''), um alle Strings der Länge 2 auszugeben. Die Arbeitsschritte,
welche der Funktionsaufruf f(2,'') einleitet, sind in Abbildung 4.2 dargestellt. Die grünen Knoten
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stellen Funktionsaufrufe (Aufrufe von f) dar. Die goldenen Knoten stellen Aufrufe der Python-
Funktion print dar. Beim Schritt mit Nummer 0 erfolgt der anfängliche Aufruf f(2,''). In diesem
Aufruf wird in Programmzeile 5 der Funktionsaufruf f(1,'0') ausgelöst (Schritt 1). Beachten Sie,
dass der ursprüngliche Aufruf f(2,'') seine Arbeit noch nicht abgeschlossen hat! In Programmzeile
5 des Funktionsaufrufs f(1,'0') wird nun der Aufruf f(0,'00') ausgelöst. In diesem Aufruf ist
die if-Bedingung auf Programmzeile 2 erfüllt, sodass die Ausgabe print('00') erfolgt (Schritt
3) und der return-Aufruf auf Programmzeile 4 erfolgt. Der Aufruf f(0,'00') ist beendet und er
springt zurück zum Aufruf f(1,'0') (Schritt 4). Der Funktionsaufruf f(1,'0') kann nun (endlich)
zu Programmzeile 6 gelangen und den Aufruf f(0,'01') auslösen (Schritt 5).

f(2,'')

f(1,'0')

f(0,'00')

print('00')

f(0,'01')

print('01')

f(1,'1')

f(0,'10')

print('10')

f(0,'11')

print('11')

0 (anfänglicher Aufruf)

1

2

3

4 5

6

7

8 9

10

11

12

13

14

15

16

Abbildung 4.2: schematische Darstellung der Arbeitsschritte zur rekursiven Ausgabe aller binären
Strings der Länge 2

Erst nachdem auch f(0,'01') seine Arbeit beendet hat (Schritte 6 und 7), erreicht der Aufruf
f(1,'0') seine Programmzeile 7 und springt zurück zum ursprünglichen Aufruf f(2,'') (Schritt
7). Dieser erreicht nun Programmzeile 6 und ruft f(1,'1') auf (Schritt 9). Die Schritte in dieser
„rechten“ Hälfte von Abbildung 4.2 lassen sich nun analog beschreiben. Erst nach der Rückgabe
des Aufrufs f(1,'1') in Schritt 16 kann schliesslich der ursprüngliche Aufruf f(2,'') seine Arbeit
beenden.
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Zusammenfassung 4.1:
Wie werden rekursive Programme in Computern realisiert? In Computern wird für jeden
Funktionsaufruf (Prozedur) ein Abschnitt im Speicher angelegt. Dieser Speicherabschnitt
wird Stack-Frame genannt. Darin darf die Funktion Speicherplatz zum Beispiel für lokale Va-
riablen belegen. Deshalb benötigen rekursive Programme mit zahlreichen rekursiven Aufrufen
viel Platz im Speicher.
Ruft eine Prozedur A eine andere Prozedur B auf, so wird im Stack-Frame von Prozedur B
eine sogenannte Rücksprung-Adresse gespeichert. Diese Adresse gibt an, wo im Speicher die
Prozedur A beginnt. Dadurch wird ermöglicht, dass Prozedur B zu Prozedur A „zurücksprin-
gen“ kann (jump and link). Mehr Details bezüglich der Funktionsweise von Computern und
rekursiven Programmen finden Sie in den hervorragenden Texten [7] und [8].
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4.6 Lösungen der Aufgaben
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Kapitel 5

Binäre Strings ohne
aufeinanderfolgende Einsen

In Programm 4.4 haben wir bereits eine Python-Funktion geschrieben, welche rekursiv alle binären
Strings einer gegebenen Länge n ausgibt. Es wird sich ein interessanter und überraschender Zusam-
menhang zur Fibonacci-Folge ergeben, wenn wir nicht alle binären Strings der Länge n ausgeben,
sondern nur die binären Strings der Länge n, welche nicht das Muster 11 (Eins-Eins) enthalten.
Wir interessieren uns also nur für die binären Strings, welche nicht zwei aufeinanderfolgende Einsen
enthalten.

EDIT Aufgabe 5.1

Ändern Sie Programm 4.4 dahingehend ab, dass für gegebenes n ∈ N genau die binären
Strings der Länge n ohne aufeinanderfolgende Einsen ausgegeben werden. Beginnen Sie auch
hier wieder mit dem leeren String und bauen Sie die gesuchten Strings rekursiv auf. Geben
Sie Ihrer Funktion die Signatur

print_binary_without_11(n, w = '').
TESTFALL 0
Eingabe: n = 0, Ausgaben:

(Es wird eine leere Zeile (leerer String) ausgegeben.)
TESTFALL 1
Eingabe: n = 1, Ausgaben:
0
1
TESTFALL 2
Eingabe: n = 2, Ausgaben:
00
01
10
TESTFALL 3
Eingabe: n = 3, Ausgaben:
000
001
010
100
101

Programm 5.1: binäre Strings ohne 11 rekursiv ausgeben
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5.1 Anzahl der binären Strings ohne 11
Sei n eine natürliche Zahl. Wir bezeichnen mit Ln die Menge aller binären Strings der Länge n, die
nicht den Teilstring 11 enthalten, und setzen N(n) = |Ln|. Wir wollen N(n), also die Anzahl der
Elemente in Ln, rekursiv bestimmen. Offensichtlich gilt N(0) = 1, denn nur der leere String hat die
Länge 0 und dieser enthält nicht den Teilstring 11. Des Weiteren gilt N(1) = 2, da die Strings 0
und 1 beide nicht den Teilstring 11 enthalten.

