L®]

Y L ~(*+= Kantonsschule Im Lee . o]
o . Y | = -
] lore) 9| - i
LA, o 2
‘ (oo | Informatik . a : I =
x o (o] -
8 & g Kolmogorov-Komplexitat | :
‘‘‘‘ ® :) =
- Skript & - |
™ S - 2 | o
AN G
Thomas Graf . = 70“
;
H 0,0 00
o = O Winterthur, 14. Januar 2026 @
~ -
&

mailto:thomas.graf@edu.zh.ch
mailto:

Inhaltsverzeichnis

1 Kolmogorov-Komplexitat

1.1 Imtuition o o
1.2 Problematik einer fest gewihlten Komprimierung
1.3 Idee hinter der Kolmogorov-Komplexitdat
1.4 Selbstbegrenzung von Programmen und Definition der Kolmogorov-Komplexitét

1.5 Invarianz der Programmiersprache oo
1.6 Triviale obere Schranke fiir die Kolmogorov-Komplexitat
1.7 Sehr regelmassige Worter e
1.8 Nichtkomprimierbare Woérter und Zufall00 0000
1.9 Die Kolmogorov-Komplexitét ist nicht berechnenbar
1.10 Elemente rekursiver Sprachen haben eine tiefe Kolmogorov-Komplexitdat
1.11 Verstdndnisaufgaben oL L

A Details

A1 Werkzeuge L

A.2 Code

Literatur

© oo J ot N

10
10
12
15
16
17

19
19
21

23

Kapitel 1

Kolmogorov-Komplexitat

In der Theorie der algorithmischen Informationstheorie, ist die Kolmogorov'-Komplexitit eines
Objekts, wie zum Beispiel einem gegebenen Text, die Lange eines kiirzesten Computerprogramms
(in einer festgelegten Programmiersprache), welches dieses Objekt als Ausgabe (Output) produziert.

Die Kolmogorov-Komplexitat gibt uns eine Mdéglichkeit den Informationsinhalt von Objekten zu
bestimmen und erlaubt uns iiber kiirzeste Darstellungen zu sprechen. Zudem erlaubt sie uns eine
sinnvolle Definition der Bedeutung von Zufélligkeit von Texten und Zahlen. Zufall ist ein zentraler
Begriff der modernen Wissenschatft.

1.1 Intuition

Betrachte die wunderschone Illustration eines Teils der Mandelbrotmenge in Abbildung 1.1.

Abbildung 1.1: Mandelbrotmenge in 16k Auflésung

Wird die Illustration in Abbildung 1.1 Pixel fiir Pixel abgespeichert, benttigt die PNG-Kompression
dieser Illustration rund 100 Millionen Bits an Speicherplatz, um die Illustration zu beschreiben. Nun
kann aber ein recht kurzes Computerprogramm (siehe Programm A.1) diese 100 Millionen Bits re-
produzieren, indem es von der Definition der Mandelbrotmenge Gebrauch macht. Dieses (kurze)
Computerprogramm ist also eine deutlich kiirzere Beschreibung der Illustration als die Angabe
jedes Pixels. Fiir die Reproduktion dieser 100 Bits bendtigt unser Computerprogramm zahlreiche

! Andrei Nikolajewitsch Kolmogorow, herausragender sowjetischer Mathematiker des 20. Jahrhunderts und Begriinder
der algorithmischen Komplexitéatstheorie

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

Rechenoperationen und viel Rechenzeit. Dies &ndert aber nichts daran, dass das Programm eine kur-
ze Beschreibung dieser Illustration der Mandelbrotmenge ist. An dieser Stelle kénnen wir wiarmstens
empfehlen, einen Blick in das Werk[1] zu werfen.

= Aufgabe 1.1 \

Betrachte die folgenden zwei Bilder. Abbildung 1.2 zeigt ein Muster, erzeugt durch zahlreiche
Kreise und Abbildung 1.3 zeigt zufélliges Rauschen (white noise).

L5
L
PP
L7

L7
/7
4

777

—
N
N
77
77
L7
17
1777
v
e,
77

NN

77777
1
Z

77777

AR
/7

LT7

77

7

~
=
S

<

S
77
117
7
2
e,
o,
2

=
L7

2

S

L7

RITE RN,
S
sl

S
=

—
L7
L7
L7

==
L7

o
(
g
"

:‘“‘

<>
L7

0."..
L
L

X
0:0’0.
O

22 =<
S STSOUSS K X
SISt
s NN e et 8
AR
T, AN

o
KR

SR una
S nuna
ANy

RRRR

777777
77/
777
"
11

7777
27
1717

77

77

eantes 27

Neneei el e LTI 1777

SIS LI
NS

NS SSSSSSSISISEALTA AT T

Abbildung 1.2: Kreise Abbildung 1.3: Rauschen

Welches dieser beiden Bilder erlaubt vermutlich eine kiirzere Beschreibung? Begriinde deine
Antwort.

v Losungsvorschlag zu Aufgabe 1.1

Das Bild mit dem zufélligen Rauschen (Abbildung 1.3) erlaubt keine kurze Beschrei-
bung. Mehr oder weniger muss jeder Pixel einzeln beschrieben werden. Das Muster
der Kreise in Abbildung 1.2 ist sehr regelméssig und kann durch ein kurzes Computer-
programm beschrieben werden, das in einer Schleife Kreise an bestimmten Positionen
zeichnet (wir erinnern uns an die Python-Turtle). Das zuféllige Rauschen in Abbil-
dung 1.3 hingegen weist keine erkennbare Struktur oder Regelméssigkeit auf. Das kiir-
zeste Programm, das dieses spezifische Rauschbild erzeugt, muss wahrscheinlich die
Farbinformation (weiss / schwarz) fiir jedes einzelne Pixel speichern. Die Beschreibung
wére also in etwa so gross wie das Bild selbst und damit viel lénger als das Programm
fiir das Kreismuster.

