
Informatik

Kolmogorov-Komplexität
Skript

Thomas Graf

« Winterthur, 14. Januar 2026

mailto:thomas.graf@edu.zh.ch
mailto:

Inhaltsverzeichnis

1 Kolmogorov-Komplexität 2
1.1 Intuition . 2
1.2 Problematik einer fest gewählten Komprimierung . 5
1.3 Idee hinter der Kolmogorov-Komplexität . 7
1.4 Selbstbegrenzung von Programmen und Definition der Kolmogorov-Komplexität . . 8
1.5 Invarianz der Programmiersprache . 9
1.6 Triviale obere Schranke für die Kolmogorov-Komplexität 10
1.7 Sehr regelmässige Wörter . 10
1.8 Nichtkomprimierbare Wörter und Zufall . 12
1.9 Die Kolmogorov-Komplexität ist nicht berechnenbar 15
1.10 Elemente rekursiver Sprachen haben eine tiefe Kolmogorov-Komplexität 16
1.11 Verständnisaufgaben . 17

A Details 19
A.1 Werkzeuge . 19
A.2 Code . 21

Literatur 23

1

Kapitel 1

Kolmogorov-Komplexität

In der Theorie der algorithmischen Informationstheorie, ist die Kolmogorov1-Komplexität eines
Objekts, wie zum Beispiel einem gegebenen Text, die Länge eines kürzesten Computerprogramms
(in einer festgelegten Programmiersprache), welches dieses Objekt als Ausgabe (Output) produziert.

Die Kolmogorov-Komplexität gibt uns eine Möglichkeit den Informationsinhalt von Objekten zu
bestimmen und erlaubt uns über kürzeste Darstellungen zu sprechen. Zudem erlaubt sie uns eine
sinnvolle Definition der Bedeutung von Zufälligkeit von Texten und Zahlen. Zufall ist ein zentraler
Begriff der modernen Wissenschaft.

1.1 Intuition
Betrachte die wunderschöne Illustration eines Teils der Mandelbrotmenge in Abbildung 1.1.

Abbildung 1.1: Mandelbrotmenge in 16k Auflösung

Wird die Illustration in Abbildung 1.1 Pixel für Pixel abgespeichert, benötigt die PNG-Kompression
dieser Illustration rund 100 Millionen Bits an Speicherplatz, um die Illustration zu beschreiben. Nun
kann aber ein recht kurzes Computerprogramm (siehe Programm A.1) diese 100 Millionen Bits re-
produzieren, indem es von der Definition der Mandelbrotmenge Gebrauch macht. Dieses (kurze)
Computerprogramm ist also eine deutlich kürzere Beschreibung der Illustration als die Angabe
jedes Pixels. Für die Reproduktion dieser 100 Bits benötigt unser Computerprogramm zahlreiche
1Andrei Nikolajewitsch Kolmogorow, herausragender sowjetischer Mathematiker des 20. Jahrhunderts und Begründer
der algorithmischen Komplexitätstheorie

2

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

Rechenoperationen und viel Rechenzeit. Dies ändert aber nichts daran, dass das Programm eine kur-
ze Beschreibung dieser Illustration der Mandelbrotmenge ist. An dieser Stelle können wir wärmstens
empfehlen, einen Blick in das Werk[1] zu werfen.

EDIT Aufgabe 1.1

Betrachte die folgenden zwei Bilder. Abbildung 1.2 zeigt ein Muster, erzeugt durch zahlreiche
Kreise und Abbildung 1.3 zeigt zufälliges Rauschen (white noise).

Abbildung 1.2: Kreise Abbildung 1.3: Rauschen

Welches dieser beiden Bilder erlaubt vermutlich eine kürzere Beschreibung? Begründe deine
Antwort.

Check Lösungsvorschlag zu Aufgabe 1.1

Das Bild mit dem zufälligen Rauschen (Abbildung 1.3) erlaubt keine kurze Beschrei-
bung. Mehr oder weniger muss jeder Pixel einzeln beschrieben werden. Das Muster
der Kreise in Abbildung 1.2 ist sehr regelmässig und kann durch ein kurzes Computer-
programm beschrieben werden, das in einer Schleife Kreise an bestimmten Positionen
zeichnet (wir erinnern uns an die Python-Turtle). Das zufällige Rauschen in Abbil-
dung 1.3 hingegen weist keine erkennbare Struktur oder Regelmässigkeit auf. Das kür-
zeste Programm, das dieses spezifische Rauschbild erzeugt, muss wahrscheinlich die
Farbinformation (weiss / schwarz) für jedes einzelne Pixel speichern. Die Beschreibung
wäre also in etwa so gross wie das Bild selbst und damit viel länger als das Programm
für das Kreismuster.

Bemerkung 1.1:
In diesem Kapitel fassen wir Wörter (Texte) als Träger von Information auf. Obwohl das
Konzept der Kolmogorov-Komplexität auf beliebige Objekte anwendbar ist, werden wir uns
hier der Einfachheit halber nur mit binären Wörtern befassen.

Wir werden nun allmählich versuchen eine robuste Methode zur Messung des Informationsgehalts
eines Wortes zu entwickeln und dabei mehrfach auf Kapitel A verweisen.

3

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

Beispiel 1.1:
Alice hat ein langes binäres Passwort für den Zugriff auf eine Streaming-Platform gewählt.
Bob möchte gerne die neueste Staffel seiner Lieblingsserie schauen und ruft dazu Alice an,
um sie um das Passwort zu bittena.

