ker:1 |

Informatik

atenban

-

Skript
Cyril Wendl
O Winterthur, 14. Januar 2026

mailto:cyril.wendl@edu.zh.ch
mailto:

Inhaltsverzeichnis

1 Daten & SQL

1.1

1.2

1.3
1.4

1.6

1.7

3

Einfithrung 0 L o 3
1.1.1 Wassind Daten? e e 3
1.1.2 Datenmengen e e e 3
1.1.3 Tabellen e e e e e 4
Einzelne Tabellen abfragen mit Structured Query Language (SQL) 10
1.2.1 Syntax o e e e e 10
1.2.2 Einfache Selektion: SELECT o . 0ttt e e e 10
1.2.3 Selektion mit Filter: WHERE i it i 11
1.2.4 FEindeutige Selektion: SELECT DISTINCT v v v v v v .. 13
1.2.5 Ungefihre Treffer: LIKE 0 0 0 ittt e e 14
1.2.6 Sortieren: ORDER BY e e e e e e 16
1.2.7 Aggregatsfunktionen 17
1.2.7.1 COUNT o o e e e e e e e e s e e 17

1.2.7.2 MAX, MIN e e e e e e e e 17

1.2.7.3 SUM 18

1.2.7.4 AVG . . . L e e 18

1.2.7.5 LENGTH e e e e e e e 18

1.2.8 Gruppieren: GROUP BY 0 o i i e e e e e e e e e 19
1.2.9 Filtern nach Gruppieren: HAVING o .o i v i v i v oo 19
1.2.10 Erste / Letzte Zeilen: LIMITo v v ii it 20
1.2.11 Verzweigungen: CASE WHEN v 22
1.2.12 Anwendung: Personalisierte Werbung auf InstaHub 22
ERM . o o e 27
Informationen aus mehrere Tabellen kombinieren 30
1.4.1 Primérschliissel 30
1.4.2 Fremdschliissel e 30
1.4.3 Tabellen verbinden mit oder ohne JOIN 31
JOIN-TyPEn o ot o e e e e e e e e e e e e 32
1.5.1 INNER JOIN (=JOIN) . . . o oo oot e e e e e e 33
1.5.2 LEFT JOIN (:LEFT OUTER JOIN) 36
1.5.3 RIGHT JOIN (=RIGHT OUTER JOIN). 36
1.5.4 FULL JOIN (:FULL OUTER JOIN) 37
Daten bearbeiten mit SQL 38
1.6.1 Eine neue Tabelle erstellen: CREATE TABLE v v v v v v v v v 38
1.6.2 Tabellen verdndern: ALTER 0 v i v i i ittt e e e 40
1.6.3 Tabellen 16schen: DROP TABLEt ittt ittt e e 40
1.6.4 Daten einfiigen: INSERT INTO v o vt vt ittt e e e 41
1.6.5 Daten verdndern: UPDATE o ittt et e 43
1.6.6 Eintrdge loschen: DELETE FROM o v vt v v i e 43
Weiterfithrende Links und Ubungen 44

Danksagungen

Besonderer Dank gilt Thomas Graf fiir seine zahlreichen Beitrédge sowie das sorgfiltige Lektorat
dieses Skripts.

Kapitel 1

Daten & SQL

1.1 Einfiihrung

1.1.1 Was sind Daten?

Der Begriff ,Daten® ist der Plural von Datum und kommt aus dem Latenischen (datum = gegeben,
bzw. dare = geben). ,Daten“ bedeuten also im weitesten Sinne etwas , Gegebenes“, bzw. ein
Faktum. Dies wiederum wirft die philosophische Frage auf, was ein Faktum ist. Beispiele von Fakten
sind:

e ,Mein Nachbar heisst Marco Odermatt.”

e Aktuell findet an der KLW Unterricht statt.

e ,Das Billett von Ziirich nach Winterthur kostet CHF 6.80.“
e .Das Logo der KLW besteht aus blauen und roten Farben.

Anhand des letzten Beispiels sieht man, dass Fakten nicht unbedingt wahr sein miissen, um als
Fakten zu gelten.

In der Informatik sind Daten so gut wie immer durch Nullen und Einsen reprasentiert. Also zum
Beispiel:

e ...10100010101111011101001001 ...
e ...11101110110000111011010111 ...

Die Nullen und Einsen kénnen beliebige Informationen darstellen, also beispielsweise Bilder, Texte,
Videos oder Zahlen.
1.1.2 Datenmengen

Seit etwa einem guten halben Jahrhundert nehmen die Datenmengen stets zu. Tabelle 1.1 zeigt die
gingigen Grossenordnungen von Datenmengen auf.

Datenbanken O Cyril Wendl, Informatik, 2026
Masseinheit ‘ Dezimalsystem Grossenordnung
KB (Kilobyte) | 103 B(yte) 1’000 B | eine Text-Datei
MB (Megabyte) 10° B 1°000°000 B | eine Musik-Datei
GB (Gigabyte) 10° B 1°000°000°000 B | eine Video-Datei
TB (Terabyte) 102 B 1°000°000°000°000 B | kleiner Firmen-Server
PB (Petabyte) 10 B Facebook-Server
EB (Exabyte) 10 B alle CERN-Daten
ZB (Zettabyte) 10*' B alle Daten (~ 100 ZB)
YB (Yottabyte) 104 B ~ 20307

Tabelle 1.1: Géngige Daten-Grossenordnungen in der Informatik (ein Byte = 8 bit)

Die gesamten weltweit vorhandenen Daten machen aktuell ca. 100 Zettabyte aus. Es wird erwartet,
dass das erste Yottabyte gegen 2030 erreicht wird (sieche Abbildung 1.1).

200

150

100

Data volume in zetabytes

50

26

33

41

181

147

120

97

79

64.2

Abbildung 1.1: Entwicklung der globalen Datenmenge

Dies hat zur Folge, dass Datenzentren immer grésser werden und mehr Energie verbrauchen, wie
das folgende Video verdeutlicht: https://youtu.be/_r97qdyQtIk?t=2ml4ds

1.1.3 Tabellen

Der allergrosste Teil der oben erwdhnten Daten befindet sich in sogenannten Datenbanken. Daten-
banken bestehen im Wesentlichen aus Tabellen, weshalb wir im Folgenden zunéchst anschauen, wie
eine Tabelle aufgebaut ist. Eine Beispiel einer Tabelle ist gegeben in Tabelle 1.2.

mailto:cyril.wendl@edu.zh.ch
https://youtu.be/_r97qdyQtIk?t=2m14s

Datenbanken

O Cyril Wendl, Informatik, 2026

Name Region Flache Einwohner BIP
Afghanistan Asien 652 25.8M 21.0B
Albanien Furopa 28.7 3.49M 5.6B
Algerien Afrika 2,381.7 31.2M 147.6B
Amerikanische... Ozeanien 0.199 65.4K 0.15B
Andorra Europa 0.468 66.8K 1.2B
Angola Afrika 1,246.7 10.1M 11.6B
Anguilla Mittelamerika 0.091 11.8K 0.088B
Antarktik Antarktis 14M 0 0
Antigua und... Mittelamerika ~ 0.442 66.4K 0.524B
Argentinien Stidamerika 2,766.9 36.9M 367B
Tabelle 1.2: Lander-Tabelle
Eine Tabelle besteht aus Zeilen und Spalten, wie in Tabelle 1.3 gezeigt.
Schliisselattribut (eindeutig!)
/ Spalte (= Kolonne, Attribut)
\Name J [Region] [Fliache [Einwohner} BIP

Zeile

)
) (
) (
) (
) (

(
(
(
(
(

)
)
)
)
)

N N YNl

|(
|(
|
|(
) (

) (

)
)
)
)
)

(

-

Tabelle 1.3: Typische Tabellenstruktur anhand einer Tabelle mit Informationen zu Landern

In Tabelle 1.3 enthélt jede Zeile Informationen zu einem Land: dessen Name, die Region (=Konti-
nent), Fliche, die Einwohnerzahl und das Bruttoinlandprodukt (BIP). Jede Spalte enthélt Informa-
tionen eines selben Typs, beispielsweise die Regionen aller Lander, die Fliachen oder die Einwohner-
zahlen. In einer Spalte sollten also alle Werte denselben Typ haben, beispielsweise ,,Zahl“ (Flache,
Einwohner, BIP) oder ,, Text“ (Name, Region). Nicht zuletzt gibt es in gewissen Tabellen (genau) ein
Schliisselattribut, dessen Werte eindeutig sein miissen. Dies bedeutet in Tabelle 1.3 beispielsweise,
dass kein Léndername zweimal oder mehr vorkommen darf. Weshalb dies wichtig ist, werden wir

spater sehen.