EDIT Aufgabe 5.2

Vervollständigen Sie Tabelle 5.1.

n N(n)
0 1
1 2
2 3
3 5
4
5

Tabelle 5.1: Tabelle für N(n)

Betrachten wir nun einen binären String w der Länge n + 1 mit n ≥ 1. Angenommen w liegt in
Ln+1, dann enthält offensichtlich auch keiner der Teilstrings von w das Muster 11. Dann können
wir w ∈ Ln+1 schreiben als

w = xab,

wobei x ∈ Ln−1 und a, b ∈ {0, 1}.

EDIT Aufgabe 5.3

Wir nehmen an, dass die Anzahlen N(n) und N(n − 1) für ein n mit n ≥ 1 bereits bekannt
sind. Wir haben soeben begründet, dass wir w in Ln+1 schreiben können als

w = xab,

wobei x ∈ Ln−1 und a, b ∈ {0, 1}. Unterscheiden Sie zwei Fälle b = 0 und b = 1 für das
Symbol b. Drücken Sie N(n + 1) durch N(n) und N(n − 1) aus.

5.2 Explizite und rekursive Darstellungen von Folgen
Wir betrachten die rekursiv definierte Folge

a0 = −1,

an+1 = an + 4.

Ein Folgenglied mit grösserem Index, wie zum Beispiel a5000, zu berechnen, ist recht mühsam. In die-
ser rekursiven Darstellung müssten für die Berechnung von a5000 nämlich alle Glieder a1, a2, . . . , a4999
zuerst bestimmt werden. Wie können wir späte Folgenglieder (mit hohen Indizes) effizienter berech-
nen? Die folgende Aufgabe 5.4 wird sich mit dieser Frage beschäftigen.
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EDIT Aufgabe 5.4

Finden Sie eine „Formel“, welche an mit lediglich einer Multiplikation und einer Addition
berechnet, ohne zuerst die Vorgänger a1, a2, . . . , an bestimmen zu müssen. Berechnen Sie
mithilfe dieser Formel das Folgenglied a5000.

Die in Aufgabe 5.4 gefundene (nicht rekursive) Darstellung von an wird explizite Darstellung
von an genannt.

EDIT Aufgabe 5.5

Beweisen Sie durch vollständige Induktion, dass an = n2 − 2n eine explizite Darstellung der
rekursiv definierten Folge

a0 = 0, an = an−1 + 2n − 3

für n ∈ N× ist.

Die rekursive Darstellung ?? ist nicht geeignet, um N(n) für grosse Werte von n zu berechnen. Die
Fibonacci-Folge wurde bereits im Jahr 1202 von Leonardo da Pisa verwendet, um das Wachstum
einer Kaninchenpopulation zu beschreiben. Dennoch gelang es (höchstwahrscheinlich) erst in der
ersten Hälfte des 18. Jahrhunderts, eine explizite Darstellung dieser wichtigen Folge zu finden. Diese
Darstellung zu finden ist also alles andere als einfach. Diese explizite Darstellung ist als Formel von
Moivre-Binet bekannt und besagt

F (n) = ϕn − (1 − ϕ)n

√
5

, (5.1)

wobei ϕ := 1+
√

5
2 .

Gleichung (5.1) enthält die irrationale Zahl
√

5. Ist es nicht erstaunlich, dass F (n) für alle n ∈ N eine
natürliche Zahl ist? In der anspruchsvollen Aufgabe 5.7 haben Sie die Gelegenheit zu beweisen, dass
die Formel von Moivre-Binet tatsächlich die Fibonacci-Zahlen berechnet (und somit ausschliesslich
natürliche Zahlen generiert).

EDIT Aufgabe 5.6

Berechnen Sie F (0) und F (1) mithilfe von Gleichung (5.1). Überzeugen Sie sich, dass F (0)
und F (1) die ersten beiden Fibonacci-Zahlen und somit insbesondere natürliche Zahlen sind.
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EDIT Aufgabe 5.7

(!) Beweisen Sie durch starke Induktion, dass die n-te Fibonacci-Zahl Fn durch den Ausdruck
F (n) in Gleichung (5.1) gegeben ist.

Hinweis:

• Definieren Sie zuerst

α := 1 − ϕ

und beachten Sie, dass

α = 1 − ϕ = 1 − 1 +
√

5
2 = 2 − 1 −

√
5

2 = 1 −
√

5
2 .

• Beweisen und verwenden Sie nun die beiden Gleichungen

ϕ2 = 1 + φ,

α2 = 1 + α.

Bemerkung 5.1 (Moivre-Binet):
Die Formel von Moivre-Binet enthält Terme, welche Computer aufgrund ihrer (nur) endlichen
Arithmetik nicht exakt darstellen können. Eine einfache Beobachtung macht die Formel aber
auch für die Berechnung in endlicher Arithmetik gut zugänglich. Wir schreiben zuerst

F (n) = ϕn − (1 − ϕ)n

√
5

= ϕn

√
5

− (1 − ϕ)n

√
5

.

Die Fibonacci-Zahl Fn unterscheidet sich von der Zahl ϕn
√

5 also lediglich um den Term (1−ϕ)n
√

5 .
Doch wie gross ist dieser Term? Für den Exponenten n = 0 reduziert er sich auf∣∣∣∣ 1√

5

∣∣∣∣ <
1
2 .

Für den Exponenten n = 1 reduziert sich der Term auf∣∣∣∣1 − ϕ√
5

∣∣∣∣ .

Wegen |1 − ϕ| < 1 gilt ∣∣∣∣1 − ϕ√
5

∣∣∣∣ <
1√
5

<
1
2 .