Bemerkung 1.1:

In diesem Kapitel fassen wir Worter (Texte) als Tréger von Information auf. Obwohl das
Konzept der Kolmogorov-Komplexitéit auf beliebige Objekte anwendbar ist, werden wir uns
hier der Einfachheit halber nur mit bindren Wortern befassen.

Wir werden nun allméhlich versuchen eine robuste Methode zur Messung des Informationsgehalts
eines Wortes zu entwickeln und dabei mehrfach auf Kapitel A verweisen.

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

Beispiel 1.1:

Alice hat ein langes binédres Passwort fiir den Zugriff auf eine Streaming-Platform gewahlt.
Bob mochte gerne die neueste Staffel seiner Lieblingsserie schauen und ruft dazu Alice an,
um sie um das Passwort zu bitten®.

e Angenommen Alices Passwort lautet pg := 01011010110001101101111010. Wie kdnnte
sie Bob das Passwort py per Telefon mitteilen? Ihr wird (mehr oder weniger) nichts
anderes {ibrig bleiben, als das Passwort Bob Bit um Bit (Ziffer um Ziffer) zu diktieren.
po lasst sich also nicht kurz beschreiben und man kann sich py auch nicht einfach
merken.

e Anders hingegen wére die Situation bei dem Passwort

p1 :=11100111001110011100111001110011100 = (11100)7,

Das Passwort p; weist eine starke Regelméssigkeit auf. Natiirlich konnte Alice auch
dieses Passwort Bit fiir Bit an Bob diktieren. Offensichtlich ist es jedoch einfacher,
wenn sie ihm einfach mitteilt:
,Du erhéltst das Passwort, indem du siebenmal das Wort 11100 hintereinander
schreibst.“
Dadurch hat Alice die Darstellung von p; komprimiert. Bitte beachte, dass Bob sich
dieses Passwort p; recht einfach merken koénnte.

“Bob scheint nicht mit dem BitTorrent Kommunikationsprotokoll (peer-to-peer file sharing) vertraut zu sein.
Vielleicht benétigt er aber auch nur einen Vorwand, um Alice anzurufen.

Beispiel 1.1 motiviert die folgende intuitive Vorstellung: Wir wollen einem Wort einen kleinen In-
formationsgehalt beimessen, falls es eine kurze Darstellung / Beschreibung besitzt (komprimierbar
ist) und einen grossen Informationsgehalt, falls das Wort so unregelmaéssig ist, dass keine kurze
Darstellung / Beschreibung zulésst.

Definition 1.1 (Komprimierung intuitiv):
Die Erstellung einer kiirzeren Darstellung eines Wortes w nennen wir eine Komprimierung
von w.

@ Aufgabe 1.2

Es sei S die Menge aller bindren Worter der Lange 9. Nun ,ziehst du zufillig und mit
uniformen Wahrscheinlichkeitsverteilung ein Wort aus S.

1. Mit welcher Wahrscheinlichkeit wirst Du das Wort 010010110 ziehen?
2. Mit welcher Wahrscheinlichkeit wirst Du das Wort 111111111 ziehen?

v Losungsvorschlag zu Aufgabe 1.2

Die Menge S enthilt genau 2° = 512 verschiedene bindre Wérter der Linge 9.

1. Die Wahrscheinlichkeit, das Wort 010010110 zu ziehen, ist 5—12

2. Die Wahrscheinlichkeit, das Wort 111111111 zu ziehen, ist ebenfalls %

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

[#' Aufgabe 1.3

Intuitiv sollte zufdllig bedeuten: ,nach keinem klaren Plan gebaut“. Ein zufélliges Objekt
weist also eine chaotische (und keine regelméssige) Struktur auf. Vergleiche mit Aufgabe 1.2
und argumentiere, warum die klassische Wahrscheinlichkeitsrechnung diese Intuition nicht
einfangt.

v Losungsvorschlag zu Aufgabe 1.3

Wie in Aufgabe 1.2 gesehen, ist aus Sicht der klassischen Wahrscheinlichkeitstheorie
jedes bindre Wort der Lange 9 gleich wahrscheinlich. Die klassische Wahrscheinlich-
keitstheorie macht also keine Aussage iiber die Zufélligkeit eines einzelnen Wortes,
sondern nur iiber die Wahrscheinlichkeit, mit der ein Wort aus einer Menge von Wor-
tern gezogen wird.

Obwohl das Wort 111111111 sehr regelméssig und das Wort 010010110 sehr unre-
gelmiéssig erscheint, sind beide aus Sicht der klassischen Wahrscheinlichkeitstheorie
gleich wahrscheinlich. Die klassische Wahrscheinlichkeitstheorie kann also nicht zwi-
schen der Zufilligkeit einzelner Objekte unterscheiden. Genau diese Liicke wird durch
die Kolmogorov-Komplexitéit geschlossen.

\

FEin denkbares Vorgehen zur Messung des Informationsgehalts eines bindren Worts w wére, sich auf
eine konkrete Komprimierungsmethode komp zu einigen. Die Lénge |komp(w)| des komprimierten
Wortes komp(w) konnte dann als Mass fiir den Informationsgehalt von w angesehen werden.

Natiirlich muss auch komp(w) ein Wort iiber dem binédren Alphabet sein. Wiirden wir komp(w) in
einem anderen Alphabet darstellen, wére der Vergleich der Darstellungsldngen nicht mehr sinnvoll,
denn schliesslich ist es immer moglich, ein Wort in einem méchtigen Alphabet kurz darzustellen.