Eine Datenbank ist vereinfacht gesagt eine Sammlung aus mehreren Tabellen, auf die mehrere
Gerite zugreifen kénnen (lesen und schreiben), wie in Abbildung 1.2 gezeigt.

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

75§:

Abbildung 1.2: Geréte kénnen Daten von der / zur Datenbank senden / empfangen

Datenbanken und Tabellen finden Anwendung in allen mdéglichen Bereichen des téglichen Lebens:

¢ Social Media: Instagram, TikTok, LinkedIn, etc.
e Shopping: Galaxus, AliExpress, etc.
o Netzwerke: SBB, swissgrid (Strom-Netzwerk), etc.

Wie kénnen wir mit den riesigen Datenmengen umgehen und sinnvolle Einsichten daraus gewinnen?

Eine der verbreitetsten Arten, Tabellen und Datenbanken zu erstellen, zu verdndern und zu ana-
lysieren ist die Programmiersprache SQL. Im Folgenden verwenden wir die Datenbanken aus der
Lern-Plattform InstaHub, um uns mit SQL vertraut zu machen.

Alle Beispiele konnen direkt auf InstaHub ausgefiithrt werden. Die sind rot markiert und
befinden sich auf Moodle unter ,,Quiz SQL*

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

[#' Aufgabe 1.1 Einrichtung von Instahub *“*

#% | Selber eine Datenbank administrieren
B | Einzelarbeit
| ca. 25 min.

Fiithren Sie folgende Schritte aus:

1. Auf https://instahub.org gehen
2. Auf Hub erstellen (rechts oben) klicken und einen Hub erstellen.

Create Hub

3. Geben Sie folgende Angaben ein (siehe Bild unten):

o Name der Lehrperson (klein geschrieben und ohne Absténde): cyrilwendl oder
thomasgraf

e Der Username lautet admin und kann nicht gedndert werden.

e Thren Namen und Ihr Passwort konnen Sie frei setzen. Das Passwort sollten Sie
sich irgendwo notieren.

¢ Sie kénnen entweder eine echte E-Mail-Adresse angeben oder die generierte E-Mail-
Adresse so lassen. Im zweiten Fall konnen Sie jedoch Thr Passwort nicht mehr per
Mail zuriicksetzen, falls Sie dieses je verlieren sollten.

e Geben Sie mir miindlich Bescheid, dass Sie die Seite erstellt haben. Wir miissen
Ihren personlichen Hub (= Ihre Webseite) manuell aktivieren. Dies dauert nur
wenige Sekunden.

Instapful Login Register
Register

Your Hub must activated by your Teacher!

Hub purpurrot21

[Your Teacher cyrilwendl]

Username admin

messages.username

Email purpurrot21@instahub.test

T TR BTt eSS, YO CaT TS T YT pasSwoTt:
yourselfif you forget it.

Password

Confirm Password
\ J

Bio Your Bio....

Gender

Birthday Jo1/

City

Country

mailto:cyril.wendl@edu.zh.ch
https://instahub.org

Datenbanken O Cyril Wendl, Informatik, 2026

4. Merken oder notieren Sie sich Thr Passwort an einem sicheren Ort.

5. Sie haben nun eine eigene Webseite unter https://[meinefarbeXX].instahub.org,
wobei [meinefarbeXX] durch Ihre Farbe ersetzt werden muss (siehe Bild oben).

6. Sie konnen sich jetzt auf Ihrer individuellen Webseite mit dem Benutzername admin
(nicht Threr Email) und dem von Thnen zuvor gewidhlten Passwort anmelden. Sie sind
nun als AdministratorIn Thres eigenen sozialen Netzwerks eingeloggt.

@ Aufgabe 1.2 R

Schreiben Sie sich den Namen Threr InstaHub-Seite auf, also z.B.

https://[meinefarbeXX] .instahub.org,

wobel [meinefarbeXX] durch Ihre Farbe ersetzt werden muss! Laden Sie diesen auf Moodle
unter ,Name InstaHub“ hoch, so dass Sie den Link auf Thr InstaHub spéter einfach wieder
finden. Merken oder notieren Sie sich Ihr Passwort an einem sicheren Ort.

[#' Aufgabe 1.3 Inbetriebnahme von Instahub .

Lernen, mithilfe von SQL eigene Abfragen zu machen

2er- bis 3er-Gruppen

o
u

ca. 60 min.

Bestimmen Sie eine Person pro Gruppe, die sich auf der eigenen Webseite mit dem Benut-
zername admin und dem von IThnen gewahlten Passwort anmeldet. Thre eigene Webseite ist:

https://meinefarbeXX.instahub.org
Wobei [meinefarbeXX] durch IThre Farbe ersetzt werden muss.

Die zwei anderen Personen sollen das folgende Kapitel aus diesem Skript lesen und der ersten
Person dabei helfen, die SQL-Befehle zu schreiben.

Sie konnen jetzt unter folgendem Menu-Punkt Ihre eigene Datenbank administrieren:

MMI Search Users 9' @v @v & -

Search

Nothing to show. Follow some great Members! o

Als Erstes sehen Sie eine Liste der verfliigbaren Tabellen sowie der dazugehorigen Spaltenna-
men (siehe Bild unten). Tabellennamen sind in Orange, Spaltennamen in griin markiert.

mailto:cyril.wendl@edu.zh.ch
https://[meinefarbeXX].instahub.org
https://[meinefarbeXX].instahub.org
https://meinefarbeXX.instahub.org

Datenbanken O Cyril Wendl, Informatik, 2026

The following tables may be queried:

ads: id, priority, name, type, url, img, query, created_at, updated_at

comments: id, user_id, photo_id, body, created_at, updated_at

users: id, username, email, password, name, bio, gender, birthday, city, country, centimeters, avatar, role, is_active, remember_token, created_at, updated_at
likes: id, photo_id, user_id, created_at, updated_at

photos: id, user_id, description, url, created_at, updated_at

follows: id, following_id, follower_id, created_at, updated_at

tags: id, photo_id, name, created_at, updated_at

password_resets: email, token, created_at

analytics: id, ip, device, brand_family, brand_model, browser_family, browser_version, platform_family, platform_version, user_id, photo_id, created_at, updated_at

Abbildung 1.3: Die Tabellen von InstaHub und deren Attribute

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

1.2 Einzelne Tabellen abfragen mit SQL

1.2.1 Syntax

Die Sprache Structured Query Language (SQL) besteht, wie wir sehen werden, aus verschiedenen
Schlisselwortern, wie etwa SELECT, WHERE, GROUP BY, ORDER BY usw. Dazu gibt es Folgendes zu
beachten:

e Ob wir diese Schliisselworter gross oder klein schreiben, spielt keine Rolle. Allerdings wird
empfohlen, die Schliisselworter immer in Grossbuchstaben zu schreiben, um sie von Kolonnen-
Namen, Tabellen-Namen usw. abzugrenzen.

o Wir konnen alle SQL-Befehle auf einer einzigen Zeile schreiben, dadurch wird der Code
aber deutlich weniger lesbar. Stattdessen empfiehlt es sich, vor gewissen Schliisselwortern wie
SELECT, WHERE oder GROUP BY eine neue Zeile zu erstellen. Dazu lohnt es sich, die Beispiele
genau anzuschauen.