• Angenommen Alices Passwort lautet p0 := 01011010110001101101111010. Wie könnte
sie Bob das Passwort p0 per Telefon mitteilen? Ihr wird (mehr oder weniger) nichts
anderes übrig bleiben, als das Passwort Bob Bit um Bit (Ziffer um Ziffer) zu diktieren.
p0 lässt sich also nicht kurz beschreiben und man kann sich p0 auch nicht einfach
merken.

• Anders hingegen wäre die Situation bei dem Passwort

p1 := 11100111001110011100111001110011100 = (11100)7,

Das Passwort p1 weist eine starke Regelmässigkeit auf. Natürlich könnte Alice auch
dieses Passwort Bit für Bit an Bob diktieren. Offensichtlich ist es jedoch einfacher,
wenn sie ihm einfach mitteilt:

„Du erhältst das Passwort, indem du siebenmal das Wort 11100 hintereinander
schreibst.“

Dadurch hat Alice die Darstellung von p1 komprimiert. Bitte beachte, dass Bob sich
dieses Passwort p1 recht einfach merken könnte.

aBob scheint nicht mit dem BitTorrent Kommunikationsprotokoll (peer-to-peer file sharing) vertraut zu sein.
Vielleicht benötigt er aber auch nur einen Vorwand, um Alice anzurufen.

Beispiel 1.1 motiviert die folgende intuitive Vorstellung: Wir wollen einem Wort einen kleinen In-
formationsgehalt beimessen, falls es eine kurze Darstellung / Beschreibung besitzt (komprimierbar
ist) und einen grossen Informationsgehalt, falls das Wort so unregelmässig ist, dass keine kurze
Darstellung / Beschreibung zulässt.

Definition 1.1 (Komprimierung intuitiv):
Die Erstellung einer kürzeren Darstellung eines Wortes w nennen wir eine Komprimierung
von w.

EDIT Aufgabe 1.2

Es sei S die Menge aller binären Wörter der Länge 9. Nun „ziehst“ du zufällig und mit
uniformen Wahrscheinlichkeitsverteilung ein Wort aus S.

1. Mit welcher Wahrscheinlichkeit wirst Du das Wort 010010110 ziehen?
2. Mit welcher Wahrscheinlichkeit wirst Du das Wort 111111111 ziehen?

Check Lösungsvorschlag zu Aufgabe 1.2

Die Menge S enthält genau 29 = 512 verschiedene binäre Wörter der Länge 9.

1. Die Wahrscheinlichkeit, das Wort 010010110 zu ziehen, ist 1
512 .

2. Die Wahrscheinlichkeit, das Wort 111111111 zu ziehen, ist ebenfalls 1
512 .

4

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

EDIT Aufgabe 1.3

Intuitiv sollte zufällig bedeuten: „nach keinem klaren Plan gebaut“. Ein zufälliges Objekt
weist also eine chaotische (und keine regelmässige) Struktur auf. Vergleiche mit Aufgabe 1.2
und argumentiere, warum die klassische Wahrscheinlichkeitsrechnung diese Intuition nicht
einfängt.

Check Lösungsvorschlag zu Aufgabe 1.3

Wie in Aufgabe 1.2 gesehen, ist aus Sicht der klassischen Wahrscheinlichkeitstheorie
jedes binäre Wort der Länge 9 gleich wahrscheinlich. Die klassische Wahrscheinlich-
keitstheorie macht also keine Aussage über die Zufälligkeit eines einzelnen Wortes,
sondern nur über die Wahrscheinlichkeit, mit der ein Wort aus einer Menge von Wör-
tern gezogen wird.

Obwohl das Wort 111111111 sehr regelmässig und das Wort 010010110 sehr unre-
gelmässig erscheint, sind beide aus Sicht der klassischen Wahrscheinlichkeitstheorie
gleich wahrscheinlich. Die klassische Wahrscheinlichkeitstheorie kann also nicht zwi-
schen der Zufälligkeit einzelner Objekte unterscheiden. Genau diese Lücke wird durch
die Kolmogorov-Komplexität geschlossen.

Ein denkbares Vorgehen zur Messung des Informationsgehalts eines binären Worts w wäre, sich auf
eine konkrete Komprimierungsmethode komp zu einigen. Die Länge |komp(w)| des komprimierten
Wortes komp(w) könnte dann als Mass für den Informationsgehalt von w angesehen werden.

Natürlich muss auch komp(w) ein Wort über dem binären Alphabet sein. Würden wir komp(w) in
einem anderen Alphabet darstellen, wäre der Vergleich der Darstellungslängen nicht mehr sinnvoll,
denn schliesslich ist es immer möglich, ein Wort in einem mächtigen Alphabet kurz darzustellen.

1.2 Problematik einer fest gewählten Komprimierung
Es existieren unendlich viele Komprimierungsmethoden, welche für eine feste Wahl einer Kompri-
mierung zur Verfügung stehen. Doch welche Komprimierungsmethode stellt nun die korrekte Wahl
dar? Das Problem wird sein, dass, egal welche Komprimierung verwendet wird, immer eine andere
Komprimierung existiert, welche für unendlich viele Wörter kürzere Darstellungen erzeugt.

Beispiel 1.2 (Komprimierung durch Ausnutzung von Wiederholungen):
Lass uns ein binäres Wort mit zahlreichen Wiederholungen von Teilwörtern untersuchen.
Konkret wollen wir das Wort

w := 00(101)25(01010)9(1011)16 = 00(101)11001(01010)1001(1011)10000

untersuchen, wobei wir die Exponenten in Basis 10 durch ihre binäre Darstellung ersetzt
haben. Die resultierende Darstellung ist jedoch noch immer kein binäres Wort. Tatsächlich ist
es ein Wort über dem Alphabet {0, 1, (,)}, welches vier Symbole erhält. Mit der Vereinbarung

0 → 00, 1 → 11, (→ 10,) → 01

erhalten wir die doppelt so lange (aber dafür binäre) Darstellung:

w = 00001011001101111100001110001100110001110000111011001111011100000000.