1.2 Problematik einer fest gewidhlten Komprimierung

Es existieren unendlich viele Komprimierungsmethoden, welche fiir eine feste Wahl einer Kompri-
mierung zur Verfiigung stehen. Doch welche Komprimierungsmethode stellt nun die korrekte Wahl
dar? Das Problem wird sein, dass, egal welche Komprimierung verwendet wird, immer eine andere
Komprimierung existiert, welche fiir unendlich viele Worter kiirzere Darstellungen erzeugt.

Beispiel 1.2 (Komprimierung durch Ausnutzung von Wiederholungen):
Lass uns ein bindres Wort mit zahlreichen Wiederholungen von Teilwortern untersuchen.
Konkret wollen wir das Wort

w := 00(101)*°(01010)°(1011)'% = 00(101)11001(01010)1001(1011)10000

untersuchen, wobei wir die Exponenten in Basis 10 durch ihre bindre Darstellung ersetzt
haben. Die resultierende Darstellung ist jedoch noch immer kein bindres Wort. Tatséchlich ist
es ein Wort iiber dem Alphabet {0, 1, (,)}, welches vier Symbole erhéilt. Mit der Vereinbarung

0—00, 1—11, (—10,)—01
erhalten wir die doppelt so lange (aber dafiir bindre) Darstellung:

w = 00001011001101111100001110001100110001110000111011001111011100000000.

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

Beispiel 1.3 (Komprimierung durch Primfaktorisierung):
Es sei x ein bindres Wort. Falls dec(z) > 2, dann gilt

dec(z) = p7'ps? ... pit,

wobei die p; unterschiedliche Primzahlen sind und e; > 0 fir i € { n € N; 1 <n <t }. Eine

denkbare Darstellung von p{'p5? ... pf* ist

bin(p1)(bin(e1))bin(p2)(bin(e2)) ... bin(p:)(bin(er)).

Mit der Vereinbarung aus Beispiel 1.2 erhalten wir wieder eine bindre Darstellung von x.

Leider sind die beiden Komprimierungsmethoden aus Beispiele 1.2 und 1.3 nicht miteinander ver-
gleichbar. Die erste Methode (Ausnutzung von Wiederholungen) erzeugt fiir gewisse Worter eine
kiirzere Darstellung als die zweite Methode (Primfaktorisierung) und umgekehrt.

Beispiel 1.4 (Unvergleichbarkeit von Komprimierungsmethoden):

o Fiir das Wort wy := (10110010)°'? mit der bindren Linge von 8 - 512 = 4096 Bits,
ergibt die Komprimierung aus Beispiel 1.2:

w4 = (10110010)%2 = (10110010)bin(512) = (10110010)1000000000 =

= 10 1100111100001100 01 11000000000000000000
~—~ ~—~
(10110010) 1000000000

also als zusammenhéngendes bindre Wort:
1010110011110000110001011100000000000000

mit einer Darstellungslénge von 40 Bits gegeniiber der unkomprimierten Darstellungs-
lange von 4096 Bits.

o Fiir das Wort wp := bin (35000 . 54000 173000) it der bindren Linge von 17230 Bits
(siehe Theorem A.3), ergibt die Komprimierung aus Beispiel 1.3:

wg = bin (35000 . 54000 173000) _

= bin(3) (bin(5000))bin(5) (bin(4000))bin(17)(bin(3000)) =
= 11(1001110001000)101(111110100000)10001(101110111000).

Nach Anwendung unserer Vereinbarung
0—00, 1—11, (—10,)—01

erhalten wir eine Darstellungslidnge von 106 Bits gegeniiber der unkomprimierten Dar-
stellungslange von 17230 Bits.

¢ Die Komprimierungsmethode der Primfaktorisierung fiir w4 wird vermutlich kaum ge-
winnbringend sein, da dec(w,) vermutlich nicht als Produkt hoher Potenzen weniger
Primzahlen geschrieben werden kann. Umgekehrt wird wp erwartungsweise keine Mus-
ter von Wiederholungen von Nullen und Einsen aufweisen, deren Ausniitzung sich loh-
nen wiirde.

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

Somit sind die beiden Komprimierungsmethoden aus den Beispielen 1.2 und 1.3 nicht miteinander
vergleichbar. Die erste Methode (Ausnutzung von Wiederholungen) erzeugt fiir gewisse Worter eine
deutlich kiirzere Darstellung als die zweite Methode (Primfaktorisierung) und umgekehrt.

1.3 Idee hinter der Kolmogorov-Komplexitat

Die Definition eines Komplexitatsmasses sollte robust sein in dem Sinne, dass sie nicht auf einer
arbitrdren Wahl einer Komprimierungsmethode basiert. Ein Komplexitadtsmass, welches keine arbi-
trare Wahl verwendet, ist die Kolmogorov-Komplexitdt. Um deren Definition zu verstehen, miissen
wir zundchst den Begriff der Generierung eines Worts einfiihren.

Definition 1.2 (Generierung eines Worts):
Es sei w ein beliebiges Wort. Wir sagen, dass ein Programm (ein Algorithmus) A das Wort
w generiert, falls der Aufruf A() genau das Wort w ausgibt.

Beispiel 1.5:
Das Programm

#include <iostream>
void AQ) {

std::cout << "00110111" << std::endl;
}

generiert das Wort 00110111.

Beispiel 1.6:
Das Programm

#include <iostream>

#include <string>

void B() {
std: :string wort(9900507, '1');
std::cout << wort << std::endl;

}

generiert das Wort w := 19900507 — 11 111 .
—_——
9900507 Einsen

Beachte, dass der Algorithmus B eine kurze Beschreibung von w relativ zur grossen Léange
von w darstellt.