Kommentare kénnen in SQL auf zwei Arten geschrieben werden:

-- 1. Kommentar auf einer Zeile
/* 2. Kommentar tiiber
mehrere Zeilen */

1.2.2 Einfache Selektion: SELECT

Mit dem Befehl ,SELECT coll,co0l2,... FROM tablename“ konnen wir gewisse Spalten (= Kolon-
nen) coll,col2,... aus einer Tabelle mit dem Namen tablename auswdhlen. Wir kénnen statt
den Spaltennamen auch einfach einen Stern (*) tippen, um alle Kolonnen einer Tabelle zu erhalten,
d.h. die gesamte Tabelle.

Beispiel 1.1:
Geben Sie auf InstaHub den folgenden Befehl ein (der Kommentar muss nicht kopiert werden,
er dient lediglich zur Erklirung des Codes):

-- wéhle alle Spalten aus der Tabelle users aus
SELECT =*
FROM users

Mit diesem Befehl wihlen wir alle Spalten (*) der Tabelle users aus. Sie sollten nun die
gesamte Tabelle users sehen.

@ Aufgabe 1.4 \

Geben Sie alle Benutzernamen (username) aus users aus.

v Losungsvorschlag zu Aufgabe 1.4

SELECT username
FROM users

10

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

[#' Aufgabe 1.5 .

Geben Sie die Benutzernamen (username) und echten Namen (name) aller Eintrége aus users

aus.

v Losungsvorschlag zu Aufgabe 1.5

SELECT username, name
FROM users

[#' Aufgabe 1.6 .

Geben Sie die Namen und Wohnorte aller Mitglieder aus.

v Losungsvorschlag zu Aufgabe 1.6

SELECT username, city
FROM users

1.2.3 Selektion mit Filter: WHERE

Fiigen wir zu einer SQL-Abfrage den Befehl ,WHERE conditions® hinzu, kénnen wir das erhaltene
Resultat nach gewissen Bedingungen (conditions) filtern.

g N

Beispiel 1.2:
Geben Sie folgendes Beispiel in Instahub ein:

SELECT name, city, gender
FROM users
WHERE gender="male"

\

Nebst dem Gleich-Zeichen (im obigen Beispiel) stehen folgende Filter-Operatoren zur Verfiigung:

Operator Mathematische
in SQL Bedeutung
= gleich (=)
<> ungleich (#)
< kleiner als (<)
<= kleiner oder gleich (<)
> grosser als (>)
>= grosser oder gleich (>)
BETWEEN x AND y ein Wert zwischen (inklusive) x und y
IN (wertl, wert2, ...) | einer von mehreren moglichen Werten
IS NULL Wert existiert nicht (ist leer)

Um mehrere Bedingungen miteinander zu verkniipfen, konnen wir die Befehle AND, NOT sowie OR
verwenden.

11

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

Beispiel 1.3:
Folgender Code gibt alle Mitglieder aus, die zwischen 172 cm und 174 cm gross sind. Dabei
gehoren 172 cm und 174 cm selbst ebenfalls dazu (inklusive).

SELECT name, centimeters, gender
FROM users
WHERE centimeters BETWEEN 172 AND 174

Beispiel 1.4:
Folgender Code gibt den Namen und die Stadt aller Mitglieder aus, die entweder in Leipzig,
Berlin oder Hamburg wohnen.

SELECT name, city
FROM users
WHERE city IN ("Leipzig", "Berlin", "Hamburg")

A Achtung \

Wie Sie anhand der Beispiele 1.3 und 1.4 sehen, spielt es in SQL eine Rolle, ob wir nach Zahlen
oder nach Text filtern: Wenn nach einem Text gefiltert wird, muss dieser in Anfithrungszeichen
stehen (wie z.B. "Berlin" in Beispiel 1.4). Bei Zahlen diirfen Sie keine Anfiihrungszeichen
schreiben (siehe z.B. die Zahl 172 in Beispiel 1.3).

J

NULL ist ein spezielles SQL-Wort, welches bedeutet, dass ein Feld leer ist, bzw. keinen Wert hat. NULL
muss von ,,0“ unterschieden werden: Beispielsweise konnte die Zahl 0 in einer Tabelle iiber Bank-
konten bedeuten, dass jemand 0 Franken auf seinem Konto hat, wihrend der Wert NULL bedeuten
wiirde, dass keine Informationen zum Kontostand vorhanden sind.

Beispiel 1.5:
Folgender Code gibt die Namen aller Mitglieder an, die ihre Grésse nicht angegeben haben.

SELECT name, centimeters
FROM users
WHERE centimeters IS NULL

@ Aufgabe 1.7 \

Geben Sie die Namen aller weiblichen Mitglieder aus, die zwischen 150 und 155 gross sind.

Vv Losungsvorschlag zu Aufgabe 1.7

SELECT name, gender, centimeters
FROM users

WHERE gender="female"

AND centimeters BETWEEN 150 AND 155

12

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

[#' Aufgabe 1.8 .

Zeigen Sie den Namen, das Geburtsdatum sowie die Grossen aller Frauen an, die kleiner oder
gleich 160 Zentimeter sind.

v Losungsvorschlag zu Aufgabe 1.8

SELECT name, birthday, centimeters
FROM users

WHERE gender="female"

AND centimeters <= 160

= Aufgabe 1.9

Verwenden Sie die Tabelle comments und geben Sie alle Kommentare aus, die vom user mit
der ID 10 oder vom user mit der ID 38 stammen.

v Losungsvorschlag zu Aufgabe 1.9

SELECT user_id, body
FROM comments
WHERE user_id IN (38, 10)

1.2.4 Eindeutige Selektion: SELECT DISTINCT

Der Befehl DISTINCT nach einem SELECT fiihrt dazu, dass jeder mégliche Wert nur hochstens einmal
ausgegeben wird, d.h. Duplikate werden entfernt.

@ Aufgabe 1.10 .

Vergleichen Sie folgende zwei Befehle. Uberlegen Sie sich zuerst, was der Code ausgeben sollte,
bevor Sie die Befehle in InstaHub ausfiihren.

SELECT gender
FROM users

SELECT DISTINCT gender
FROM users

. J

[#' Aufgabe 1.11 ‘

Geben Sie jeden Wohnort nur einmal aus.

v/ Losungsvorschlag zu Aufgabe 1.11

SELECT DISTINCT city
FROM users

13

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

@ Aufgabe 1.12 .

Geben Sie jede Benutzerrolle nur einmal aus. dba bedeutet ,,Database Administrator®, also
Datenbank-AdministratorIn.

v/ Losungsvorschlag zu Aufgabe 1.12

SELECT DISTINCT role
FROM users

1.2.5 Ungefihre Treffer: LIKE

Mit dem Befehl LIKE kénnen wir die Tabelle nach Zeilen filtern, welche in einer gewissen Spalte ein
bestimmtes Wort enthalten.

s ~

Beispiel 1.6:
Mit folgendem Befehl erhalten wir alle Stadte, die mit ,,Be* beginnen:

SELECT DISTINCT city
FROM users
WHERE city LIKE "Bej"

\.

Das ,,%“-Zeichen ist eine sogenannte wildcard und dient hier als Platzhalter, der Folgendes bedeutet:
»es kann noch weiterer Text an dieser Stelle stehen, muss aber nicht* (siehe Tabelle 1.4).

Symbol | Bedeutung

"% | Stellt null oder mehrere, beliebige Zeichen dar
non | Stellt ein einzelnes, beliebiges Zeichen dar

Tabelle 1.4: wildcards in SQL

Beispiel 1.7:
Mit folgendem Befehl erhalten wir alle Stadte, die mit ,H“ beginnen und ein ,,m* an dritter
Stelle haben:

SELECT DISTINCT city
FROM users
WHERE city LIKE "H_mj"

14

mailto:cyril.wendl@edu.zh.ch

Datenbanken

O Cyril Wendl, Informatik, 2026

[#' Aufgabe 1.13

bevor sie die Befehle in InstaHub ausfihren.