5

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

Beispiel 1.3 (Komprimierung durch Primfaktorisierung):
Es sei x ein binäres Wort. Falls dec(x) ≥ 2, dann gilt

dec(x) = pe1
1 pe2

2 . . . pet
t ,

wobei die pi unterschiedliche Primzahlen sind und ei ≥ 0 für i ∈ { n ∈ N ; 1 ≤ n ≤ t }. Eine
denkbare Darstellung von pe1

1 pe2
2 . . . pet

t ist

bin(p1)(bin(e1))bin(p2)(bin(e2)) . . . bin(pt)(bin(et)).

Mit der Vereinbarung aus Beispiel 1.2 erhalten wir wieder eine binäre Darstellung von x.

Leider sind die beiden Komprimierungsmethoden aus Beispiele 1.2 und 1.3 nicht miteinander ver-
gleichbar. Die erste Methode (Ausnutzung von Wiederholungen) erzeugt für gewisse Wörter eine
kürzere Darstellung als die zweite Methode (Primfaktorisierung) und umgekehrt.

Beispiel 1.4 (Unvergleichbarkeit von Komprimierungsmethoden):

• Für das Wort wA := (10110010)512 mit der binären Länge von 8 · 512 = 4096 Bits,
ergibt die Komprimierung aus Beispiel 1.2:

wA = (10110010)512 = (10110010)bin(512) = (10110010)1000000000 =
= 10︸︷︷︸

(

1100111100001100︸ ︷︷ ︸
10110010

01︸︷︷︸
)

11000000000000000000︸ ︷︷ ︸
1000000000

also als zusammenhängendes binäre Wort:

1010110011110000110001011100000000000000

mit einer Darstellungslänge von 40 Bits gegenüber der unkomprimierten Darstellungs-
länge von 4096 Bits.

• Für das Wort wB := bin
(
35000 · 54000 · 173000)

mit der binären Länge von 17230 Bits
(siehe Theorem A.3), ergibt die Komprimierung aus Beispiel 1.3:

wB = bin
(
35000 · 54000 · 173000

)
=

= bin(3)(bin(5000))bin(5)(bin(4000))bin(17)(bin(3000)) =
= 11(1001110001000)101(111110100000)10001(101110111000).

Nach Anwendung unserer Vereinbarung

0 → 00, 1 → 11, (→ 10,) → 01

erhalten wir eine Darstellungslänge von 106 Bits gegenüber der unkomprimierten Dar-
stellungslänge von 17230 Bits.

• Die Komprimierungsmethode der Primfaktorisierung für wA wird vermutlich kaum ge-
winnbringend sein, da dec(wA) vermutlich nicht als Produkt hoher Potenzen weniger
Primzahlen geschrieben werden kann. Umgekehrt wird wB erwartungsweise keine Mus-
ter von Wiederholungen von Nullen und Einsen aufweisen, deren Ausnützung sich loh-
nen würde.

6

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

Somit sind die beiden Komprimierungsmethoden aus den Beispielen 1.2 und 1.3 nicht miteinander
vergleichbar. Die erste Methode (Ausnutzung von Wiederholungen) erzeugt für gewisse Wörter eine
deutlich kürzere Darstellung als die zweite Methode (Primfaktorisierung) und umgekehrt.

1.3 Idee hinter der Kolmogorov-Komplexität
Die Definition eines Komplexitätsmasses sollte robust sein in dem Sinne, dass sie nicht auf einer
arbiträren Wahl einer Komprimierungsmethode basiert. Ein Komplexitätsmass, welches keine arbi-
träre Wahl verwendet, ist die Kolmogorov-Komplexität. Um deren Definition zu verstehen, müssen
wir zunächst den Begriff der Generierung eines Worts einführen.

Definition 1.2 (Generierung eines Worts):
Es sei w ein beliebiges Wort. Wir sagen, dass ein Programm (ein Algorithmus) A das Wort
w generiert, falls der Aufruf A() genau das Wort w ausgibt.

Beispiel 1.5:
Das Programm

#include <iostream>
void A() {

std::cout << "00110111" << std::endl;
}

generiert das Wort 00110111.

Beispiel 1.6:
Das Programm

#include <iostream>
#include <string>
void B() {

std::string wort(9900507, '1');
std::cout << wort << std::endl;

}

generiert das Wort w := 19900507 = 11 . . . 111︸ ︷︷ ︸
9900507 Einsen

.

Beachte, dass der Algorithmus B eine kurze Beschreibung von w relativ zur grossen Länge
von w darstellt.

Die Idee von Kolmogorov besteht darin, dass wir uns nicht auf eine arbiträre Komprimierung einigen
müssen. Stattdessen erlaubt er, beliebige Programme (in einer fest gewählten Programmiersprache)
zur Beschreibung von Texten. Wenn ein Text durch ein kurzes Programm beschrieben werden kann,
so hat es eine geringe Kolmogorov-Komplexität. Erlaubt ein Text hingegen keine kurze Beschreibung
als Programm, so besitzt er eine hohe Kolmogorov-Komplexität.