Die Idee von Kolmogorov besteht darin, dass wir uns nicht auf eine arbitrédre Komprimierung einigen
miissen. Stattdessen erlaubt er, beliebige Programme (in einer fest gewéhlten Programmiersprache)
zur Beschreibung von Texten. Wenn ein Text durch ein kurzes Programm beschrieben werden kann,
so hat es eine geringe Kolmogorov-Komplexitat. Erlaubt ein Text hingegen keine kurze Beschreibung
als Programm, so besitzt er eine hohe Kolmogorov-Komplexitat.

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

1.4 Selbstbegrenzung von Programmen und Definition der Kolmogorov-
Komplexitat

Zunédchst moéchten wir das kleine, aber mithsame Detail der sogenannten Selbstbegrenzung adressie-
ren und die damit verbundene Problematik in diesem Abschnitt aus dem Weg rdumen. Betrachten
wir dazu nochmals das folgende (standard) C++-Programm aus Beispiel 1.5:

#include <iostream>
void AQ) {

std::cout << "00110111" << std::endl;
}

Das Problem ist, dass wir typischerweise die Symbole der Tastatur in Binércode durch Folgen von 7
Nullen und Einsen (zum Beispiels mittels der ASCII-Kodierung) darstellen miissen (natiirlich gibt
es auch noch andere Moglichkeiten). Wenn wir aber das gesamte Programm A so kodieren, dann
wiirden wir fiir das Wort w := 00110111 nicht nur |w| Bits ben&tigen, sondern 7 |w|. Diesen Faktor 7
mochten wir gerne vermeiden. Damit unser Programm genau das Wort w (weder mehr noch weniger)
ausgibt, muss klar sein, welcher Teil im Programm A dem Wort w entspricht und welcher Teil dem
Rest des Programms. Um dies zu erreichen, designen wir eine ganz leicht modifizierte Version des g++
Compilers und der Programmiersprache C++. Lass uns diesen modifizierten Compiler g'++ nennen
und die angepasste Sprache C'++.

Die Sprache C'++ unterscheidet sich von standard C++ lediglich darin, dass wir in einem C'++
Programm die Escape-Sequenzen **x und +++ verwenden diirfen. Der modifizierte Compiler g'++
iibersetzt dann das Programm ganz normal in Maschinencode, integriert aber die bindre Darstel-
lung der Programmteile, deren Beginn mit *** und Ende mit +++ gekennzeichnet wird, direkt in
den Maschinencode. Eine Verwendung dieser Escape-Sequenzen fiir einen anderen Zweck ware dann
ein semantischer Fehler.

Beispiel 1.7:
Das Programm

#include <iostream>
void AQ) {

std::cout << "**xx0011011T+++" << std::endl;
+

generiert das Wort w := 00110111 und ist eine giiltiges Programm in Sprache C'++. Der Pro-
grammteil 00110111 wird bei der Kompilierung des Programms mithilfe von g'++ unveran-
dert in dem Maschinencode vorkommen, wird also exakt 8 Bits zu Lénge des Maschinencodes
beitragen.

Nun kénnen wir endlich die formale Definition der Kolmogorov-Komplexitdt angeben:

Definition 1.3 (Kolmogorov-Komplexitét):
Es sei w ein bindres Wort. Die Kolmogorov-Komplexitiat K (w) von w ist definiert als das Mi-
nimum der bindren Langen aller C'++ Programme (kompiliert mit g'++), die w generieren.

Fiir ein bindres Wort w betrachten wir alle (unendlich vielen) Maschinencodes der C'++ Programme,
die w generieren. Die Linge eine kiirzesten” solcher Maschinencodes ist dann die Zahl K (w).

2Im Allgemeinen kann es mehrere verschiedene kiirzeste Maschinencodes geben, die w generieren.

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat

® Thomas Graf, Informatik, 2026

Bemerkung 1.2:

Ist K(w) ein geeignetes Mass fiir den Informationsgehalt des bindren Wortes w? Ja, da jede
Komprimierungsmethode als Programm formuliert werden kann, bezieht die Kolmogorov-
Komplexitat jede denkbare Komprimierungsmethode ein. Es sei « ein bindres Wort und f
eine Komprimierungsmethode (Funktion), die zu x eine komprimierte Darstellung 2’ := f(x)
generiert. Es sei f~! die Umkehrung der Komprimierung f, also f~(f(z)) = f~1(2') = z.
Dann koénnen wir ein Programm schreiben, welches lediglich (das kurze Wort) 2/ als Parameter
beinhaltet und = wieder aus 2’ mithilfe von f~! erzeugt und schliesslich ausgibt. Dazu muss
f~! natiirlich auch im Programm kodiert sein. Doch die binére Lénge der Beschreibung dieser
Umkehrfunktion ist unabhéngig von z und 2’ und kann somit als konstant angesehen werden.
Das so aufgebaute Programm wiirde dann x generieren, ohne die Darstellung von x speichern
zu mussen.

In Abschnitt 1.5 werden wir sehen, dass die Wahl der Programmiersprache keine wesentliche Rolle
spielt.

1.5 Invarianz der Programmiersprache

Man konnte sich denken, dass die Wahl einer festen Programmiersprache wiederum ein arbitréres
Element einbringt. Dem ist aber nicht so! Wir kldren diesen Sachverhalt in Theorem 1.1.

~

Theorem 1.1 (Sprachinvarianz):

Es seien A und B beliebige Programmiersprachen und w ein bindres Wort. Wir bezeichnen
mit Kg(w) die Lange des kiirzesten Maschinencodes eines Programms in Sprache S, das w
generiert. Es existiert eine Konstante c4 g, welche nur von A und B abhéngt, sodass

|Ka(w) — Kp(w)| < cap

fur alle bindren Worter w.

