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Eigenschaften von Markov-Ketten

» Irreduzibilitat: Von jedem

Zustand kann man jeden
anderen erreichen

Aperiodizitat: Rickkehr zu
einem Zustand nicht nur in
festen Zeitabstidnden
Absorbierende Zustinde:
Zustande, die nicht mehr
verlassen werden

Rekurrenz:
Wahrscheinlichkeit, wieder
in einen Zustand
zuriickzukehren

Transienz: Zustande, die
irgendwann nicht mehr
erreicht werden
Ergodizitdt: Positive
Rekurrenz und Aperiodizitat



Absorbierende Zustande

Beispiel:

0.3

1.0

0.7



Absorbierende Zustande

Beispiel: Lo

(1 0 0.3
P= (0.3 0.7)
0.7

» Zustand 1 ist absorbierend: P;; =1
» Wenn die Kette in Zustand 1 ist, bleibt sie dort fiir immer

» Zustand 2 ist transient: Irgendwann wird er verlassen und nie
wieder erreicht
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Grenzen von Markov-Ketten

» Markov-Eigenschaft: Nicht immer realistisch, manchmal
hangt die Zukunft von mehr als nur dem aktuellen Zustand ab

» Feste Ubergangswahrscheinlichkeiten: In der Realitat
konnen sich Wahrscheinlichkeiten andern

> Komplexe Abhangigkeiten: Kénnen nicht abgebildet werden

» Zustandsraum: Bei vielen Zustdnden wird die Berechnung
aufwandig

> Keine Kausalitdt: Beschreiben nur Wahrscheinlichkeiten,
keine Ursachen
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App-Nutzung: Stationare Verteilung

. 5_ (0.7 03
Fir die App-Nutzung: P = (0'3 O.7>

1. Aus m1 = 0.77m1 + 0.3m folgt 0.3 = 0.3 — 71 = m
2. Mit m; + 7 =1 folgt 1 =1 = 0.5



App-Nutzung: Stationare Verteilung

. 5_ (0.7 03
Fir die App-Nutzung: P = <0.3 0‘7>

1. Aus 1 = 0.77m1 + 0.3m5 folgt 0.3m1 =0.3m — M = >
2. Mit 7r1—|—7r2:1fo|gt m =7 =05
Langfristig werden beide Apps gleich haufig genutzt.
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Textvorhersage mit Markov-Ketten

> Markov-Ketten kénnen genutzt werden, um Texte zu
generieren.
» Die |dee: Jedes Wort (oder Zeichen) ist ein Zustand.

» Die Wahrscheinlichkeit fiir das ndchste Wort hangt nur vom
aktuellen Wort ab.

Beispiel:
.Ich mag Pizza und ich mag Pasta.

"

» Uberginge (vereinfacht):
Ich — mag — Pizza — und — ich — mag — Pasta
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Visualisierung: Markov-Kette fiir Text

> Jeder Pfeil steht fiir eine mogliche Fortsetzung im Text.

» Die Wahrscheinlichkeiten werden aus Beispielsatzen gezahlt.
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Kurze Textgenerierung (Beispiel)

» Start: Ich

» Nachstes Wort: mag

» Danach: zufillig Pizza oder Pasta
> usw.

Mogliche generierte Satze:

Ich mag Pizza und ich mag Pasta.
Ich mag Pasta.

Markov-Ketten kénnen einfache, aber oft Gberraschende Texte
erzeugen!



>

>

4 Text-Generierung mit Markov-Ketten

W Challenge: 1.3



Lernkontrolle: Markov-Ketten flir Text

&' Aufgabe 0.1

Hallo Welt Info Hallo Info Welt Hallo Hallo Welt I]fo
Info Welt Hallo

1. Leiten Sie aus dem Text eine Ubergangsmatrix fiir die
Woérter Hallo, Welt und Info her.

2. Was ist der wahrscheinlichste Text mit 3 Wortern,
wenn Sie mit Hallo starten?

Hinweis: Uberlegen Sie sich sinnvolle Ubergangswahrschein-
lichkeiten!