7

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

1.4 Selbstbegrenzung von Programmen und Definition der Kolmogorov-
Komplexität

Zunächst möchten wir das kleine, aber mühsame Detail der sogenannten Selbstbegrenzung adressie-
ren und die damit verbundene Problematik in diesem Abschnitt aus dem Weg räumen. Betrachten
wir dazu nochmals das folgende (standard) C++-Programm aus Beispiel 1.5:

#include <iostream>
void A() {

std::cout << "00110111" << std::endl;
}

Das Problem ist, dass wir typischerweise die Symbole der Tastatur in Binärcode durch Folgen von 7
Nullen und Einsen (zum Beispiels mittels der ASCII-Kodierung) darstellen müssen (natürlich gibt
es auch noch andere Möglichkeiten). Wenn wir aber das gesamte Programm A so kodieren, dann
würden wir für das Wort w := 00110111 nicht nur |w| Bits benötigen, sondern 7 |w|. Diesen Faktor 7
möchten wir gerne vermeiden. Damit unser Programm genau das Wort w (weder mehr noch weniger)
ausgibt, muss klar sein, welcher Teil im Programm A dem Wort w entspricht und welcher Teil dem
Rest des Programms. Um dies zu erreichen, designen wir eine ganz leicht modifizierte Version des g++
Compilers und der Programmiersprache C++. Lass uns diesen modifizierten Compiler g'++ nennen
und die angepasste Sprache C'++.

Die Sprache C'++ unterscheidet sich von standard C++ lediglich darin, dass wir in einem C'++
Programm die Escape-Sequenzen *** und +++ verwenden dürfen. Der modifizierte Compiler g'++
übersetzt dann das Programm ganz normal in Maschinencode, integriert aber die binäre Darstel-
lung der Programmteile, deren Beginn mit *** und Ende mit +++ gekennzeichnet wird, direkt in
den Maschinencode. Eine Verwendung dieser Escape-Sequenzen für einen anderen Zweck wäre dann
ein semantischer Fehler.

Beispiel 1.7:
Das Programm

#include <iostream>
void A() {

std::cout << "***00110111+++" << std::endl;
}

generiert das Wort w := 00110111 und ist eine gültiges Programm in Sprache C'++. Der Pro-
grammteil 00110111 wird bei der Kompilierung des Programms mithilfe von g'++ unverän-
dert in dem Maschinencode vorkommen, wird also exakt 8 Bits zu Länge des Maschinencodes
beitragen.

Nun können wir endlich die formale Definition der Kolmogorov-Komplexität angeben:

Definition 1.3 (Kolmogorov-Komplexität):
Es sei w ein binäres Wort. Die Kolmogorov-Komplexität K(w) von w ist definiert als das Mi-
nimum der binären Längen aller C'++ Programme (kompiliert mit g'++), die w generieren.

Für ein binäres Wort w betrachten wir alle (unendlich vielen) Maschinencodes der C'++ Programme,
die w generieren. Die Länge eine kürzesten2 solcher Maschinencodes ist dann die Zahl K(w).

2Im Allgemeinen kann es mehrere verschiedene kürzeste Maschinencodes geben, die w generieren.

8

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

Bemerkung 1.2:
Ist K(w) ein geeignetes Mass für den Informationsgehalt des binären Wortes w? Ja, da jede
Komprimierungsmethode als Programm formuliert werden kann, bezieht die Kolmogorov-
Komplexität jede denkbare Komprimierungsmethode ein. Es sei x ein binäres Wort und f
eine Komprimierungsmethode (Funktion), die zu x eine komprimierte Darstellung x′ := f(x)
generiert. Es sei f−1 die Umkehrung der Komprimierung f , also f−1(f(x)) = f−1(x′) = x.
Dann können wir ein Programm schreiben, welches lediglich (das kurze Wort) x′ als Parameter
beinhaltet und x wieder aus x′ mithilfe von f−1 erzeugt und schliesslich ausgibt. Dazu muss
f−1 natürlich auch im Programm kodiert sein. Doch die binäre Länge der Beschreibung dieser
Umkehrfunktion ist unabhängig von x und x′ und kann somit als konstant angesehen werden.
Das so aufgebaute Programm würde dann x generieren, ohne die Darstellung von x speichern
zu müssen.

In Abschnitt 1.5 werden wir sehen, dass die Wahl der Programmiersprache keine wesentliche Rolle
spielt.

1.5 Invarianz der Programmiersprache
Man könnte sich denken, dass die Wahl einer festen Programmiersprache wiederum ein arbiträres
Element einbringt. Dem ist aber nicht so! Wir klären diesen Sachverhalt in Theorem 1.1.

Theorem 1.1 (Sprachinvarianz):
Es seien A und B beliebige Programmiersprachen und w ein binäres Wort. Wir bezeichnen
mit KS(w) die Länge des kürzesten Maschinencodes eines Programms in Sprache S, das w
generiert. Es existiert eine Konstante cA,B, welche nur von A und B abhängt, sodass

|KA(w) − KB(w)| ≤ cA,B

für alle binären Wörter w.
Beweis 1.1:

• Da die Sprachen A und B turingvollständig sind, existiert ein Programm TB→A in
Sprache A, welches jedes Programm in Sprach B in ein äquivalentes Programm in
Sprache A übersetzt. Analog existiert ein Programm TA→B in Sprache B, welches
jedes Programm in Sprache A in äquivalentes Programm in Sprache B übersetzt.

• Es sei Bw ein Programm in Sprache B, welches w generiert. Dann können wir Bw

dem Programm TB→A als Parameter übergeben. Dann ist TB→A (Bw) ein Programm,
in Sprache A, welches w generiert. Wir bezeichnen die binäre Länge des Programms
TB→A mit cB→A. Somit gilt KA(w) ≤ KB(w) + cB→A.