Beweis 1.1:

o Da die Sprachen A und B turingvollstindig sind, existiert ein Programm Tp_, 4 in
Sprache A, welches jedes Programm in Sprach B in ein dquivalentes Programm in
Sprache A iibersetzt. Analog existiert ein Programm 74,5 in Sprache B, welches
jedes Programm in Sprache A in dquivalentes Programm in Sprache B iibersetzt.

e Es sei B, ein Programm in Sprache B, welches w generiert. Dann kénnen wir By,
dem Programm T'5_, 4 als Parameter iibergeben. Dann ist Tp_, 4 (By) ein Programm,
in Sprache A, welches w generiert. Wir bezeichnen die bindre Linge des Programms
Tp—4 mit cp 4. Somit gilt K4(w) < Kp(w) + cp—A.

e Analog (von A zu B) finden wir Kp(w) < Ka(w) + cap.

o Der Unterschied |K 4(w) — Kp(w)| ist also nicht grosser als

cA,B :=max {CAB,CBA} -

J

Theorem 1.1 besagt also, dass die konkrete Wahl der Programmiersprache fiir die Definition der
Kolmogorov-Komplexitat keine wesentliche Rolle spielt.

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

1.6 Triviale obere Schranke fiir die Kolmogorov-Komplexitat

Ein beliebiges bindres Wort w kann sicherlich immer beschrieben werden, indem man jedes Bit
des Wortes einzeln angibt, w also Bit fiir Bit diktiert. Diese Beobachtung ldsst vermuten, dass die
Kolmogorov-Komplexitét eines jeden bindren Wortes w zumindest nicht (wesentlich) langer ist, als
die Anzahl Bits von w (Lénge von w). Diese Vermutung ist korrekt, wie Theorem 1.2 zeigt.

Theorem 1.2 (K (w) ist auf keinen Fall wesentlich langer als |w|):
Es existiert eine Konstante ¢, sodass fiir jedes bindre Wort w gilt

K(w) <|w|+ec.

Beweis 1.2:

Es geniigt, ein Programm anzugeben, welches ein beliebiges bindres Wort w generiert
und eine bindre Lange aufweist, welche kleiner oder gleich |w| + ¢ ist (fiir eine geeignete
Konstante ¢). Das Programm

#include <iostream>
void AQ) {

std::cout << "k x*xyg+++" << std::endl;
}
generiert w. Der gelbe Teil des Programms ist identisch fiir jedes Wort w. Das Wort m
wird unveréndert (binér) im Maschinencode vorkommen. Der resultierende Maschinencode
hat also eine Lange von |w| vielen Bits (fiir die Darstellung des bindren Wortes w) und
zusétzlich noch irgendeine konstante Anzahl Bits ¢ fiir die Kodierung des eigentlichen
Programms (gelber Teil). Die Anzahl Bits ¢ ist konstant, in dem Sinne, dass sie nicht von
w abhéngig ist. Damit haben wir ein Programm angegeben, welches w generiert und eine
bindre Lénge von |w| 4 ¢ hat. Somit gilt K (w) < |w| + ¢ fiir eine Konstante c.

J

Die Kolmogorov-Komplexitét eines Wortes w ist also sicherlich (bis auf eine Konstante) nicht grosser
als die Lange von w.

1.7 Sehr regelmissige Worter

Theorem 1.2 gibt lediglich eine obere Schranke fiir die Kolmogorov-Komplexitét von bindren Woér-
tern an. Worter w, die eine hohe Regelméssigkeit aufweisen, miissen nicht Bit fiir Bit angegeben
werden, sondern lassen sich (unter Ausnutzung ihrer Regelméssigkeit) deutlich kiirzer beschreiben
als mit |w| + ¢ vielen Bits.

Beispiel 1.8:

Es sei wy, := 1" fiir eine beliebige natiirliche Zahl n > 0. Das Wort w,, besteht also genau
aus n-vielen Einsen (und hat insbesondere die Lénge n). Es handelt sich also um ein sehr
regelméssiges Wort, welches (intuitiv) nicht Bit fiir Bit beschrieben werden muss. Das folgende
Programm Cn generiert das Wort w,:

#include <iostream>
#include <string>

void Cn() {
std::string wort (k*xm+++, '1');

10

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

std::cout << wort << std::endl;

I

Im Programm Cn ist einzig die binére Kodierung m der Zahl n abhéngig von n beziehungsweise
von wy. Der Rest des Programms ist unabhéngig von der konkreten Wahl von n (fir jede
Wahl von n gleich). Geméss Theorem A.3 bendtigen wir zur bindren Darstellung von n genau
[logy(n + 1)] viele Bits. Damit existiert Konstanten ¢y und ¢, sodass

Theorem A.4
K(wn) < o+ [logy(n +1)] < logy(n) + ¢1 = logy(|wn|) + 1

fiir beliebiges natiirliches n > 0.

Beispiel 1.9:

Es sei v, := 1("*) fiir eine beliebige natiirliche Zahl n > 0. Das Wort v,, besteht also genau
aus n2-vielen Einsen. Es gilt |v,| = n? und somit n = \/[v,[. Das folgende Programm Dn
generiert das Wort vy,:

#include <iostream>
#include <string>

void Dn() {
std::string wort;
int M = sxxm+++
int M =M *x M
wort.reserve (M) ;

for (int 1 = 0; i < M; ++i) {
wort += '1';

std::cout << wort << std::endl;

Analog zu Beispiel 1.8, ist auch hier einzig die bindre Kodierung m der Zahl n abhingig von
n beziehungsweise von v,. Der Rest des Programms ist wieder unabhangig von der konkreten
Wahl von n (fiir jede Wahl von n gleich). Zur bindren Darstellung von n bendtigen wir genau
[logy(n + 1)] viele Bits. Damit existiert Konstanten co und c3, sodass

Theorem A.4
K(oa) ot ogy(n+)] < logy(n) + ca = logy (o) + ca

fir beliebiges natiirliches n > 0.