Vergleichen Sie folgende drei Befehle. Uberlegen Sie sich zuerst, was der Code ausgeben sollte,

SELECT username, city
FROM users
WHERE city = "Berlin" AND name LIKE "Fabiani"

SELECT username, city
FROM users
WHERE city = "Berlin" OR name LIKE "Fabianj"

SELECT username, city
FROM users
WHERE city = "Berlin" AND NOT name LIKE "Fabianj"

@' Aufgabe 1.14

Finden Sie alle Berliner, die Marc heissen.

v Losungsvorschlag zu Aufgabe 1.14

SELECT name, city
FROM users
WHERE city="Berlin" AND name LIKE "Marc"

[#' Aufgabe 1.15

Finden Sie alle Person mit dem Vornamen Lina oder Lorena.

v/ Losungsvorschlag zu Aufgabe 1.15

SELECT name, city

FROM users

WHERE name LIKE "Linaj"
OR name LIKE "Lorena"

W Aufgabe (Challenge) 1.16

v Losungsvorschlag zu Aufgabe 1.16

Uberpriifen Sie, welche Mitglieder im Jahr 2001 geboren sind (mit der Spalte birthday).

SELECT name, birthday
FROM users
WHERE birthday LIKE "2001%"

15

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

[#' Aufgabe 1.17 .

Weéhlen Sie alle Personen mit dem Namen Naomi aus, die nicht aus Berlin kommen.

v Losungsvorschlag zu Aufgabe 1.17

SELECT name, city

FROM users

WHERE name LIKE "Naomi%"
AND city <> "Berlin"

W Aufgabe (Challenge) 1.18

Geben Sie die Grosse und den Wohnort von Juliette Amsel sowie Juliette Unger aus. Sie
sollten das Zeichen "7," nicht verwenden.

v Losungsvorschlag zu Aufgabe 1.18

SELECT name, centimeters, city
FROM users
WHERE name LIKE "Juliette ___e "

1.2.6 Sortieren: ORDER BY

Mit dem Befehl ORDER BY col ASC oder ORDER BY col DESC kann das Resultat einer SQL -Abfrage
nach einer bestimmten Kolonne col sortiert werden. Mit ASC wird das Resultat aufsteigend und
mit DESC absteigend sortiert.

'q)

Beispiel 1.8:
Beobachten Sie das Resultat folgender Abfrage:

SELECT DISTINCT city
FROM users
ORDER BY city DESC

. J

[Aufgabe 1.19)

Geben Sie alle Benutzernamen in sortierter Reihenfolge aus (a — z).

v Losungsvorschlag zu Aufgabe 1.19

SELECT username
FROM users
ORDER BY username ASC

16

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

@ Aufgabe 1.20 .

e Losen Sie Aufgaben 1-11 unter folgendem Link:
https://sql-tutorial.de/home/uebungen.php?lektion=1 (keine Abgabe notwen-
dig / moglich)

« Geben Sie danach auf Moodle die ,,Ubungen 1 (Einfache Selektion)“ ab.

1.2.7 Aggregatsfunktionen
1.2.7.1 COUNT

Mit dem Befehl COUNT kann man die Anzahl Resultate zahlen.

SELECT COUNT (*)
FROM users

Wir kénnen den berechneten Wert zudem zur besseren Lesbarkeit umbenennen, indem wir den
Befehl AS verwenden:

SELECT COUNT(*) AS "Registrierte Mitglieder"
FROM users

[#' Aufgabe 1.21

Geben Sie die Anzahl registrierten Mitglieder in Berlin aus. Die resultierende Spalte soll
,Registrierte Mitglieder in Berlin“ heissen.

v/ Losungsvorschlag zu Aufgabe 1.21

SELECT COUNT(*) AS "Registrierte Mitglieder in Berlin"
FROM users
WHERE city="Berlin"

1.2.7.2 MAX, MIN

Um die hochsten, bzw. tiefsten Werte einer Kolonne zu erhalten, kénnen die Befehle MIN und MAX
verwendet werden:

g N

Beispiel 1.9:
Beobachten Sie das Resultat folgender Abfrage:

SELECT MAX(centimeters) AS "Maximale Kérpergrésse"
FROM users

17

mailto:cyril.wendl@edu.zh.ch
https://sql-tutorial.de/home/uebungen.php?lektion=1

Datenbanken O Cyril Wendl, Informatik, 2026

[#' Aufgabe 1.22 .

Zeigen Sie, wie gross das kleinste Mitglied ist.

Vv Losungsvorschlag zu Aufgabe 1.22

SELECT MIN(centimeters) AS "Kleinste Korpergrésse"
FROM users

[Aufgabe 1.23)

Zeigen Sie, wann sich zuletzt ein Mitglied registriert hat.

v Losungsvorschlag zu Aufgabe 1.23

SELECT max(created_at) AS "Zuletzt Registriert"
FROM users

1.2.7.3 SUM

Mit SUM kann die Summe einer Datenserie ausgegeben werden.

s "

Beispiel 1.10:
Folgender Code berechnet die Summe der Korpergrossen aller Personen, die Felix heissen:

SELECT SUM(centimeters)
FROM users
WHERE name LIKE "Felix}"

. J

1.2.7.4 AVG

Mit AVG kann der Durchschnitt einer Datenserie ausgegeben werden.

g N

Beispiel 1.11:
Folgender Code berechnet die durchschnittliche Korpergrossen aller Personen, die Felix heis-
sen:

SELECT AVG(centimeters)
FROM users
WHERE name LIKE "Felix}"

\. J

1.2.7.5 LENGTH

Mit LENGTH gibt die Anzahl Zeichen eines Texts zuriick.

Beispiel 1.12:
Folgender Code berechnet die Lénge aller Namen:

18

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

SELECT name, LENGTH(name)
FROM users

g Aufgabe 1.24

o Losen Sie Aufgaben 1-6 unter diesem folgendem Link (keine Abgabe notwendig / mog-
lich)
o Geben Sie danach auf Moodle die ,,Ubungen 2 (Aggregatsfunktionen)“ ab.

1.2.8 Gruppieren: GROUP BY

Um die Resultate einer Anfrage pro Untergruppen zu sehen, kann der Befehl GROUP BY verwendet
werden.

Beispiel 1.13:
Folgender Code gibt die Anzahl Mitglieder pro Stadt aus:

SELECT city, COUNT(*) AS "Mitglieder pro Stadt"
FROM users
GROUP BY city

Zudem ist es moglich, Daten auch in Untergruppen zusammenzufassen.

Beispiel 1.14:
Folgender Code gibt die Anzahl ménnlicher und weiblicher Mitglieder pro Stadt aus:

SELECT city, gender, COUNT (%)
FROM users
GROUP by city, gender

1.2.9 Filtern nach Gruppieren: HAVING

Falls nach einem GROUP BY die Resultate noch weiter eingegrenzt werden sollen, muss statt WHERE
der Befehl HAVING verwendet werden. Der Befehl WHERE wird verwendet, um die urspriinglichen
Daten vor einem GROUP BY zu filtern, der Befehl HAVING wird verwendet, um die Resultate nach
einem GROUP BY zu filtern.

19

mailto:cyril.wendl@edu.zh.ch
https://sql-tutorial.de/home/uebungen.php?lektion=2

Datenbanken O Cyril Wendl, Informatik, 2026

W Aufgabe (Challenge) 1.25

Geben Sie die durchschnittliche Korpergrosse aller Mitglieder in jeder Stadt aus. Zeigen Sie
nur die Stadte, in denen die Menschen im Durchschnitt zwischen 150 und 155 gross sind.

v/ Losungsvorschlag zu Aufgabe 1.25

SELECT city, AVG(centimeters) AS "Durchschnittliche Kérpergrésse"
FROM users

GROUP BY city

HAVING “Durchschnittliche Koérpergrésse™ BETWEEN 150 AND 155

W Aufgabe (Challenge) 1.26

Geben Sie die maximale Korpergrosse aus, gruppiert nach Stadt und Geschlecht, fiir alle
Stiadte, die mit dem Buchstaben "B”beginnen

v Losungsvorschlag zu Aufgabe 1.26

SELECT city, gender, MAX(centimeters) AS "Grésste Korpergrdsse"
FROM users

WHERE city LIKE "B%"

GROUP BY city, gender

1.2.10 Erste / Letzte Zeilen: LIMIT

Mit dem Befehl LIMIT n kann das Resultat einer beliebigen SQL-Abfrage auf eine gewisse Anzahl
Zeilen beschréankt werden. Dies bedeutet, dass das Resultat nach den ersten n Zeilen abgeschnitten
wird. Der Befehl steht immer am Ende einer SQL-Abfrage.