• Analog (von A zu B) finden wir KB(w) ≤ KA(w) + cA→B.
• Der Unterschied |KA(w) − KB(w)| ist also nicht grösser als

cA,B := max {cA→B, cB→A} .

Theorem 1.1 besagt also, dass die konkrete Wahl der Programmiersprache für die Definition der
Kolmogorov-Komplexität keine wesentliche Rolle spielt.

9

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

1.6 Triviale obere Schranke für die Kolmogorov-Komplexität
Ein beliebiges binäres Wort w kann sicherlich immer beschrieben werden, indem man jedes Bit
des Wortes einzeln angibt, w also Bit für Bit diktiert. Diese Beobachtung lässt vermuten, dass die
Kolmogorov-Komplexität eines jeden binären Wortes w zumindest nicht (wesentlich) länger ist, als
die Anzahl Bits von w (Länge von w). Diese Vermutung ist korrekt, wie Theorem 1.2 zeigt.

Theorem 1.2 (K(w) ist auf keinen Fall wesentlich länger als |w|):
Es existiert eine Konstante c, sodass für jedes binäre Wort w gilt

K(w) ≤ |w| + c.

Beweis 1.2:
Es genügt, ein Programm anzugeben, welches ein beliebiges binäres Wort w generiert
und eine binäre Länge aufweist, welche kleiner oder gleich |w| + c ist (für eine geeignete
Konstante c). Das Programm

#include <iostream>
void A() {

std::cout << "***w+++" << std::endl;
}
generiert w. Der gelbe Teil des Programms ist identisch für jedes Wort w. Das Wort w
wird unverändert (binär) im Maschinencode vorkommen. Der resultierende Maschinencode
hat also eine Länge von |w| vielen Bits (für die Darstellung des binären Wortes w) und
zusätzlich noch irgendeine konstante Anzahl Bits c für die Kodierung des eigentlichen
Programms (gelber Teil). Die Anzahl Bits c ist konstant, in dem Sinne, dass sie nicht von
w abhängig ist. Damit haben wir ein Programm angegeben, welches w generiert und eine
binäre Länge von |w| + c hat. Somit gilt K(w) ≤ |w| + c für eine Konstante c.

Die Kolmogorov-Komplexität eines Wortes w ist also sicherlich (bis auf eine Konstante) nicht grösser
als die Länge von w.

1.7 Sehr regelmässige Wörter
Theorem 1.2 gibt lediglich eine obere Schranke für die Kolmogorov-Komplexität von binären Wör-
tern an. Wörter w, die eine hohe Regelmässigkeit aufweisen, müssen nicht Bit für Bit angegeben
werden, sondern lassen sich (unter Ausnutzung ihrer Regelmässigkeit) deutlich kürzer beschreiben
als mit |w| + c vielen Bits.

Beispiel 1.8:
Es sei wn := 1n für eine beliebige natürliche Zahl n > 0. Das Wort wn besteht also genau
aus n-vielen Einsen (und hat insbesondere die Länge n). Es handelt sich also um ein sehr
regelmässiges Wort, welches (intuitiv) nicht Bit für Bit beschrieben werden muss. Das folgende
Programm Cn generiert das Wort wn:

#include <iostream>
#include <string>

void Cn() {
std::string wort(***n+++, '1');

10

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

std::cout << wort << std::endl;
}

Im Programm Cn ist einzig die binäre Kodierung n der Zahl n abhängig von n beziehungsweise
von wn. Der Rest des Programms ist unabhängig von der konkreten Wahl von n (für jede
Wahl von n gleich). Gemäss Theorem A.3 benötigen wir zur binären Darstellung von n genau
dlog2(n + 1)e viele Bits. Damit existiert Konstanten c0 und c1, sodass

K(wn) ≤ c0 + dlog2(n + 1)e
T heorem A.4

≤ log2(n) + c1 = log2(|wn|) + c1

für beliebiges natürliches n > 0.

Beispiel 1.9:
Es sei vn := 1(n2) für eine beliebige natürliche Zahl n > 0. Das Wort vn besteht also genau
aus n2-vielen Einsen. Es gilt |vn| = n2 und somit n =

√
|vn|. Das folgende Programm Dn

generiert das Wort vn:

#include <iostream>
#include <string>

void Dn() {
std::string wort;
int M = ***n+++
int M = M * M
wort.reserve(M);

for (int i = 0; i < M; ++i) {
wort += '1';

}

std::cout << wort << std::endl;
}

Analog zu Beispiel 1.8, ist auch hier einzig die binäre Kodierung n der Zahl n abhängig von
n beziehungsweise von vn. Der Rest des Programms ist wieder unabhängig von der konkreten
Wahl von n (für jede Wahl von n gleich). Zur binären Darstellung von n benötigen wir genau
dlog2(n + 1)e viele Bits. Damit existiert Konstanten c2 und c3, sodass

K(vn) ≤ c3 + dlog2(n + 1)e
T heorem A.4

≤ log2(n) + c4 = log2

(√
|vn|

)
+ c4

für beliebiges natürliches n > 0.

Bei der Bestimmung einer oberen Schranke für die Kolmogorov-Komplexität eines Wortes,
interessieren wir uns lediglich dafür, wie viele Bits wir für die Beschreibung dieses Wortes
benötigen! Dass

• die Inhalte von Variablen wie zum Beispiel von M während er Ausführung des Programms
Dn möglicherweise gigantisch gross werden,

• die Programmausführung sehr viel Speicher belegen könnte

11

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

• oder eine Berechnung wie M * M potenziell sehr viel Rechenzeit in Anspruch nehmen
könnte

tut hier nichts zur Sache! Uns interessiert einzig und alleine die binäre Länge der Beschrei-
bung eines Wortes. Wir gehen stets davon aus, dass die verwendeten Zahlentypen (wie int)
die berechneten Werte korrekt abspeichern können (die Zahlenbereiche ausreichend gross
sind) und genügend Speicher vorhanden ist.