Was ändert sich aber, wenn wir allgemeine Exponenten n ∈ N zulassen? Tatsächlich gilt: Je
grösser der Exponent ist, desto kleiner ist der Term! Aufgrund der Abschätzung |1 − ϕ| < 1
wissen wir nämlich, dass die geometrische Folge∣∣∣∣(1 − ϕ)n

√
5

∣∣∣∣ = 1√
5

|(1 − ϕ)n| = 1√
5

|1 − ϕ|n

strikt monoton fallend ist. Damit gilt also für alle natürlichen Exponenten n ∈ N∣∣∣∣(1 − ϕ)n

√
5

∣∣∣∣ <
1
2 .
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Wir haben somit nachgewiesen, dass

ϕn

√
5

− 1
2 <

ϕn

√
5

− (1 − ϕ)n

√
5︸ ︷︷ ︸

Fn

<
ϕn

√
5

+ 1
2 ⇐⇒

−1
2 < Fn − ϕn

√
5

<
1
2 ,

oder anders geschrieben: ∣∣∣∣Fn − ϕn

√
5

∣∣∣∣ <
1
2 .

Der Abstand von ϕn/
√

5 zu der ganzen Zahl Fn ist also kleiner als 1/2. Es liegt damit keine
ganze Zahl so nahe bei ϕn/

√
5 wie Fn. Die n-te Fibonacci-Zahl Fn entspricht somit ϕn/

√
5,

gerundet auf die nächste ganze Zahl:

Fn =
[

ϕn

√
5

]
für alle n ∈ N. (5.2)

Damit ist nun auch klar ersichtlich, dass die Fibonacci-Folge exponentiell wächst!

EDIT Aufgabe 5.8

Verwenden Sie die Formel von Moivre-Binet, um eine explizite Darstellung von N(n) zu
finden und schreiben Sie eine Python-Funktion def N(n), welche N(n) für gegebenes n ∈ N
berechnet. Verwenden Sie dazu Gleichung (5.2).
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5.3 Lösungen der Aufgaben
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Kapitel 6

Sortieren (*)

Eines der häufigsten algorithmischen Probleme ist das Sortieren.

Definition 6.1 (Sortierproblem):
mydefinition:Sortierproblem Sei S eine Menge, deren Elemente durch die Relation ≤ ver-
glichen werden können (≤ heisst dann totale Ordnung auf S). Das Sortierproblem lautet
dann:

Eingabe: Eine endliche Folge von n ∈ N× Elementen a1, a2, . . . , an aus S.
Ausgabe: Eine Umordnung a′

1, a′
2, . . . , a′

n der Eingabe, sodass a′
1 ≤ a′

2 ≤ . . . ≤ a′
n (die

Elemente der Eingabe sind nun aufsteigend sortiert).

Abbildungen 6.1 und 6.2 zeigen zwei einfache Beispiele von Eingaben und entsprechenden Ausgaben
des Sortierproblems.

3
2
0
3
9
8
1

Eingabe

0
1
2
3
3
8
9

Ausgabe

Abbildung 6.1: Eingabe und Ausgabe eines kleinen Sortierproblems mit ganzen Zahlen
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r
e
a
o
n

Eingabe

a
e
n
o
r

Ausgabe

Abbildung 6.2: Eingabe und Ausgabe eines kleinen Sortierproblems mit Kleinbuchstaben des latei-
nischen Alphabets. Dabei wurde die übliche alphabetische Ordnung a ≤ b ≤ . . . ≤ z verwendet.

6.1 Sortieren mit dem merge sort Algorithmus
Natürlich ist das Bedürfnis nach schnellen Algorithmen besonders gross, falls diese Probleme lö-
sen, die zeitkritisch sind und häufig auftreten. Mittlerweile sind viele Sortieralgorithmen bekannt.
Ein berühmter Vertreter dieser Algorithmen ist merge sort. Der Algorithmus merge sort arbeitet
rekursiv. Dabei macht er insbesondere von der Tatsache Gebrauch, dass sich zwei sortierte Listen
recht effizient zu einer ebenfalls sortierten Liste zusammenfügen lassen. Es seien also zwei jeweils
bereits sortierte Listen L und R gegeben. Diese Listen besitzen die Längen (Anzahl von Elemen-
ten) len(L) und len(R). Es ist nun nicht besonders aufwändig, die beiden Listen L und R zu einer
neuen sortierten Liste M der Länge len(L) + len(R) zu vereinen (englisch: to merge).

EDIT Aufgabe 6.1

Angenommen wir haben zwei jeweils bereits sortierte Listen L und R gegeben. Schreiben Sie
eine Python-Funktion merge(L, R), welche L und R zu einer einzigen sortierten Liste vereint.
Ihre Funktion soll unbedingt Gebrauch von der Tatsache machen, dass L und R bereits sortiert
sind.
Testfall 0
Eingabe: L = [8, 12, 17], R = []
Ausgabe: [8, 12, 17]

Testfall 1
Eingabe: L = [2, 5, 13], R = [1, 2, 3, 7, 15, 20]
Ausgabe: [1, 2, 2, 3, 5, 7, 13, 15, 20]

Testfall 2
Eingabe: L = [1, 10, 100, 1000], R = [0, 5, 50]
Ausgabe: [0, 1, 5, 10, 50, 100, 1000]

Programm 6.1: Testfälle für die Funktion merge

Ihre Funktion braucht nicht zu überprüfen, ob L und R tatsächlich sortiert sind.
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EDIT Aufgabe 6.2

Analysieren Sie den Algorithmus, welchen Sie in Aufgabe 6.1 geschrieben haben. Welche
Laufzeit hat dieser Algorithmus in Abhängigkeit von n = len(L) + len(R)?