1. Ubergangszihlung:
| Hallo Welt Info

Hallo (5x) 1 2 1
Welt (4x) | 2 0o 2
Info (4x) 1 2 1

Ubergangsmatrix:
Fiir jede Zeile normieren wir auf die Summe der Uberginge
von diesem Wort:

Hallo Welt Info

1 2 1

_ Hallo i 7 i
Welt % 0 :

1 2 1

Info 7 7 7

2. Wahrscheinlichster Text mit 3 Wortern, Start Hallo:
Von Hallo aus ist der wahrscheinlichste Ubergang zu Welt (2
von 4 Ubergéngen), danach von Welt zu Hallo oder Info (je
2 von 4 Ubergangen).

»> Hallo — Welt (0.5), dann Welt — Hallo (0.5):

Hallo Welt Hallo
» Hallo — Welt (0.5), dann Welt — Info (0.5):
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Visualisierung von Markov-Ketten

Markov-Ketten konnen als gerichtete Graphen dargestellt werden:

0.8 0.6

0.2 [#* Aufgabe 0.2

Jedes Mal, wenn Sie Instagram (I)
benutzen, benutzen Sie als nachste
0.4 App zu 60% nochmals Instagram,
und wechseln auf TikTok (T) mit
40%. Wenn Sie zuerst TikTok be-
O Knoten = Zustande nutzen, wechseln Sie zu 10% zu In-
-> Kanten = Uberginge stagram und bleiben zu 90% auf Tik-

mit Wahrscheinlichkeiten Tok. Erstellen Sie den gerichteten
Graphen fiir die Zustande | und T.

Summe der ausgehenden

Kanten = 1!



Gerichteter Graph: Social-Media-App-Nutzung

0.6 0.9
0.4

0.1
Gerichteter Graph fir Instagram (1) und TikTok (T)



Stationare Verteilung

Definition (Stationare Verteilung)

Eine Wahrscheinlichkeitsverteilung © = (71, m2, . . .) heisst
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Ubergangsmatrix P, wenn gilt:
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Stationare Verteilung

Definition (Stationare Verteilung)

Eine Wahrscheinlichkeitsverteilung © = (71, m2, . . .) heisst
stationdre Verteilung einer Markov-Kette mit
Ubergangsmatrix P, wenn gilt:

T=mx-P

= Langfristige, stabile Verteilung der Wahrscheinlichkeiten
= Bleibt nach Multiplikation mit P unverandert
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Berechnung der stationaren Verteilung (Wetter-Beispiel)

1. # = 7 - P aufstellen:

o=t (12 2)
2. Gleichungen aufstellen:
Mo =T -0.8—1—7?.4.-0.4
Tom =Ty - 0.2+ 7 - 0.6
3. Umformen:

s '0.2:71'"0.4




Berechnung der stationaren Verteilung (Wetter-Beispiel)

4. Normierung:

1. # = 7 - P aufstellen:

T+ Tam = 1

0.8 0.2 2 Mo + 7T =1

(7'(' 77"-?) = (7'[' 7”‘?)(04 06) ’ 3 T _q

2. Gleichungen aufstellen: _ 1
T =3

T =7 0.8+ T -0.4
Tom =T -0.2—1—71'1.-0.6
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Berechnung der stationaren Verteilung (Wetter-Beispiel)
4. Normierung:

1. # = 7 - P aufstellen:

T+ Tam = 1
_ 0.8 0.2 2 Tom +Tam =1
(T ma) = (= ’”‘J‘)'<o.4 0.6) a
2. Gleichungen aufstellen: - :1
T3
T =7 084 Te -0.4
’ 5. Ergebnis:
Tom =T -0.2—1—71'1.-0.6 )
3. Umformen: T = 3
1
T 02=7m- 04 T =3
=T =2- Tam




Berechnung der stationaren Verteilung (Wetter-Beispiel)

1. # = 7 - P aufstellen:

0.8 0.2
(moman) = (m ’”‘3‘)(0.4 0.6

2. Gleichungen aufstellen:
T =7 0.8+ 7T 0.4

024 7 0.6

Mo — T
3. Umformen:

T '0-2:7'[-“0.4

)

4. Normierung:

T+ T =1

1
Tom = =
T3
5. Ergebnis:
2
T ==
3
1
T = =
T3

= Langfristig ist es an 2/3
der Tage sonnig und an
1/3 der Tage regnerisch.
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