Beobachten Sie das Resultat folgender Abfrage:

2 Aufgabe 1.27

Zeigen Sie nur 3 Mitglieder (nur deren Namen) an.

v Losungsvorschlag zu Aufgabe 1.27

SELECT name
FROM users
LIMIT 3

20

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

[#' Aufgabe 1.28 .

Geben Sie die drei Stddte mit den meisten Mitgliedern an.

v/ Losungsvorschlag zu Aufgabe 1.28

SELECT city, COUNT(*) AS "Anzahl Mitglieder"
FROM users

GROUP BY city

ORDER BY “Anzahl Mitglieder™ DESC

LIMIT 3

= Aufgabe 1.29

Zeigen Sie die Namen und Korpergrosse der 5 grossten Mitglieder an.

v Losungsvorschlag zu Aufgabe 1.29

SELECT name, centimeters
FROM users

ORDER BY centimeters DESC
LIMIT 5

W Aufgabe (Challenge) 1.30

Geben Sie die Stadtnamen aus, wo die meisten Mitglieder mit einem ,b* im Namen wohnen
(nur die ersten drei Zeilen).

Tipps:

e Berechnen Sie zuerst mit einem GROUP BY-Befehl die Anzahl Einwohner pro Stadt

¢ Beschrianken Sie danach Thre Abfrage mit dem WHERE-Befehl auf Benutzer, die ein ,b*
im Namen haben

e Sortieren Sie dann nach der Anzahl Mitglieder

e Verwenden Sie den LIMIT-Befehl erst am Schluss

v Losungsvorschlag zu Aufgabe 1.30

SELECT city, COUNT(x*) AS "Mitglieder"
FROM users

WHERE name LIKE "%b%"

GROUP by city

ORDER BY Mitglieder DESC

LIMIT 3

21

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

[#' Aufgabe 1.31

e Losen Sie Aufgaben 1-5 unter diesem Link.
 Geben Sie danach auf Moodle ,,Ubungen 3 (GROUP BY)“ ab.

1.2.11 Verzweigungen: CASE WHEN

Der SQL-Befehl CASE WHEN kann helfen, Ausdriicke basierend auf Bedingungen zu schreiben, also
dhnlich wie if-elif-else-Verzweigungen in Python.

Beispiel 1.15:

Die durchschnittliche Koérpergrosse in Deutschland betragt 179 cm fiir Ménner. Folgender
Code berechnet fiir alle Ménner, ob sie grosser, kleiner oder gleich dem Durchschnitt sind,
und gibt das Resultat in einer neuen Kolonne aus.

SELECT name, centimeters,

CASE
WHEN centimeters > 179 THEN 'Gross'
WHEN centimeters < 179 THEN 'Klein'
ELSE 'Genau im Durchschnitt'

END AS Durchschnittlich

FROM users

WHERE gender="male"

= Aufgabe 1.32 .

Berechnen Sie eine neue Kolonne, die den Text ,langer Name® enthélt, falls ein Name langer
als 20 Zeichen lang ist, und ansonsten ,kurzer Name®. BenutzerInnen mit langem Namen
sollen zuoberst stehen. Zeigen Sie nur die ersten 5 Zeilen.

v Losungsvorschlag zu Aufgabe 1.32

SELECT name, LENGTH(name),

CASE
WHEN LENGTH(name)>20 THEN "Langer Name"
ELSE "Kurzer Name"

END AS "Langer oder kurzer Name"

FROM users

ORDER BY “Langer oder kurzer Name™ DESC

LIMIT 5

1.2.12 Anwendung: Personalisierte Werbung auf InstaHub

Auf InstaHub kénnen Werbungen an verschiedene User angepasst werden. Dafiir sind auf InstaHub
noch einige weitere Tabellen angelegt, deren Entity-Relationship Model (ERM) in Abbildung 1.4
abgebildet ist.

22

mailto:cyril.wendl@edu.zh.ch
https://sql-tutorial.de/home/uebungen.php?lektion=4

Datenbanken

O Cyril Wendl, Informatik, 2026

Abbildung 1.4: ERM fiir den Werbe-Teil von InstaHub

Mit der Tabelle analytics beginnt InstaHub das Verhalten der Besucher zu iiberwachen. Dabei
wird der Besuch von Photo-Detailansichten mit folgenden Werten dokumentiert:

Feld

‘ Beschreibung

Primérschlissel, fortlaufende Nummer

ip

Die ersten drei Blocke der IPv4-Adresse

device

desktop, mobile, tablet oder bot

brand_family

wird oft nur bei Smartphones mitgesendet, etwa Apple oder Samsung

brand_model

wird oft nur bei Smartphones mitgesendet, etwa GALAXY S5

browser_family

Broswer (Firefox, Chrome, Safari...)

browser_version

Versionsnummer des Browsers

platform_family

Betriebssystem (Windows, Mac, GNU/Linux, iOS, Android...)

platform_version

Die Versionsnummer der Plattform

user_id

Benutzer, der sich das Foto angesehen hat

photo_id

Angesehenes Foto

created_at

updated_at

Zeitpunkt, als das Foto sich angesehen wurde

i.d.R. wie MeLEIA-CHEN nur anders, wenn manuell gedndert

Tabelle 1.5: Kolonnen der Tabelle analytics

Mit diesen Informationen, sowie weiteren Informationen (Hashtags, Geschlecht, Wohnort etc.) kann
InstaHub gezielt personalisierte Werbung schalten. Nach diesem Prinzip funktionieren auch andere
soziale Medien wie TikTok, Instagram oder Snapchat.

A Acht ung

Fiir die nachfolgenden Teile miissen Sie, sofern Sie Adblockers in Threm Browser verwenden,
diese deaktivieren (oder zumindest eine Ausnahme fiir InstaHub erstellen), da Thnen die
Werbungen ansonsten nicht angezeigt werden.

23

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

Auf InstaHub kénnen Werbeanzeigen mit SQL personalisiert werden. Dafiir geht man zunéchst auf
die Werbungs-Seite (siehe Abbildung 1.5)

Search Users E- ®- @ - g .
Overview
Ads ——aw
Name Type URL Actions

bergalm banner S --
vo photo --
princess banner 2 --
oodel photo --
truti banner \ --
andromeda photo --
burgerhaus banner = --
freizeitpark banner --

Abbildung 1.5: Ubersicht der existierenden Werbungs-Kampagnen

Von dort aus kann man auf eine Werbekampagne klicken, um mehr Details zu sehen. Die Detail-
Ansicht der ersten Kampagne ist abgebildet auf Abbildung 1.6.

&)

v®. @.

No

W} Search Users

Edit bergalm Documentation

Name pergalm

Type Banner v
Banner are under Photos and Photos are shown at the 3rd
place in the Newsfeed

Priority 1

If two or more Ads are possible the one with the lowest
Number (e.g. 1 will be chosen.

URL /noad

Link of your Campain.

Image /img/ad/bergalm.jpg

Absolut or relative Url to Image wich will be shown.

SQL-Query SELECT CASE WHEN description LIKE '%natur%' Of

Query must return true or false or an list of User-IDs which
contains or not contains actual User. Use Suser for actual User

and sphoto for actual Photo.

Preview

™ G
7 in der el

Wanderspaf3 |

Abbildung 1.6: Beispielkampagne

24

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

Als erstes sehen wir den (frei wiahlbaren) Kampagnen-Namen bergalm. Wir sehen auch dass die
Werbung vom Typ ,banner® ist, sie wird also bei Fotos angezeigt. Nebst weiteren Informationen
sehen wir insbesondere zuunterst die ,,SQL-Query“, also die SQL-Abfrage, mit der eine Werbung
personalisiert wird. Fiir diese Natur-Werbung haben wir folgende Abfrage:

SELECT CASE
WHEN description LIKE 'Ynatur),'
OR description LIKE 'jlandschaft,’
OR description LIKE 'Jbergl' THEN true
ELSE false
END
FROM photos
WHERE id=$photo

Diese Abfrage wird nun auf der Webseite fir jedes Foto ausgefiihrt, um zu sehen, ob die Werbung
zum Foto passt.