Der merge sort Algorithmus teilt eine zu sortierende Liste rekursiv so lange in zwei Teile, bis nur noch
Listen der Länge 1 vorliegen. Offensichtlich ist jede Liste der Länge 1 bereits sortiert. Schliesslich
werden bereits sortierte Listen mithilfe des merge Algorithmus zu der gesuchten sortierten Liste
zusammengefügt. Mithilfe der bereits in Aufgabe 6.1 erstellten Routine merge lässt sich der berühmte
merge sort Algorithmus in nur wenigen Zeilen in Python beschreiben. Eine mögliche Implementation
ist in Programm 6.2 gegeben.
def merge_sort(A):

# sortiert die Liste A
if len(A) == 1: # Rekursionsanfang

return A # Listen der Länge 1 sind schon sortiert.

# teile A in linke Hälfte und rechte Teile
if len(A) % 2 == 0: # falls len(A) gerade ist

middle = len(A) // 2
else: # falls len(A) ungerade ist

middle = (len(A) // 2) + 1
L = merge_sort(A[:middle])
R = merge_sort(A[middle:])
return merge(L, R)

Programm 6.2: Implementation der Funktion merge_sort

Den merge sort Algorithmus zu verstehen ist nicht einfach! Erfahrungsgemäss ist es sehr hilfreich,
die einzelnen Schritte dieses Sortieralgorithmus für ein kleines Beispiel durchzugehen. Dazu haben
wir die Schritte von merge sort (ms) beim Sortieren der Liste [3, 2, 1] in Abbildung 6.3 schematisch
dargestellt. Mit m wird natürlich der Algorithmus merge bezeichnet. Die schematische Darstellung
ist analog zu den Ausführungen in Abschnitt 4.5 zu verstehen.

ms([3,2,1])

ms([3,2])

ms([3])
ms([2])

m([3],[2])

ms([1]) m([2,3],[1])

0 (anfänglicher Aufruf)

1

2

3

45

6

7

8 9

10

11

12

Abbildung 6.3: schematische Darstellung der Arbeitsschritte von merge sort
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6.2 Analyse der Laufzeit von merge sort
Beachten Sie, dass der in Programm 6.2 gegebene Algorithmus durchaus in der Lage ist, Listen
beliebiger Längen n ∈ N zu sortieren. Für die nachfolgenden Untersuchungen wollen wir aber an-
nehmen, dass die Problemgrösse n stets eine Zweierpotenz ist, also n = 2k für ein k ∈ N. Ohne diese
Vereinfachungen werden in den Untersuchungen diverse Auf- und Abrundeoperationen notwendig
sein und die Darstellung wird technischer und weniger instruktiv. Zusätzlich möchten wir den tri-
vialen Fall n = 0 als Problemgrösse ausschliessen. Die folgenden Betrachtungen sind inspiriert durch
die entsprechenden Abschnitte in dem herausragenden Buch [9].

Die Laufzeit des merge sort Algorithmus setzt sich aus drei einzelnen Teilen zusammen:

Divide: Dieser Teil berechnet lediglich die Mitte der zu sortierenden Liste. Dazu ist offensichtlich
nur eine konstante Zeit Θ(1) notwendig.

Conquer: Beim Aufruf des merge sort Algorithmus mit Problemgrösse n werden rekursiv zwei
Teilprobleme (derselben Art) mit jeweils halber Grösse n/2 aufgerufen. Dies trägt 2T (n/2)
zur Laufzeit bei.

Combine: Wie wir in Aufgabe 6.2 bereits festgestellt haben, benötigt merge sort die lineare Zeit
Θ(n) für die Vereinigung zweier Listen mit summierter Länge n = len(L) + len(R).

Zusammengefasst ist die Laufzeit T (n) von merge sort im schlimmsten Fall also gegeben durch

T (n) =
{

Θ(1), falls n = 1,
2T (n/2) + Θ(n), falls n ≥ 2.

(6.1)

Gleichung (6.1) lässt sich natürlich schreiben als

T (n) =
{

c0, falls n = 1,
2T (n/2) + c1n, falls n ≥ 2.

(6.2)

Diesen Ausdruck können wir mit der Definition c := max {c0, c1} sogar nochmals vereinfachen zu

T (n) =
{

c, falls n = 1,
2T (n/2) + cn, falls n ≥ 2,

(6.3)

da wir uns im Moment lediglich für eine obere Schranke für die Laufzeit T (n) interessieren. Beachten
Sie, dass Gleichung (6.3) die Funktion T (Laufzeit) rekursiv definiert.

Wir wollen nun die eindeutige Lösung von Gleichung (6.3) durch intuitive Überlegungen finden.
Betrachten Sie Abbildung 6.4.

• In der obersten „Etage“ fallen die Kosten cn für den merge zu einer Liste der Länge n an.
• In der zweitobersten „Etage“ fallen die Kosten cn/2 + cn/2 = cn für zwei merges zu Listen

der Längen n/2 an.
• Dies geht rekursiv so weiter.
• In der untersten „Etage“ wird überall der Rekursionsanfang erreicht und wir haben n-mal die

Kosten T (1) = c, also cn.

Diese Überlegung zeigt, dass jede „Etage“ genau cn zu den Gesamtkosten von merge sort beiträgt.
Nun stellt sich lediglich noch die Frage, wie viele „Etagen“ der Baum in Abbildung 6.4 hat. Diese
Frage ist aber mit der Frage verwandt, wie häufig eine Zweierpotenz 2k halbiert werden muss, bis das
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Resultat der Division durch 2 identisch zu 1 ist. Dies ist aber genau das, was uns der Logarithmus
zur Basis zwei beantwortet. Der Faktor 2 ist

log2(n) = log2

(
2k

)
= k

Male in n enthalten. Das ist die Anzahl Teilungen. Der Baum hat somit log2(n) + 1 viele „Etagen“.
Die Laufzeit von merge sort ist also

cn (log2(n) + 1)

und somit Θ (n log(n)).