EDIT Aufgabe 1.4

Betrachte nochmals Beispiel 1.9. Natürlich könnte das Wort vn auch durch das folgende
Programm beschrieben werden:

#include <iostream>
#include <string>

void Fn() {
std::string wort;
wort.reserve(***n**2+++);

for (int i = 0; i < ***n**2+++; ++i) {
wort += '1';

}

std::cout << wort << std::endl;
}

Warum beweist dieses Programm sicherlich eine schlechtere obere Schranke für die Kolmogorov-
Komplexität von vn als Beispiel 1.9?

Check Lösungsvorschlag zu Aufgabe 1.4

Da Fn zweimal die binäre Kodierung von n2 enthält, kann Fn sicherlich keine bessere
obere Schranke liefern als

K(vn) ≤ c + 2
⌈
log2

(
n2 + 1

)⌉
≤ c′ + 2 log2

(
n2

)
= c′ + 4 log2

(√
|vn|

)
für geeignete Konstanten c, c′.

1.8 Nichtkomprimierbare Wörter und Zufall
Wir haben die Kolmogorov-Komplexität nur für binäre Wörter definiert. Wir können die Kolmogorov-
Komplexität aber auch ganz einfach für natürliche Zahlen definieren, indem wir die natürliche Zahl
einfach in Basis 2 (binär) darstellen, um ein binäres Wort zu erhalten.

Definition 1.4 (Kolmogorov-Komplexität einer natürlichen Zahl):
Die Kolmogorov-Komplexität K(n) einer natürlichen Zahl n ist K(n) := K(bin(n)).

12

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

Es existieren Wörter, die nicht komprimierbar sind, die also eine Kolmogorov-Komplexität besitzen,
die nicht kleiner ist als ihre Länge.

Theorem 1.3 (Existenz nichtkomprimierbarer Wörter):
Für jede natürliche Zahl n > 0 existiert (mindestens) ein binäres Wort w der Länge n, für
welches gilt

K(w) ≥ n = |w| ,

das heisst, für jede Länge n existiert (mindestens) ein Wort dieser Länge, welches sich nicht
komprimieren lässt.

Insbesondere ist dadurch also für jedes natürliche n > 0 die Existenz (mindestens) eines
binären Wortes w (wir sagen nichts über die Länge von w aus) mit K(w) ≥ n gesichert.

Beweis 1.3:
Unser Beweis verwendet ein einfaches kombinatorisches Argument (Abzählen): Ein Ma-
schinencode kann höchstens ein binäres Wort generieren. Beachte auch, dass ein Maschi-
nencode der Länge 0 (leerer Maschinencode) kein Wort generieren kann. Wie viele nicht-
leere Maschinencodes der Länge kleiner als n gibt es höchstens? Sicherlich sind es nicht
mehr als es Elemente in der Menge

S := { w ; w ist ein binäres Wort mit 1 ≤ |w| ≤ n − 1 }

gibt. Schliesslich ist jeder nichtleere Maschinencode insbesondere auch ein nichtleeres bi-
näres Wort. Es gibt genau 21 binäre Wörter der Länge 1, 22 binäre Wörter der Länge 2
und allgemein 2k binäre Wörter der Länge k. Insgesamt enthält die Menge S also genau

n−1∑
k=1

2k T heorem A.2= 2n − 2

Elemente. Doch es gibt genau 2n binäre Wörter der Länge n. Dies sind aber mehr als es
nichtleere verschiedene Maschinencodes der Länge < n gibt. Damit muss ein binäres Wort
x der Länge n existieren, für welches kein Maschinencode mit Länge < n existiert und
somit K(x) ≥ n = |w|.

Ein nichtkomprimierbares Wort erlaubt also keine kürzere Beschreibung, als das Wort vollständig zu
beschreiben. Es gibt also keinen anderen Plan zu seiner Generierung, als einzig seine vollständige Be-
schreibung. Damit ist es plausible, dass Definition 1.5 unsere bislang beste bekannte Formalisierung
des informellen Begriffes „zufällig“ ist.

Definition 1.5 (Zufälliges binäres Wort, zufällige Zahl):

• Ein binäres Wort w heisst zufällig, falls K(w) ≥ |w|.
• Eine natürliche Zahl n > 0 heisst zufällig, falls K(n) = K(bin(n)) ≥ dlog2(n + 1)e − 1.

13

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

EDIT Aufgabe 1.5

Woher kommt der Term −1 in der Definition einer zufälligen Zahl (siehe Definition 1.5)?

Check Lösungsvorschlag zu Aufgabe 1.5

Die kürzeste binäre Darstellung bin(n) jeder natürlichen Zahlen n > 0 beginnt mit
einer 1. Sonst hätte die Darstellung führende Nullen und es wäre nicht die kürzeste
Darstellung. Das erste Bit in der binären Darstellung von n ist also bereits bekannt.
Es ist also sinnvoll die Zahl auch schon als zufällig anzuschauen, falls alle Bits ausser
dem ersten genannt werden müssen.

14

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

1.9 Die Kolmogorov-Komplexität ist nicht berechnenbar

Theorem 1.4 (K(w) ist nicht für jedes binäre Wort berechenbar):
Das Problem, für jedes binäre Wort w die Kolmogorov-Komplexität K(w) zu berechnen, ist
algorithmisch unlösbar (nicht berechenbar).