Wir sehen zuerst, dass die Kolonne description der Tabelle photos, also die Kolonne, die Hash-
tags speichert, auf Texte wie ,Natur“, ,Landschaft® und ,Berg* abgesucht wird. Falls so ein Text
vorhanden ist in den Hashtags des Fotos, wird der Wert true zuriickgegeben, und somit wird die
Werbung potentiell angezeigt, andernfalls wird der Wert false zuriickgegeben. Auf der letzten Zeile
sehen wir eine Variable $photo, mit welcher jedes Foto der gesamten Webseite nach den genannten
Kriterien abgesucht werden kann.

@ Aufgabe 1.33 .

Verandern Sie den SQL-Befehl so, dass die Werbung auch fiir Fotos mit dem Hashtag , #Wasser*
angezeigt werden. Testen Sie danach, ob es geklappt hat, indem Sie Fotos mit diesem Hashtag
suchen. Sie kénnen auf Threr Instahub-Webseite iiberpriifen, ob es geklappt hat:

[ihrefarbe] . instahub.org/p/1517

v Losungsvorschlag zu Aufgabe 1.33

SELECT CASE
WHEN description LIKE 'Ynatury'
OR description LIKE 'Y%landschaft),'
OR description LIKE 'Jwasser’'
OR description LIKE 'Jberg),' THEN true
ELSE false
END
FROM photos
WHERE id=$photo

W Aufgabe (Challenge) 1.34

Erstellen Sie eine neue Werbekampagne (siehe Abbildung 1.5).

25

mailto:cyril.wendl@edu.zh.ch
[ihrefarbe].instahub.org/p/1517

Datenbanken O Cyril Wendl, Informatik, 2026

W Aufgabe (Challenge) 1.35

Gemeinsam ein soziales Netzwerk verwalten

3er- bis 4er-Gruppen

8] B

ca. 25 min.

Um sich ein Konto auf einer Seite einer anderen Person zu erstellen:

e Bestimmen Sie jemanden als Administratorln und verwenden Sie nur die Webseite
dieser Person, also z.B. https://purpurrot21.instahub.org. Die anderen Personen
sind BenutzerInnen.

o Benutzerlnnen: Gehen Sie auf die von der Administratorin erstellte Webseite (https://
namedesnetzwerks.instahub.org, wobei ,namedesnetzwerks‘ ersetzt werden muss)
und erstellen Sie ein neues Konto fiir sich.

e AdministratorIn: Die neuen Accounts der BenutzerInnen muss dann von IThnen als Ad-
ministratorln aktiviert werden, indem Sie den User suchen, auf ,,Bearbeiten* und dann
ganz unten auf ,Account ist freigeschaltet klicken.

e AdministratorIn und BenutzerIn: Posten Sie nun falls Sie méchten Bilder in den sozialen
Netzwerken Threr Kollegen, vergeben Sie Likes, folgen Sie anderen und kommentieren
Sie fleissig in den anderen Netzwerken (max. 5 Minuten).

o Erstellen Sie nun personalisierte Werbungen fiir Ihre KlassenkameradInnen (siehe Ab-
bildung 1.5).

26

mailto:cyril.wendl@edu.zh.ch
https://purpurrot21.instahub.org
https://namedesnetzwerks.instahub.org
https://namedesnetzwerks.instahub.org

Datenbanken O Cyril Wendl, Informatik, 2026

1.3 ERM

Ein Entity-Relationship Model (ERM) ist eine abstrakte Darstellung der Tabellen (Entities), die in
einer Datenbank angelegt sind, sowie der Beziehungen (Relationships) zwischen den Tabellen. Jede
Tabelle kann mehrere Kolonnen (=Attribute) haben.

Wenn man eine Datenbank erstellt, kann es niitzlich sein, zuerst ein ERM aufzuzeichnen, um sich
zu iiberlegen, welche Tabellen es braucht.

Das ERM des sozialen Netzwerks InstaHub ist in Abbildung 1.7 abgebildet. Abbildung 1.8 zeigt die
Darstellung der Komponenten eines ERM in der sogenannten Chen-Notation.

m users n m photos n m tags
n
n
password__resets @ g

Abbildung 1.7: ERM von InstaHub

Beziehungen (Relationships)

Entity Relationship Entity

Abbildung 1.8: ERM-Komponenten in der sogenannten Chen-Notation

Die entities, die meistens einer Tabelle entsprechen, werden als Rechtecke angegeben. Beziehungen
stellen ,,Verkniipfungen* zwischen verschiedenen Tabellen dar und sind meist als Raute dargestellt.
Die Attribute werden typischerweise als Kreise angegeben. In Abbildung 1.7 sind die Attribute
einfachheitshalber nicht angegeben.

Die Zahlen iiber den Strichen bezeichnen die Kardinalitdt der Beziehungen: Mit der Kardinalitét
wird ausgedriickt, wie viele Entitdten mit einer anderen Entitit in Verbindung stehen kénnen oder

27

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

mussen:

Eins-zu-Eins (1:1): Dies wird normalerweise angezeigt, indem eine ,,1“ in der Néhe beider
Entitaten platziert wird, die durch eine Beziehung verbunden sind. Es bedeutet, dass eine
Instanz einer Entitdt mit genau einer Instanz einer anderen Entitéit assoziiert ist.
Eins-zu-Viele (1:n): Dies wird dargestellt, indem eine ,,1* in der Nédhe der Entitét auf der
‘eins’-Seite der Beziehung und ein ,n“ oder ,m* (fiir ,many“=viele) in der Néhe der Entitét
auf der ,viele“-Seite der Beziehung platziert wird. Es zeigt an, dass eine Instanz der ersten
Entitdt mit null, einer oder mehreren Instanzen der zweiten Entitit assoziiert sein kann, aber
eine Instanz der zweiten Entitdt nur mit einer Instanz der ersten Entitét assoziiert sein kann.
Viele-zu-Viele (m:n): Dies wird gezeigt, indem ein ,m*“ oder ,n“ in der Niahe beider Entita-
ten platziert wird. Es zeigt an, dass Instanzen der ersten Entitdt mit null, einer oder mehreren
Instanzen der zweiten Entitét assoziiert sein kénnen und umgekehrt.

Folgende Fakten kénnen beispielsweise am ERM in Abbildung 1.7 abgelesen werden:

@ Aufgabe 1.36 .

Jeder user kann beliebig viele (oder 0) comments schreiben.

Jeder user kann beliebig vielen (oder 0) anderen Usern followen und kann von beliebig vielen
(oder 0) andern usern gefollowt werden.

Jedes Foto kann beliebig viele (oder 0) Tags haben. Jeder Tag kann auf n Fotos angewandt
werden.

Jedes Fotos gehort genau zu einem Benutzerprofil (owns). Jedes Benutzerprofil kann beliebig
viele (oder 0) Fotos veroffentlichen.

Jeder user kann sein Passwort beliebig viele male (oder 0 mal) zurtickgesetzt haben. Jedes
des password_resets kann aber nur einen user betreffen.

Eine Schule méchte ihre Datenbankstruktur neu organisieren, um Informationen iiber Lehrer,
Schiiler und Klassen besser verwalten zu kénnen. Die Schule hat entschieden, ein Entity-
Relationship-Modell (ERM) zu entwerfen, um die Beziehungen zwischen diesen Entitdten
klar darzustellen (siehe Abbildung 1.9). Was fallt Thnen in diesem ERM auf? Stimmen die
Kardinalitédten?

Lehrer Klasse Schiiler

Abbildung 1.9: ERM einer Schul-Datenbank

v Losungsvorschlag zu Aufgabe 1.36

Ein Lehrer kann in diesem ERM nur 0 oder 1 Klasse unterrichten. In Realitét ergibt es
keinen Sinn, dass ein Lehrer keine Klasse unterrichtet, und auch die Beschrénkung auf
maximal eine Klasse ergibt keinen Sinn. Statt 0:1 sollte also m stehen zwischen ,,unter-
richtet® und ,Klasse®. Zudem sollten m und 1 zwischen Klasse und Schiiler getauscht
werden.