cn

cn/2

cn/4

...
c

...
c

cn/4

...
c

...
c

cn/2

cn/4

...
c

...
c

cn/4

...
c

...
c

cn

cn

cn

cn

log(n)

n

Abbildung 6.4: Laufzeitanalyse von merge sort

EDIT Aufgabe 6.3

Zeigen Sie mithilfe der vollständigen Induktion, dass

T (n) = n log2(n)

die rekursive Gleichung (Rekurrenz)

T (n) =
{

2, falls n = 2,
2T (n/2) + n, falls n = 2k für ein k ∈ N, k ≥ 2 erfüllt.
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6.3 Lösungen der Aufgaben
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Kapitel 7

Sudoku und Backtracking (*)

Sudokus sind Rätsel, welche sich seit den frühen 2000er Jahren international grosser Beliebtheit
erfreuen. Seit vielen Jahren gibt es Sudoku-Apps und man findet Sudokus auch oft abgedruckt
in Zeitschriften und Gratiszeitungen. Eines der zentralen Ziele dieses Kapitels wird sein, einen
rekursiven Lösungsalgorithmus für Sudokus zu entwickeln. Zuerst müssen wir kurz erklären, was
Sudokus überhaupt sind und wie die Spielregeln aussehen.

7.1 Spielregeln
Die Spielregeln für Sudokus lassen sich ganz einfach erklären. Wir illustrieren sie anhand eines
konkreten (sehr schwierigen) Sudokus. Ein Sudoku besteht immer aus einem 9 × 9-Gitter. In Abbil-
dung 7.1 ist links das noch ungelöste Sudoku gezeigt und rechts das gelöste (ausgefüllte). Bei einem
Sudoku sind zu Beginn einige Zahlen (Felder) vorgegeben. Diese, zu Beginn vorgegebenen Zahlen,
dürfen nicht geändert werden. Das Sudoku ist gelöst, wenn jedes der 81 Felder genau eine der 9
Ziffern 1, 2, . . . , 9 enthält und zusätzlich die folgenden zwei Bedingungen erfüllt sind:

1. In jeder Zeile und jeder Spalte muss jede der 9 Ziffern 1, 2, . . . , 9 genau einmal vorkommen.
2. Beachten Sie, dass das 9 × 9-Gitter (siehe die fetten Linien) wiederum in 9 verschiedene 3 × 3-

Blöcke aufgeteilt ist. In jedem dieser 3 × 3-Blöcke müssen ebenfalls alle 9 Ziffern 1, 2, . . . , 9
genau einmal vorkommen.

7 3 9 2
8

9 4 3 7
6 9
3 5 2 7

8 4
4 8

2 6
1 2 9

ungelöstes Sudoku Nr. 0

7 3 9 2
8

9 4 3 7
6 9
3 5 2 7

8 4
4 8

2 6
1 2 9

gelöstes Sudoku Nr. 0

8 1 4 5 6
5 2 6 7 9 3 1 4

1 6 2 5 8
1 3 8 4 2 7 5

8 4 6 9 1
7 5 2 9 1 6 3
1 3 9 2 7 5 6

5 7 9 1 4 3 8
4 7 8 6 3 5

Abbildung 7.1: Sudoku Nr. 0

Normale 9 × 9-Sudokus sind mit ihren 81 Feldern recht gross und für didaktische Betrachtungen
eher unhandlich. Wir werden deshalb zuerst kleinere Sudokus der Grösse 4 × 4 untersuchen. Lassen
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Sie uns zunächst die Regeln für Sudokus für allgemeine Dimensionen festhalten.

Bemerkung 7.1 (Spielregeln des (verallgemeinerten) Sudokus):
Ein (verallgemeinertes) Sudoku ist ein n2 ×n2-Gitter, wobei n eine natürliche Zahl ist. Bei ei-
nem Sudoku sind zu Beginn einige Zahlen (Felder) vorgegeben. Diese zu Beginn vorgegebenen
Zahlen dürfen nicht geändert werden. Das Sudoku ist gelöst, wenn jedes der n2 · n2 = n4 Fel-
der genau eine der Ziffern 1, 2, . . . , n2 enthält und zusätzlich die folgenden zwei Bedingungen
erfüllt sind:

1. In jeder Zeile und in jeder Spalte muss jede der n2 Ziffern 1, 2, . . . , n2 genau einmal
vorkommen.

2. Beachten Sie, dass das n2 × n2-Gitter (siehe die fetten Linien) wiederum in n2 verschie-
dene n × n-Blöcke aufgeteilt ist. In jedem dieser n × n-Blöcke müssen ebenfalls alle n2

Ziffern 1, 2, . . . , n2 genau einmal vorkommen.

Das übliche Sudoku (mit 81 Feldern) erhalten wir für n = 3. Wir werden zunächst kleine Sudokus
mit n = 2, also mit nur 24 = 16 Feldern anschauen.

EDIT Aufgabe 7.1

Finden Sie die (eindeutige) Lösung des Sudokus in Abbildung 7.2. Dieses Sudoku wird als
einfach eingestuft.