Mit anderen Worten: Es existiert kein Algorithmus, welcher ein beliebiges binäres Wort w als
Eingabe erhält und die natürliche Zahl K(w) als Ausgabe liefert.

Beweis 1.4:
Es sei n > 0 eine natürliche Zahl. Nun bezeichnen wir mit α das erste Wort bezüglich der
kanonischen Ordnung über dem binären Alphabet, welches eine Kolmogorov-Komplexität
von mindestens n hat. Wegen Theorem 1.3 und der Verwendung der kanonischen Ordnung
ist die Existenz und Eindeutigkeit von α gesichert. Bitte beachten Sie, dass wir keine
Aussage zur Länge von α machen. Insbesondere wird also nicht behauptet, dass α die
Länge n hat.

Angenommen es existiert ein Algorithmus Q, der zu jedem binären Wort w die Zahl K(w)
berechnet. Dann können wir Q verwenden, um eine kurze Beschreibung von α anzugeben.
Für jede natürliche Zahl n > 0 sucht und generiert das folgende C'++ Programma das
Wort α:

#include <iostream>
#include <string>
void seeking_alpha_n() {

x = leeres Wort;
Kx = Q(x);
while (Kx < ***n+++) {

x = Nachfolger von x in der kanonischen Ordnung über {0, 1}^*;
Kx = Q(x)

}
std::cout << x << std::endl;

}
Alle Algorithmen seeking_alpha_n sind identisch bis auf die Zahl n. Es sei c die Länge
des Maschinencodes von seeking_alpha_n bis auf die Angabe von n. Damit ist bewiesen,
dass K(α) ≤ c + dlog2(n + 1)e.

Nach Definition von α gilt aber auch K(α) ≥ n für alle n ∈ N mit n > 0. Doch die
Ungleichungen

n ≤ K(α) ≤ c + dlog2(n + 1)e

können höchstens für endlich viele natürliche Zahlen n > 0 gelten. Dies ist ein Widerspruch
zur Annahme, dass ein Algorithmus Q zur Berechnung der Kolmogorov-Komplexität von
allen binären Wörtern existiert.
agenauer: in C'++-Pseudocode

15

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

1.10 Elemente rekursiver Sprachen haben eine tiefe Kolmogorov-
Komplexität

TODO

16

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

1.11 Verständnisaufgaben

EDIT Aufgabe 1.6

Wie viele Stellen hat die kürzeste Darstellung der Zahl n = 74 + 358 in Basis b = 6?

Check Lösungsvorschlag zu Aufgabe 1.6

Die gesuchte Länge ist⌈
log6

(
74 + 358 + 1

)⌉
=

⌈
ln

(
74 + 359

)
/ ln (6)

⌉
= 5.

EDIT Aufgabe 1.7

Berechne
9∑

k=0

(
5 · 4k

)
.

Check Lösungsvorschlag zu Aufgabe 1.7

9∑
k=0

(
5 · 4k

)
= 5 ·

9∑
k=0

(
4k

)
= 5 · 410 − 1

4 − 1 =

= 1747625

EDIT Aufgabe 1.8

Es sei q 6= 0 eine reelle Zahl und n und m ≤ n natürliche Zahlen. Dann gilt

n∑
k=m

qk = qm + qm+1 + . . . + qn = qn+1 − qm

q − 1 .

Check Lösungsvorschlag zu Aufgabe 1.8

Siehe den Beweis von Theorem A.2.

17

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

EDIT Aufgabe 1.9

Wie viele Elemente enthält die Menge

S := { w ; w ist ein binäres Wort mit 1 ≤ |w| ≤ n − 1 }

Check Lösungsvorschlag zu Aufgabe 1.9

Es gibt genau 21 binäre Wörter der Länge 1, 22 binäre Wörter der Länge 2 und allge-
mein 2k binäre Wörter der Länge k. Insgesamt enthält die Menge S also genau

n−1∑
k=1

2k T heorem A.2= 2n − 2

Elemente.

18

mailto:thomas.graf@edu.zh.ch

Anhang A

Details

A.1 Werkzeuge

Definition A.1 (bin und dec):

• Es sei n > 0 eine natürliche Zahl. Dann bezeichnen wir mit bin(n) die binäre (Basis 2)
Zahlendarstellung von n ohne führende Nullen.

• Es sei n > 0 eine natürliche Zahl. Dann bezeichnen wir mit dec(n) die dezimale (Basis
10) Zahlendarstellung von n ohne führende Nullen.

• Wir definieren zusätzlich bin(0) := 0 sowie dec(0) := 0.

Theorem A.1 (geometrische Summe):
Es sei q 6= 0 eine reelle Zahl und n eine natürliche Zahl. Dann gilt

n∑
k=0

qk = q0 + q1 + . . . + qn = qn+1 − 1
q − 1 .

Beweis A.1:
Wir beweisen die Aussage durch vollständige Induktion.

• Für n = 0 gilt die Aussage, da

0∑
k=0

qk = q0 = 1 = q0+1 − 1
q − 1 .

• Die Aussage gelte nun für eine natürliche Zahl n. Wir zeigen, dass sie auch für n + 1
gilt.

n+1∑
k=0

qk = qn+1 +
n∑

k=0
qk = qn+1 + qn+1 − 1

q − 1 = qn+2 − 1
q − 1 .

Theorem A.2 (verallgemeinerte geometrische Summe):

19

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

Es sei q 6= 0 eine reelle Zahl und n und m ≤ n natürliche Zahlen. Dann gilt

n∑
k=m

qk = qm + qm+1 + . . . + qn = qn+1 − qm

q − 1 .