28

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

@ Aufgabe 1.37

Ein Krankenhaus méchte seine Datenbankstruktur neu organisieren, um Informationen iiber
Arzte, Patienten und Behandlungen effizienter zu verwalten. Das Krankenhaus hat sich ent-
schieden, ein Entity-Relationship-Modell (ERM) zu entwerfen, um die Beziehungen zwischen
diesen Entitdten klar darzustellen (siehe Abbildung 1.10).

Arzte

behandelt Behandlungen

Patienten

Abbildung 1.10: ERM eines Krankenhaus-Datenbanksystems

Bewerten Sie das dargestellte ERM. Sind die Kardinalitdten korrekt angegeben?

v Losungsvorschlag zu Aufgabe 1.37

In dem dargestellten ERM wird angenommen, dass ein Arzt mehrere Behandlungen
durchfiihren kann (n:m-Beziehung) und dass jeder Patient genau eine Behandlung er-
hélt (1:m-Beziehung). Diese Annahme ist jedoch nicht ganz realistisch, da ein Patient
mehrere Behandlungen erhalten kénnte. Die Kardinalitdt zwischen ,Patienten“ und
,behandelt* sollte daher m sein, um anzugeben, dass ein Patient mehrere Behandlun-
gen erhalten kann.

29

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

1.4 Informationen aus mehrere Tabellen kombinieren

1.4.1 Primarschliissel

Wie in Unterabschnitt 1.1.3 diskutiert wurde, besitzen Tabellen hdufig sogenannte Primérschliissel
(en. primary keys). Tabelle 1.6 beispielsweise verwendet einen Primérschliissel mID (blaue Kolonne,
hervorgehoben mit dem Symbol 2).

~ mID | Name

Miiller
Schmidt
Kaufmann

W N =

Tabelle 1.6: Beispiel-Tabelle: ,,Angestellte”

Dieser dient in erster Linie dazu, einen Eintrag (in diesem Fall eine Person) eindeutig zu identifi-
zieren. Weshalb ist das notig?

Zwei Hauptgriinde seine angegeben:

¢ Eindeutigkeit: Es konnte sein, dass zwei Personen gleich heissen. In diesem Fall ist es hilf-
reich, eine eindeutige Identifikationsnummer (oder einen eindeutigen Text) zu haben, um
Information zu genau einer der beiden Personen abfragen zu kénnen.

o Dauerhaftigkeit: Es konnte sein, dass eine Person den Namen wechselt. In diesem Fall mochte
man eine eindeutige Identifikationsnummer haben, damit die Informationen zu den Personen
wie etwa der Gehalt oder die Abteilung weiterhin eindeutig zur selben Person gehéren (und
abgefragt werden konnen).

1.4.2 Fremdschliissel

Nebst Primérschliisseln konnen Tabellen auch sogenannte Fremdschliissel (en. foreign keys) besitzen,
die sich auf Primérschliissel von anderen Tabellen beziehen. Dies erlaubt, Informationen aus meh-
reren Tabellen zu kombinieren. Gegeben sei folgendes Beispiel mit je einer Tabellen zu Angestellten
und Abteilungen (Tabelle 1.7, Tabelle 1.8).

T

+2 mID | Name | aID A 7 aID | Abteilung
1 Miiller 31 31 Verkauf
2 Schmidt 32///332 Technik
3 Kaufmann | 32 33 Marketing
Tabelle 1.7: Tabelle ,,Angestellte“ Tabelle 1.8: Tabelle ,,Abteilungen*

In diesem Beispiel hat die Tabelle ,,Angestellte* nicht nur einen Primé&rschliissel mID, sondern auch
einen Fremdschliissel aID (hervorgehoben mit dem Symbol #), der auf den Primérschliissel mit
demselben Name der Tabelle ,,Abteilungen“ verweist. Angenommen wir méchten nun (mit SQL,
nicht mit manuellem Nachschauen) herausfinden, in welcher Abteilung die Person ,Kaufmann®
arbeitet, wie lassen sich nun die Informationen aus beiden Tabellen kombinieren?

30

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

1.4.3 Tabellen verbinden mit oder ohne JOIN

Beispiel 1.16:
Eine erste Moglichkeit, Tabelle 1.7 mit Tabelle 1.8 zu verbinden, besteht darin, einfach beide
Tabellen ,,aufzurufen®:

SELECT *
FROM Angestellte, Abteilung

)

= |8

S| =

=)

e | E

8 =

a0 | 2

[=! Q
mID | Name << | << | Abteilung
1 Miiller 31 | 31 | Verkauf
1 Miiller 31 | 32 | Technik
1 Miiller 31 | 33 | Marketing
1 Miiller 31| ... | ...
2 Schmidt 32 | 31 | Verkauf
2 Schmidt 32 | 32 | Technik
2 Schmidt 32 | 33 | Marketing
2 Schmidt 32
3 Kaufmann | 31

Wie wir sehen, wurden Informationen aus beiden Tabellen zusammengefiihrt, indem alle mog-
lichen Kombinationen beider Tabellen erstellt wurden. Die beiden gleichnamigen Kolonnen
erhalten zusétzlich einen Prifix (vorausgehender Text) mit dem Namen der Ursprungstabelle,
um diese voneinander abzugrenzen.

Beispiel 1.17:
Wir kénnten nun die Auswahl einfach eingrenzen, indem wir zwei Filter einfligen:

SELECT =*

FROM Angestellte, Abteilung

WHERE Angestellte.alD = Abteilung.alD
AND Name = "Kaufmann"

Angestellte.alD
Abteilung.alD

mID | Name
3 Kaufmann ‘ 32 ‘

Abteilung
‘ Technik

w
[\S]

31

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

Bemerkung 1.1:

Bisher haben wir immer auf Kolonnen von Tabellen zugegriffen, indem wir den Namen der
Kolonne geschrieben haben. Wenn wir mit mehreren Tabellen arbeiten, kann es aber pas-
sieren, dass Kolonnen denselben Namen haben. Es kann daher nétig sein, zusétzlich zum
Kolonnennamen den Namen der Tabelle anzugeben.

J

Die Tatsache, dass unsere Abfrage mehrere Kolonnen aID zuriickgibt, mag etwas unschon sein. Dies
kénnte umgangen werden, indem wir ein JOIN ... USING-Konstrukt verwenden.

Beispiel 1.18:
Folgender Befehl fiihrt zu einer einzigen Kolonne aID im Endresultat:

SELECT =*
FROM Angestellte JOIN Abteilung USING (aID)
WHERE Name = "Kaufmann"

A Achtung

Die Klammer um aID muss gesetzt werden, damit der USING-Befehl funktioniert.

mlID ‘ Name ‘ alD ‘ Abteilung
3 ‘ Kaufmann ‘ 32 ‘ Technik

Bemerkung 1.2:
Statt zwei Tabellen kénnen auch drei oder mehr Tabellen nach den oben erklarten Prinzipien
miteinander verbunden werden. Folgendes Beispiel soll Thnen eine Idee davon geben:

SELECT kolonnel, kolonne2,

FROM tabellel

JOIN tabelle2 USING (kolonne_idl)
JOIN tabelle3 USING (kolonne id2)

Bemerkung 1.3:
Nach einer Tabellenverbindung kénnen Sie alles machen, was Sie sonst auch tun: filtern mit
WHERE, gruppieren mit GROUP BY, summieren mit SUM etc.

= Aufgabe 1.38

Losen Sie Aufgaben 1-10 unter folgendem Link:
https://sql-tutorial.de/home/uebungen.php?lektion=3.

1.5 JOIN-Typen

Héufig kann es niitzlich sein, mehrere Tabellen auf unterschiedliche Arten miteinander zu verbinden,
um neue Einsichten in die Daten zu gewinnen. Verschiedene Tabellen-Verbindungen sind schematisch

32

mailto:cyril.wendl@edu.zh.ch
https://sql-tutorial.de/home/uebungen.php?lektion=3

Datenbanken O Cyril Wendl, Informatik, 2026

in Abbildung 1.11 abgebildet. Die Bedeutung dieser Abbildungen wird in den folgenden Abschnitten

SPEEN B

) INNER JOIN) LEFT OUTER JOIN

erklart.