9 5 7
7 1 2 8
2 4 6 7 3 9 1

1 2 5 3
1 3 4 9

7 3 9 8 4
9 8 6

4 1 6
2 4

ungelöstes Sudoku Nr. 2

Abbildung 7.2: Sudoku Nr. 2

7.2 Sudokus können mehr als eine Lösung haben!
Betrachten Sie nochmals Abbildung 7.1 und vergewissern Sie sich, dass die Lösung auf der rechten
Seite tatsächlich alle geforderten Bedingungen erfüllt. Sudoku Nr. 0 erlaubt übrigens nur diese
eine Lösung. Die in Zeitschriften und Sudoku-Apps aufgeführten Sudokus sind meist absichtlich so
konstruiert, dass sie eine eindeutige Lösung besitzen. Entfernen wir aber beispielsweise die 9 in der
rechten unteren Ecke von Sudoku Nr. 0, so erhalten wir ein neues Rätsel:
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7 3 9 2
8

9 4 3 7
6 9
3 5 2 7

8 4
4 8

2 6
1 2

ungelöstes Sudoku Nr. 1

7 3 9 2
8

9 4 3 7
6 9
3 5 2 7

8 4
4 8

2 6
1 2

gelöstes Sudoku Nr. 1

8 1 4 5 6
5 2 6 7 9 4 3 1

6 1 2 5 8
1 3 8 4 2 7 5

8 4 6 1 9
7 5 2 1 9 6 3
1 7 5 2 3 9 6

8 9 3 1 7 5 4
4 3 9 7 6 5 8

Abbildung 7.3: Sudoku Nr. 1

Sudoku Nr. 1 besitzt ebenfalls die Lösung, welche bereits Lösung von Sudoku Nr. 0 war (siehe
Abbildung 7.1). Neben dieser Lösung besitzt Sudoku Nr. 1 aber noch weitere Lösungen. Eine davon
ist rechts in Abbildung 7.3 gezeigt.

In Abbildung 7.4 ist ein Beispiel eines 4 × 4-Sudokus („Mini-Sudoku“) gegeben. Dieses besitzt
übrigens 4 verschiedene Lösungen.

1

3 2
3

ungelöstes Mini-Sudoku Nr. 0

1

3 2
3

eine Lösung des Mini-Sudokus Nr. 0

2 4 3
3 4 2 1
4 1
1 2 4

Abbildung 7.4: Mini-Sudoku Nr. 0

EDIT Aufgabe 7.2

Finden Sie die drei weiteren Lösungen des Sudokus in Abbildung 7.4.

7.3 Darstellung von Sudokus in Python
In Python können wir ein Sudoku durch eine „zweidimensionale“ Liste (oder Array) angeben. Bei-
spielsweise kann Sudoku Nr. 2 aus Aufgabe 7.1 in der folgenden Form in Python gespeichert werden:
sudokuNo2 = [
[0,9,5,0,0,0,0,7,0],
[0,7,0,1,2,0,8,0,0],
[0,2,4,6,7,0,3,9,1],
[0,0,0,0,0,1,2,5,3],
[0,1,0,3,0,4,0,0,9],
[7,3,9,8,0,0,0,0,4],
[0,0,0,9,8,6,0,0,0],
[0,0,0,0,4,0,0,1,6],
[2,4,0,0,0,0,0,0,0]
]

Programm 7.1: Abspeichern von Sudoku-Gittern in Python

Das Mini-Sudoku in Abbildung 7.4 kann folgendermassen in Python abgespeichert werden:
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mini_sudokuNo0 = [
[0,1,0,0],
[0,0,0,0],
[0,3,0,2],
[0,0,3,0]
]

Programm 7.2: Abspeichern von Mini-Sudoku-Gittern in Python

Um ein n2 ×n2-Gitter ansehnlich in Python auszugeben („pretty-print“), empfehlen wir, am Anfang
des Programms die Bibliothek numpy durch den Befehl import numpy as np einzubinden. Danach kann
das Gitter durch print(np.array(gitter)) übersichtlich ausgegeben werden.

7.4 Erlaubte Felder
In Abbildung 7.5 ist nochmals das Sudoku vom Anfang des Kapitels gezeigt. Betrachten Sie das mit
einem blauen Fragezeichen ? markierte Feld. Wir wissen (aufgrund der Eindeutigkeit der Lösung
dieses konkreten Sudokus), dass in das markierte Feld die Ziffer 8 gesetzt werden muss. Nach den
Spielregeln von Sudoku würde jedoch im Moment nichts dagegen sprechen, eine 1 in dieses Feld
zu schreiben — auch wenn sich diese Wahl im Verlauf des Spiels als falsch herausstellen wird. Wir
sagen, dass die Wahl der Ziffer 1 für das blau markierte Feld (bei dem aktuellen Spielstand) erlaubt
ist. Die Wahl der Ziffer 6 ist beispielsweise nicht erlaubt, da diese Ziffer in der entsprechenden
Zeile bereits vorkommt. Ebenso wäre die Wahl der Ziffer 5 nicht erlaubt, da diese Ziffer bereits im
entsprechenden 3 × 3-Block enthalten ist.

Es sei also ein konkretes Gitter gegeben. Wir sagen, dass das Setzen einer Ziffer Z auf ein leeres
(unbesetztes) Feld F des Gitters erlaubt ist, falls diese Ziffer Z weder in der entsprechenden Zeile
noch der Spalte noch dem entsprechenden n × n-Block von F in dem gegebenen Gitter vorkommt.

7 3 9 2
8

9 4 3 7
6 9 ?
3 5 2 7

8 4
4 8

2 6
1 2 9

ungelöstes Sudoku Nr. 0

7 3 9 2
8

9 4 3 7
6 9
3 5 2 7

8 4
4 8

2 6
1 2 9

gelöstes Sudoku Nr. 0

8 1 4 5 6
5 2 6 7 9 3 1 4

1 6 2 5 8
1 3 8 4 2 7 5

8 4 6 9 1
7 5 2 9 1 6 3
1 3 9 2 7 5 6

5 7 9 1 4 3 8
4 7 8 6 3 5

Abbildung 7.5: nochmals Sudoku Nr. 2
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EDIT Aufgabe 7.3

Wir befassen uns in dieser Aufgabe nur mit 4 × 4-Gittern. Entwickeln Sie eine Python-
Funktion

def erlaubt(zeile, spalte, ziffer, gitter),

welche für ein gegebenes noch leeres (markiert durch die Zahl 0) Feld mit Zeilenindex zeile
(von 0 bis 3) und Spaltenindex spalte (von 0 bis 3) prüft, ob das Platzieren einer gegebenen
Ziffer ziffer (von 1 bis 4) in einem gegebenen Gitter erlaubt ist. Hier sind einige Testfälle:
print(erlaubt(0, 3, 4, mini_sudokuNo0)) # True

print(erlaubt(1, 0, 1, mini_sudokuNo0)) # False
# (bereits eine 1 in dem ersten 2x2 Block)

print(erlaubt(1, 1, 3, mini_sudokuNo0)) # False
# (bereits eine 3 in der entsprechenden Spalte)

Programm 7.3: erlaubt oder nicht

Testen Sie Ihre Funktion genau!