Bei der Bestimmung einer oberen Schranke fiir die Kolmogorov-Komplexitét eines Wortes,
interessieren wir uns lediglich dafiir, wie viele Bits wir fiir die Beschreibung dieses Wortes
benotigen! Dass

¢ die Inhalte von Variablen wie zum Beispiel von M wihrend er Ausfiithrung des Programms
Dn moglicherweise gigantisch gross werden,
¢ die Programmausfithrung sehr viel Speicher belegen kénnte

11

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

e oder eine Berechnung wie M * M potenziell sehr viel Rechenzeit in Anspruch nehmen
kénnte

tut hier nichts zur Sache! Uns interessiert einzig und alleine die binire Linge der Beschrei-
bung eines Wortes. Wir gehen stets davon aus, dass die verwendeten Zahlentypen (wie int)
die berechneten Werte korrekt abspeichern kénnen (die Zahlenbereiche ausreichend gross
sind) und geniigend Speicher vorhanden ist.

= Aufgabe 1.4 .

Betrachte nochmals Beispiel 1.9. Natiirlich kénnte das Wort v, auch durch das folgende
Programm beschrieben werden:

#include <iostream>
#include <string>

void Fn() {
std::string wort;
wort.reserve (kkx*nx*x2+++) ;
for (int i = 0; i < **kkpkk2+++; ++i) {

wort += '1';

std::cout << wort << std::endl;

Warum beweist dieses Programm sicherlich eine schlechtere obere Schranke fiir die Kolmogorov-
Komplexitéat von v, als Beispiel 1.97

v Losungsvorschlag zu Aufgabe 1.4 N

Da Fn zweimal die bindre Kodierung von n? enthilt, kann Fn sicherlich keine bessere
obere Schranke liefern als

K(v,) <c+2 [log2 (n2 + lﬂ < +2log, (n2) = c +4log, (|vn|>

fiir geeignete Konstanten c, .

1.8 Nichtkomprimierbare Worter und Zufall

Wir haben die Kolmogorov-Komplexitéit nur fiir bindre Worter definiert. Wir kénnen die Kolmogorov-
Komplexitat aber auch ganz einfach fiir natiirliche Zahlen definieren, indem wir die natiirliche Zahl
einfach in Basis 2 (binér) darstellen, um ein binidres Wort zu erhalten.

Definition 1.4 (Kolmogorov-Komplexitét einer natiirlichen Zahl):
Die Kolmogorov-Komplexitat K (n) einer natiirlichen Zahl n ist K (n) := K (bin(n)).

12

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat

® Thomas Graf, Informatik, 2026

Es existieren Worter, die nicht komprimierbar sind, die also eine Kolmogorov-Komplexitét besitzen,
die nicht kleiner ist als ihre Lange.

.

Theorem 1.3 (Existenz nichtkomprimierbarer Worter):
Fiir jede natiirliche Zahl n > 0 existiert (mindestens) ein bindres Wort w der Lénge n, fiir
welches gilt

K(w) >n=|w|,

das heisst, fiir jede Lénge n existiert (mindestens) ein Wort dieser Léange, welches sich nicht
komprimieren lasst.

Insbesondere ist dadurch also fiir jedes natiirliche n > 0 die Existenz (mindestens) eines
bindren Wortes w (wir sagen nichts tiber die Lange von w aus) mit K (w) > n gesichert.

Beweis 1.3:

Unser Beweis verwendet ein einfaches kombinatorisches Argument (Abzéhlen): Ein Ma-
schinencode kann hdchstens ein bindres Wort generieren. Beachte auch, dass ein Maschi-
nencode der Lange 0 (leerer Maschinencode) kein Wort generieren kann. Wie viele nicht-
leere Maschinencodes der Léange kleiner als n gibt es hochstens? Sicherlich sind es nicht
mehr als es Elemente in der Menge

S:={w; w ist ein bindres Wort mit 1 < |w| <n—1}

gibt. Schliesslich ist jeder nichtleere Maschinencode insbesondere auch ein nichtleeres bi-
nires Wort. Es gibt genau 2! bindire Worter der Linge 1, 22 bindre Worter der Linge 2
und allgemein 2* bindre Worter der Lange k. Insgesamt enthélt die Menge S also genau

7 1.2
Z 2k weorem A. on _ 9
k=1

Elemente. Doch es gibt genau 2" bindre Worter der Lange n. Dies sind aber mehr als es
nichtleere verschiedene Maschinencodes der Lange < n gibt. Damit muss ein bindres Wort
x der Linge n existieren, fiir welches kein Maschinencode mit Lénge < n existiert und
somit K(z) > n = |w|.

J

Ein nichtkomprimierbares Wort erlaubt also keine kiirzere Beschreibung, als das Wort vollstandig zu
beschreiben. Es gibt also keinen anderen Plan zu seiner Generierung, als einzig seine vollstdndige Be-
schreibung. Damit ist es plausible, dass Definition 1.5 unsere bislang beste bekannte Formalisierung
des informellen Begriffes ,zuféllig® ist.

Definition 1.5 (Zufélliges bindres Wort, zuféllige Zahl):

o Ein bindres Wort w heisst zufdllig, falls K(w) > |w|.
« Eine natiirliche Zahl n > 0 heisst zuféllig, falls K(n) = K(bin(n)) > [logy(n+1)] — 1.