Beweis A.2:
Unter Verwendung von Theorem A.1 finden wir

n∑
k=m

qk =
n∑

k=0
qk −

m−1∑
k=0

qk = qn+1 − 1
q − 1 − qm − 1

q − 1 = qn+1 − qm

q − 1 .

Theorem A.3 (Anzahl Ziffern in Zahlendarstellung):
Es seien n > 0 und b > 1 natürliche Zahlen. Die kürzeste b-adische Darstellung von n
(Darstellung ohne führende Nullen) hat genau dlogb(n + 1)e Stellen.

Beweis A.3:
Es sei s die Anzahl der Stellen der kürzesten b-adischen Darstellung von n. Die grösste
s-stellige Zahl in Basis b (kürzeste Darstellung) ist

s−1∑
k=0

(b − 1)bk = (b − 1)
s−1∑
k=0

bk = (b − 1)bs − 1
b − 1 = bs − 1,

wobei wir Theorem A.1 verwendet haben. Die kleinste s-stellige Zahl Basis b (kürzeste
Darstellung) ist bs−1. Somit gilt

bs−1 − 1 < n ≤ bs − 1 ⇐⇒
bs−1 < n + 1 ≤ bs ⇐⇒
s − 1 < logb(n + 1) ≤ s,

wobei wir verwendet haben, dass logb eine streng monoton wachsende Funktion ist. Dann
folgt aber dlogb(n + 1)e = s.

Theorem A.4 (Obere Schranke binäre Darstellungslänge):
Für jede natürliche Zahl n > 0 gilt

dlog2(n + 1)e ≤ dlog2(n)e + 1.

Offensichtlich folgt aus dieser Behauptung sofort

dlog2(n + 1)e ≤ dlog2(n)e + 1 < log2(n) + 2.

20

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

Beweis A.4:
Wir beweisen zunächst die Ungleichung log2(n + 1) ≤ log2(n) + 1. Dazu berechnen wir
zunächst

log2(n) + 1 = log2(n) + log2(2) = log2(2n).

Damit gilt also

log2(n + 1) ≤ log2(n) + 1 ⇐⇒
log2(n + 1) ≤ log2(2n) ⇐⇒

n + 1 ≤ 2n ⇐⇒
1 ≤ n,

wobei wir verwendet haben, dass log2 (streng) monoton wachsend ist. Die Ungleichung ist
für alle natürlichen Zahlen n > 0 korrekt. Wir berechnen nun

log2(n + 1) ≤ log2(n) + 1 ⇒
dlog2(n + 1)e ≤ dlog2(n) + 1e = dlog2(n)e + 1.

Definition A.2:
Es sei Σ = {a1, a2, . . . , an}, n > 0, ein Alphabet mit der Ordnung a1 < a2 < . . . < an. Es
seien x, y beliebige Wörter über Σ. Wir definieren die kanonische Ordnung < auf allen Wörter
über Σ wie folgt:

1. Falls x kürzer ist als y, dann gilt x < y.
2. Sind anderenfalls x und y gleich lang, dann gilt x < y genau dann, wenn x alphabetisch

vor y liegt.

A.2 Code
from time import time

import matplotlib.pyplot as plt
import numpy as np
from numba import jit

JIT-compiled Mandelbrot iteration function
@jit(nopython=True)
def mandelbrot(c, max_iter):

z = 0
for n in range(max_iter):

if abs(z) > 2:
return n

z = z * z + c
return max_iter

Generate the Mandelbrot set

21

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexität « Thomas Graf, Informatik, 2026

@jit(nopython=True, parallel=True)
def generate_mandelbrot(width, height, re_start, re_end, im_start, im_end,

max_iter):
image = np.zeros((height, width), dtype=np.float32)
for x in range(width):

for y in range(height):
re = re_start + (x / width) * (re_end - re_start)
im = im_start + (y / height) * (im_end - im_start)
c = complex(re, im)
image[y, x] = mandelbrot(c, max_iter)

return image

Configuration
width, height = 15360, 8640 # 16K resolution
re_start, re_end = -2.0, 1.0
im_start, im_end = -1.0, 1.0
max_iter = 500

Timing and execution
print("Generating Mandelbrot set...")
start = time()
image = generate_mandelbrot(width, height, re_start, re_end, im_start, im_end,

max_iter)
end = time()
print(f"Done in {end - start:.2f} seconds.")

Save the image
output_file = "mandelbrot_16k_hsv.png"
plt.imsave(output_file, image, cmap="hsv")
print(f"Saved image to {output_file}")

Programm A.1: mandelbrot.py

22

mailto:thomas.graf@edu.zh.ch

Literatur

[1] Jürgen Schmidhuber. LOW-COMPLEXITY ART. 1994. url: https://sferics.idsia.ch/
pub/juergen/locoart.pdf.

23

https://sferics.idsia.ch/pub/juergen/locoart.pdf
https://sferics.idsia.ch/pub/juergen/locoart.pdf

	Kolmogorov-Komplexität
	Intuition
	Problematik einer fest gewählten Komprimierung
	Idee hinter der Kolmogorov-Komplexität
	Selbstbegrenzung von Programmen und Definition der Kolmogorov-Komplexität
	Invarianz der Programmiersprache
	Triviale obere Schranke für die Kolmogorov-Komplexität
	Sehr regelmässige Wörter
	Nichtkomprimierbare Wörter und Zufall
	Die Kolmogorov-Komplexität ist nicht berechnenbar
	Elemente rekursiver Sprachen haben eine tiefe Kolmogorov-Komplexität
	Verständnisaufgaben

	Details
	Werkzeuge
	Code

	Literatur