EDIT Aufgabe 7.4

Verallgemeinern Sie die Funktion

def erlaubt(zeile, spalte, ziffer, gitter)

auf n2 × n2-Gitter.
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7.5 Backtracking
Wir wollen uns nun an die Entwicklung eines rekursiven Algorithmus zum Lösen von Sudokus
herantasten. Dazu beginnen wir mit der einführenden Aufgabe 7.5, in der Sie einige gedankliche
Vorarbeiten leisten.

EDIT Aufgabe 7.5

Betrachten Sie das folgende Sudoku.

3
1 4

3 1

(a) Füllen Sie die noch leeren Felder Zeile für Zeile von links nach rechts und von oben
nach unten aus. Beginnen Sie also mit dem Feld mit den Koordinaten (0, 0) (oben
links) und beenden Sie Ihre Arbeit mit dem Feld (3, 3) (unten rechts). Zeichnen Sie
dabei die einzelnen „Stationen“ (Gitter) auf, indem Sie das Diagramm in Abbildung 7.6
systematisch vervollständigen.

(b) Warum ist unser Vorgehen in Teil (a) für das gegebene Sudoku suboptimal? Schlagen
Sie eine effizientere Strategie vor.

3
1 4

3 1

2 3
1 4

3 1

...

4 3
1 4

3 1

...

Abbildung 7.6: einzelne Stationen
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Nun wollen wir die in Aufgabe 7.5 gemachten Beobachtungen etwas vertiefen. Betrachten Sie dazu
das neue Mini-Sudoku in Abbildung 7.7.

4
4 1

3 ?
2

ungelöstes Mini-Sudoku Nr. 1

4
4 1

3
2

Lösung des Mini-Sudoku Nr. 1

1 3 2
2 3

1 2 4
4 1 3

Abbildung 7.7: Mini-Sudoku Nr. 1

Beim Lösen eines Sudokus dürfen wir die Reihenfolge, in der wir die (noch) leeren Felder auffüllen,
beliebig wählen. Um ganz konkret ein mögliches Vorgehen zu untersuchen, nehmen wir an, dass wir
die 11 leeren Felder des Sudokus in Abbildung 7.7 in der Reihenfolge

(2, 3) → (3, 3) → (0, 3) → (1, 2) → (1, 0) → (2, 2) →
(3, 2) → (2, 1) → (3, 0) → (0, 0) → (0, 1)

auszufüllen versuchen.

Wir betrachten also zuerst das leere Feld mit den Koordinaten (2, 3), welches mit einem blauen
Fragezeichen ? markiert ist. Sie werden schnell erkennen, dass in diesem leeren Feld genau das
Setzen der beiden Ziffern 2 und 4 erlaubt ist. Wir stehen hier also vor einer Wahl. Die Situation ist
in Abbildung 7.8 dargestellt. Die Wahl der Ziffer 2 führt uns zu Station (1). Hier haben wir für das
Feld (3, 3) ebenfalls eine Wahl, und zwar zwischen den Ziffern 3 und 4. Die Wahl der Ziffer 3 führt
uns zu Station (2). Bei Station (3) stellen wir fest, dass für das leere Feld (0, 3) keine der vier Ziffern
gesetzt werden darf. Somit sind wir in eine Sackgasse geraten. Mindestens an einer „Abzweigung“
müssen wir also eine falsche Wahl getroffen haben! Wir gehen deshalb so weit den „Pfad“ entlang
zurück, bis wir zur jüngst angetroffenen Abzweigung gelangen. Dies war in diesem Fall die Station
(1). Nun folgen wir von Station (1) aus der Wahl der Ziffer 4 zu Station (4). Bei Station (7) erkennen
wir, dass auch die zweite Wahl (die der Ziffer 4) bei Station (1) uns nicht weiterbringt. Erst jetzt
können wir sicher sein, dass die ursprüngliche Wahl der Ziffer 2 bei Station (0) falsch gewesen war.
Dies führt uns zur korrekten Wahl der Ziffer 4 für das Feld (2, 3) und somit zu Station (8).

Der Vorgang des „Zurückgehens“ entlang der gegangenen Wege wird Backtracking genannt. Im
nächsten Abschnitt werden wir einen eleganten Algorithmus vorstellen, welcher mithilfe von Back-
tracking auf rekursive Weise die Lösungen eines Sudokus findet.
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(0)
4

4 1
3

2

(1)
4

4 1
3 2

2

(8)
4

4 1
3 4

2

(9)
4

4 1
3 4

2 3

(10)
4 2

4 1
3 4

2 3

(11)
4 2

4 3 1
3 4

2 3

(12)
4 2

2 4 3 1
3 4

2 3

(13)
4 2

2 4 3 1
3 1 4

2 3

(15)
4 2

2 4 3 1
3 2 4

2 3

(14)
4 2

2 4 3 1
3 1 4

2 × 3

(16)
4 2

2 4 3 1
3 2 4

2 1 3
...