13

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

[#' Aufgabe 1.5

Woher kommt der Term —1 in der Definition einer zufélligen Zahl (siche Definition 1.5)?

v/ Losungsvorschlag zu Aufgabe 1.5

Die kiirzeste bindre Darstellung bin(n) jeder natiirlichen Zahlen n > 0 beginnt mit
einer 1. Sonst hétte die Darstellung fiihrende Nullen und es wére nicht die kiirzeste
Darstellung. Das erste Bit in der bindren Darstellung von n ist also bereits bekannt.
Es ist also sinnvoll die Zahl auch schon als zuféllig anzuschauen, falls alle Bits ausser
dem ersten genannt werden miissen.

14

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

1.9 Die Kolmogorov-Komplexitat ist nicht berechnenbar

Theorem 1.4 (K (w) ist nicht fiir jedes bindre Wort berechenbar):
Das Problem, fiir jedes bindre Wort w die Kolmogorov-Komplexitét K (w) zu berechnen, ist
algorithmisch unlésbar (nicht berechenbar).

Mit anderen Worten: Es existiert kein Algorithmus, welcher ein beliebiges bindres Wort w als
Eingabe erhélt und die natiirliche Zahl K (w) als Ausgabe liefert.

Beweis 1.4:

Es sei n > 0 eine natiirliche Zahl. Nun bezeichnen wir mit o das erste Wort beziiglich der
kanonischen Ordnung {iber dem binédren Alphabet, welches eine Kolmogorov-Komplexitéat
von mindestens n hat. Wegen Theorem 1.3 und der Verwendung der kanonischen Ordnung
ist die Existenz und Eindeutigkeit von « gesichert. Bitte beachten Sie, dass wir keine
Aussage zur Linge von a machen. Insbesondere wird also nicht behauptet, dass « die
Lénge n hat.

Angenommen es existiert ein Algorithmus @, der zu jedem bindren Wort w die Zahl K (w)
berechnet. Dann kénnen wir) verwenden, um eine kurze Beschreibung von « anzugeben.
Fiir jede natiirliche Zahl n > 0 sucht und generiert das folgende C'++ Programm® das
Wort a:

#include <iostream>
#include <string>
void seeking_alpha_n() {
x = leeres Wort;
Kx = Q(x);
while (Kx < s**n+++) {
x = Nachfolger von x in der kanonischen Ordnung iber {0, 1}7x;
Kx = Q(x)
}
std::cout << x << std::endl;
}
Alle Algorithmen seeking_alpha_n sind identisch bis auf die Zahl n. Es sei ¢ die Lange
des Maschinencodes von seeking_alpha_n bis auf die Angabe von n. Damit ist bewiesen,
dass K(a) < ¢+ [logy(n +1)].

Nach Definition von « gilt aber auch K(a) > n fur alle n € N mit n > 0. Doch die
Ungleichungen

n < K(a) < ¢+ Nogy(n + 1)]

konnen hochstens fiir endlich viele natiirliche Zahlen n > 0 gelten. Dies ist ein Widerspruch
zur Annahme, dass ein Algorithmus @ zur Berechnung der Kolmogorov-Komplexitéit von
allen bindren Wortern existiert.

“genauer: in C'++-Pseudocode

15

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitét ® Thomas Graf, Informatik, 2026

1.10 Elemente rekursiver Sprachen haben eine tiefe Kolmogorov-
Komplexitit

TODO

16

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

1.11 Verstandnisaufgaben

@ Aufgabe 1.6 .

Wie viele Stellen hat die kiirzeste Darstellung der Zahl n = 7% + 358 in Basis b = 67

v/ Losungsvorschlag zu Aufgabe 1.6

Die gesuchte Lénge ist

[loge (74 +358 +1)] = [In (7% + 359) /1n (6)| = 5.

= Aufgabe 1.7

Berechne

v Losungsvorschlag zu Aufgabe 1.7

9

2(5_4k) :5_i(4k) =5'410_1 _
k=0 k=0 4-1
= 1747625

@ Aufgabe 1.8 .

Es sei g # 0 eine reelle Zahl und n und m < n natiirliche Zahlen. Dann gilt

n qn+1_qm
Y= =

q—1
k=m

v Losungsvorschlag zu Aufgabe 1.8

Siehe den Beweis von Theorem A.2.

17

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

[#' Aufgabe 1.9 .

Wie viele Elemente enthéalt die Menge

S :={w; w ist ein bindres Wort mit 1 < |w| <n—1}

v Losungsvorschlag zu Aufgabe 1.9

Es gibt genau 2! bindre Worter der Lange 1, 22 bindre Worter der Linge 2 und allge-
mein 2% binire Worter der Linge k. Insgesamt enthéilt die Menge S also genau

n—1
Z Qk Theoreim A2 on _ 9
k=1

Elemente.

18

mailto:thomas.graf@edu.zh.ch

Anhang A

Details

A.1 Werkzeuge
Definition A.1 (bin und dec):

o Essei n > 0 eine natiirliche Zahl. Dann bezeichnen wir mit bin(n) die binédre (Basis 2)
Zahlendarstellung von n ohne fithrende Nullen.

o Es sei n > 0 eine natiirliche Zahl. Dann bezeichnen wir mit dec(n) die dezimale (Basis
10) Zahlendarstellung von n ohne fithrende Nullen.

o Wir definieren zusétzlich bin(0) := 0 sowie dec(0) := 0.

Theorem A.1 (geometrische Summe):
Es sei g # 0 eine reelle Zahl und n eine natiirliche Zahl. Dann gilt

n qn+1 -1
qu=q0+q1+...+qn=71
k=0 4=

Beweis A.1:

Wir beweisen die Aussage durch vollstdndige Induktion.

e Fiir n = 0 gilt die Aussage, da

0 0+1
q —1
k=0 q
e Die Aussage gelte nun fiir eine natiirliche Zahl n. Wir zeigen, dass sie auch fiir n+ 1
gilt.
n+1 n n+1 n+2
q -1 q —1

qu:qn+l+zqk:qn+l+ — — —

k=0 k=0 4 q

Theorem A.2 (verallgemeinerte geometrische Summe):

19

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

Es sei ¢ # 0 eine reelle Zahl und n und m < n natiirliche Zahlen. Dann gilt

n A 1 qn+1 _ qm
D L R e
k=m q
Beweis A.2:
Unter Verwendung von Theorem A.1 finden wir
n n m—1 n+1_1 m _q n+l _ m
ko _ k k_ 4 q _q q
D e I e D e e el
k=m k=0 k=0 q q q

Theorem A.3 (Anzahl Ziffern in Zahlendarstellung):
Es seien n > 0 und b > 1 natiirliche Zahlen. Die kiirzeste b-adische Darstellung von n
(Darstellung ohne fithrende Nullen) hat genau [log,(n + 1)] Stellen.

Beweis A.3:
Es sei s die Anzahl der Stellen der kiirzesten b-adischen Darstellung von n. Die grosste
s-stellige Zahl in Basis b (kiirzeste Darstellung) ist

s—1 3 s—1 N b — 1
-1 =0b-1)>"b :(b—l)ﬁ:b —1,
k=0 k=0

wobei wir Theorem A.1 verwendet haben. Die kleinste s-stellige Zahl Basis b (kiirzeste
Darstellung) ist °~!. Somit gilt

P lol<n<b -1 —
P lantl<h —
s—1<logy(n+1) <s,

wobei wir verwendet haben, dass log, eine streng monoton wachsende Funktion ist. Dann
folgt aber [logy(n +1)] = s.

Theorem A.4 (Obere Schranke bindre Darstellungslénge):
Fiir jede natiirliche Zahl n > 0 gilt

[logy(n+1)] < [logy(n)] + 1.
Offensichtlich folgt aus dieser Behauptung sofort

Mogy(n + 1)] < [logy(n)] + 1 < logy(n) + 2.

20

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

Beweis A.4:
Wir beweisen zunéchst die Ungleichung logy(n 4+ 1) < logy(n) + 1. Dazu berechnen wir
zunachst

logy(n) + 1 = logy(n) + logy(2) = logy(2n).
Damit gilt also

loga(n+1) <logy(n) +1 <=
loga(n + 1) <logy(2n) <
n+1<2n <—

1<n,

wobei wir verwendet haben, dass log, (streng) monoton wachsend ist. Die Ungleichung ist
flir alle natiirlichen Zahlen n > 0 korrekt. Wir berechnen nun

logy(n+ 1) <logy(n) +1 =
[logy(n + 1)1 < [logy(n) + 1] = [logy(n)] + 1.

Definition A.2:
Es sei ¥ = {a1,a2,...,a,}, n > 0, ein Alphabet mit der Ordnung a; < a2 < ... < ay,. Es
seien x, y beliebige Worter iiber . Wir definieren die kanonische Ordnung < auf allen Wérter
iiber X wie folgt:

1. Falls z kiirzer ist als y, dann gilt = < y.
2. Sind anderenfalls x und y gleich lang, dann gilt © < y genau dann, wenn x alphabetisch
vor y liegt.

A.2 Code

from time import time

import matplotlib.pyplot as plt
import numpy as np
from numba import jit

JIT-compiled Mandelbrot iteration function
@jit (nopython=True)
def mandelbrot(c, max_iter):
z=0
for n in range(max_iter):
if abs(z) > 2:
return n
Z=2z%2z+c
return max_iter

Generate the Mandelbrot set

21

mailto:thomas.graf@edu.zh.ch

Kolmogorov-Komplexitat ® Thomas Graf, Informatik, 2026

@jit (nopython=True, parallel=True)
def generate_mandelbrot(width, height, re_start, re_end, im_start, im_end,
max_iter):
image = np.zeros((height, width), dtype=np.float32)
for x in range(width):
for y in range(height):
re = re_start + (x / width) * (re_end - re_start)
im = im_start + (y / height) * (im_end - im_start)
c = complex(re, im)
imagel[y, x] = mandelbrot(c, max_iter)
return image

Configuration

width, height = 15360, 8640 # 16K resolution
re_start, re_end = -2.0, 1.0

im_start, im_end = -1.0, 1.0

max_iter = 500

Timing and execution

print ("Generating Mandelbrot set...")

start = time()

image = generate_mandelbrot(width, height, re_start, re_end, im_start, im_end,
max_iter)

end = time()

print (f"Done in {end - start:.2f} seconds.")

Save the image

output_file = "mandelbrot_16k_hsv.png"
plt.imsave(output_file, image, cmap="hsv")
print (f"Saved image to {output_filel}")

Programm A.1: mandelbrot.py

22

mailto:thomas.graf@edu.zh.ch

Literatur

[1] Jiirgen Schmidhuber. LOW-COMPLEXITY ART. 1994. URL: https://sferics.idsia.ch/
pub/juergen/locoart.pdf.

23

https://sferics.idsia.ch/pub/juergen/locoart.pdf
https://sferics.idsia.ch/pub/juergen/locoart.pdf

	Kolmogorov-Komplexität
	Intuition
	Problematik einer fest gewählten Komprimierung
	Idee hinter der Kolmogorov-Komplexität
	Selbstbegrenzung von Programmen und Definition der Kolmogorov-Komplexität
	Invarianz der Programmiersprache
	Triviale obere Schranke für die Kolmogorov-Komplexität
	Sehr regelmässige Wörter
	Nichtkomprimierbare Wörter und Zufall
	Die Kolmogorov-Komplexität ist nicht berechnenbar
	Elemente rekursiver Sprachen haben eine tiefe Kolmogorov-Komplexität
	Verständnisaufgaben

	Details
	Werkzeuge
	Code

	Literatur