(2)
4

4 1
3 2

2 3

(3)
4 ×

4 1
3 2

2 3

(4)
4

4 1
3 2

2 4

(5)
4 3

4 1
3 2

2 4

(6)
4 3

4 2 1
3 2

2 4

(7)
4 3

× 4 2 1
3 2

2 4

(20)
1 3 4 2
2 4 3 1
3 1 2 4
4 2 1 3

Abbildung 7.8: Visualisierung von Backtracking bei Sudoku
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Bemerkung 7.2 (Backtracking in einem Labyrinth):
Die Situation beim Backtracking in Sudokus kann vage mit der (rekursiven) Suche eines
Ausgangs (oder aller Ausgänge) aus einem Labyrinth verglichen werden. Wir suchen, begin-
nend bei Start, einen der Ausgänge aus einem Labyrinth. Dazu gehen wir so lange die Gänge
entlang, bis wir entweder herausgefunden haben oder in einer Sackgasse angelangt sind. In
Abbildung 7.9 ist die Situation veranschaulicht. Der Weg Start → 0 → 1 ist eine Sackgasse.
Wir gehen darum einen Gang zurück (also zu 0). Von 0 aus gibt es keine weitere Abzweigung
und wir gehen nochmals einen Gang zurück, also zum Start. Nun gehen wir den neuen Weg
Start → 2 → 3 → 4. Doch auch 4 ist eine Sackgasse. Deshalb gehen wir einen Gang zurück
zu 2. Von 2 aus nehmen wir den neuen Weg 2 → 5 → 6 und haben einen Ausgang gefunden.
Diesen gefundenen Weg Start → 2 → 5 → 6 können wir als Lösung ausgeben. Falls wir
(wie beim Sudoku) alle Lösungen (Ausgänge) finden wollen, würden wir hier nicht bereits
abbrechen, sondern (rekursiv) weitersuchen.

Start

0

1 (S)

2

3

4 (S)

5

6 (A)

7

8

9 (S)

10

11 (A)

Abbildung 7.9: Navigation in einem Labyrinth
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7.6 Lösungsalgorithmus für Sudoku
Unser Lösungsalgorithmus verwendet die Funktion erlaubt sowie Backtracking in Kombination mit
Rekursion. Diese drei Komponenten sind Ihnen inzwischen bekannt. Der vollständige Algorithmus
zum Lösen von Sudokus ist in Programm 7.5 gegeben. Mit der Definition
sudokuNo0 = [

[0,0,7,0,0,3,9,0,2],
[0,0,0,8,0,0,0,0,0],
[9,4,3,0,0,0,0,0,7],
[6,9,0,0,0,0,0,0,0],
[3,0,0,5,2,7,0,0,0],
[0,0,0,0,0,0,8,4,0],
[0,0,0,0,4,8,0,0,0],
[2,6,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,2,9]
]

Programm 7.4: Abspeichern von Sudoku-Gittern in Python

wird Ihnen der Aufruf sudoku(sudokuNo0) alle (es gibt hier nur eine) Lösungen von Sudoku Nr. 0
ausgeben. Die Funktion in Programm 7.5 verwendet die Funktion erlaubt, welche Sie in Aufgabe 7.4
geschrieben haben.

def sudoku(gitter):
# Gehe durch alle Felder im Gitter.
for zeile in range(9):

for spalte in range(9):
# Schaue, ob das Feld noch leer ist.
if gitter[zeile][spalte] == 0:

# leeres Feld gefunden

# Gehe durch alle 10 Ziffern 1 bis 9.
for ziffer in range(1,10):

# Prüfe, ob die Ziffer für dieses Feld erlaubt ist.
if erlaubt(zeile,spalte,ziffer,gitter):

# Die betrachtete Ziffer ist erlaubt.

# Schreibe diese Ziffer in das Feld.
gitter[zeile][spalte] = ziffer

# Die Ziffer wurde ins Gitter geschrieben.
# Arbeite nun rekrusiv mit dem
# neuen Gitter weiter.
sudoku(gitter)

# Entferne die gesetzte Ziffer wieder.
gitter[zeile][spalte] = 0

# leeres Feld, für welches keine Ziffer passt
# => Sackgasse gefunden => Backtracking
return

# gültige Lösung gefunden
print(np.array(gitter))
return
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Programm 7.5: Implementation der Funktion sudoku

EDIT Aufgabe 7.6

Betrachten Sie die sudoku-Funktion in Programm 7.5. Es gibt genau zwei verschiedene Mög-
lichkeiten, die Zeile 24 in dieser Funktion zu erreichen. Nennen Sie diese beiden Möglichkeiten
und erklären Sie jeweils die Bedeutung des Entfernens der gesetzten Ziffer in dem entspre-
chenden Fall.

EDIT Aufgabe 7.7

(!) Ändern Sie die sudoku-Funktion in Programm 7.5 dahingehend ab, dass genau eine Lösung
ausgegeben wird, falls das Sudoku mindestens eine Lösung besitzt. Falls das Sudoku keine
Lösung besitzt, so soll auch nichts ausgegeben werden.

EDIT Aufgabe 7.8

(!) Dies ist eine besonders schwierige Aufgabe. Wir betrachten das bekannte Damenproblem.
Das Problem besteht darin, 8 Damen auf einem 8 × 8-Schachbrett so zu platzieren, dass
sich keine zwei Damen gegenseitig bedrohen. Finden Sie Inspiration an unserem Sudoku-
Löser und schreiben Sie ein rekursives Programm, welches alle Lösungen des Damenpro-
blems ausgibt. Es gibt genau 92 unterschiedliche Lösungen für den 8 × 8-Fall. Betrachten
Sie auch https://en.wikipedia.org/wiki/Eight_queens_puzzle#Counting_solutions_
for_other_sizes_n. Gelingt es Ihnen, das allgemeine n × n-Problem für n ∈ N zu lösen?
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