@

) RIGHT OUTER JOIN) FULL OUTER JOIN

Abbildung 1.11: Venn-Diagramme unterschiedlicher SQL-Joins

1.5.1 INNER JOIN (=JOIN)

Die Syntax eines INNER JOIN-, oder auch einfach JOIN-Befehls sieht wie folgt aus:

SELECT kolonnel, kolonne2,

FROM tabellel

INNER JOIN tabelle2

ON tabellel.kolonne_idl = tabelle2.kolonne_id2

Hier verbinden wir zwei Tabellen, indem wir zwei Kolonnen kolonne_idl und kolonne_id2, die
derselben Information entsprechen (beispielsweise die user-ID), miteinander abgleichen. Beim INNER

JOIN werden nur die Zeilen aus tabellel retourniert, fiir die es einen entsprechenden Wert in
kolonne_id2 in tabelle2 gibt. Alle Werte in tabellel die mit keinem Wert in tabelle2 iiber-
schneiden, sowie umgekehrt, tauchen nicht im Resultat auf (siehe Abbildung 1.12).

Abbildung 1.12: (INNER) JOIN

Wichtig zu wissen ist zudem, dass kolonnel, kolonne2 usw. auf der ersten Zeile nun sowohl von
tabellel wie auch tabelle2 stammen koénnen.

7

Beispiel 1.19:
Folgender Code gibt die ids aller user zuriick, denen der user Mika Kaufmann folgt:

SELECT follows.following_id, follows.follower_id, users.name
FROM follows JOIN users

33

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

ON follows.follower_id = users.id
WHERE name="Mika Kaufmann"

Wie Sie sehen, kann es hilfreich sein, im SELECT-Ausdruck explizit die Tabelle zu nennen,
von welcher eine bestimmt Kolonne stammt.

Auch alle anderen SQL-Befehle wie beispielsweise GROUP BY koénnen nach einem JOIN-Befehl ver-
wendet werden.

Beispiel 1.20:
Folgender Code gibt die Anzahl Fotos fiir alle Benutzer aus (und sortiert die Resultate ab-
steigend):

SELECT name, COUNT(*) AS "Anzahl Fotos"
FROM users

JOIN photos ON users.id = photos.user_id
GROUP BY user_id

ORDER BY “Anzahl Fotos™ DESC

y:\ Achtung ~

Wie Sie in Beispiel 1.20 sehen, kénnen Kolonnen jederzeit mit dem Befehl AS "Neuer Name"
umbenannt werden. Allerdings gilt es zu beachten, dass Absténde im Namen eher ungiinstig
sind: Falls der Name spéter wiederverwendet wird, wie etwa in einem ORDER BY-Ausdruck,
miissen sogenannte backticks (7) vor und nach dem Namen gesetzt werden.

[# Aufgabe 1.39)

Geben Sie die id aller Fotos in der Tabelle 1ikes an, die der user Mika Kaufmann gelikt hat.

v Losungsvorschlag zu Aufgabe 1.39

SELECT photo_id, user_id, name
FROM likes

INNER JOIN users

ON likes.user_id=users.id
WHERE name="Mika Kaufmann"

34

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

W Aufgabe (Challenge) 1.40

auflisten.

v Losungsvorschlag zu Aufgabe 1.40

Challenge: Erstellen Sie eine Liste, wo fiir jedes Hamburger Mitglied die Anzahl seiner Fotos
aufgefithrt ist. Die Liste soll in absteigender Reihenfolge die Anzahl Fotos pro Mitglieder

SELECT city, username, COUNT(*) AS "Anzahl Fotos"
FROM photos

JOIN users ON photos.user_id = users.id

WHERE city="Hamburg"

GROUP BY username

ORDER BY “Anzahl Fotos™ DESC

[#' Aufgabe 1.41

Stadt der zugehorigen Benutzer aus.

v/ Losungsvorschlag zu Aufgabe 1.41

Es soll Werbung an alle Strandurlauber verschickt werden. Finden Sie alle Photos die den
Hashtag meer enthalten. Geben Sie den Namen, die Emailadresse, den Geburtstag und die

SELECT description, name, email, birthday, city
FROM photos

JOIN users on photos.user_id = users.id

WHERE description LIKE "#meery"

[#' Aufgabe 1.42

Geben Sie die 5 User mit den meisten Followern aus.

v Losungsvorschlag zu Aufgabe 1.42

SELECT name, COUNT(x) AS "Followers"

FROM users JOIN follows on follows.following_id = users.id
GROUP BY name

ORDER BY Followers DESC

LIMIT 5

35

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

W Aufgabe (Challenge) 1.43

Finden Sie heraus, welche 5 Fotos am meisten Likes erhalten haben. Geben Sie den Benut-
zernamen und Namen der Ersteller der Fotos an, die id der Fotos sowie die Anzahl Likes.

Vv Losungsvorschlag zu Aufgabe 1.43

SELECT users.username, users.name AS "Name", photos.id AS "Photo id",
COUNT(likes.photo_id) AS "Likes"

FROM users

JOIN photos ON photos.user_id = users.id

JOIN likes ON photos.id = likes.photo_id

GROUP BY users.name, likes.photo_id

ORDER BY Likes DESC

LIMIT 5

1.5.2 LEFT JOIN (=LEFT OUTER JOIN)

Ein LEFT JOIN, oder LEFT OUTER JOIN unterscheidet sich von einem INNER JOIN dadurch, dass alle
Eintrige der ersten Tabelle (nach dem SELECT-Befehl) in der neuen Tabelle erscheinen. Werte aus der
zweiten Tabelle, die nicht in der ersten sind, werden jedoch nicht angezeigt (sieche Abbildung 1.13).

Abbildung 1.13: LEFT (QOUTER) JOIN

[#' Aufgabe 1.44

Diejenigen BenutzerInnen, die noch keine Fotos hochgeladen habe, sollen per Email dazu auf-
gefordert werden, Fotos hochzuladen. Finden Sie alle users, die noch keine Fotos hochgeladen
haben. Geben Sie deren Name und Email-Adresse aus. Verwenden Sie statt WHERE den Befehl
HAVING.

v Losungsvorschlag zu Aufgabe 1.44

SELECT users.name, users.email, COUNT(photos.id) AS "Anzahl Fotos"
FROM users

LEFT JOIN photos ON photos.user_id = users.id

GROUP BY users.name

HAVING ~Anzahl Fotos™ = 0

1.5.3 RIGHT JOIN (=RIGHT OUTER JOIN)

Ein RIGHT JOIN funktioniert analog zu einem LEFT JOIN (siehe Abbildung 1.14).

36

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

Abbildung 1.14: RIGHT (OUTER) JOIN

1.5.4 FULL JOIN (=FULL OUTER JOIN)

Bei einem FULL (QOUTER) JOIN werden alle Werte aus der ersten und der zweiten Tabelle angezeigt
(siehe Abbildung 1.15).

Abbildung 1.15: FULL (OUTER) JOIN

In InstaHub funktioniert der FULL (OUTER) JOIN nicht, weshalb es an dieser Stelle keine Ubungen
hierzu gibt.

37

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

1.6 Daten bearbeiten mit SQ)L

Mit SQL kann man Daten nicht nur abfragen, sondern auch erstellen, verdndern und léschen. Im
folgenden Schauen wir uns dafiir nétigen Befehle an.

1.6.1 Eine neue Tabelle erstellen: CREATE TABLE

Eine neue Tabelle kann innerhalb einer Datenbank mit dem Befehl CREATE TABLE angelegt werden:

CREATE TABLE tabellenname(
kolonnel eigenschaftenl,
kolonne2 eigenschaften2,

Beispiel 1.21:
Die Tabelle users wurde mit folgendem Befehl erstellt:

CREATE TABLE users (

)

“id” int(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
“username” varchar(191) NOT NULL UNIQUE,

“email” varchar(191) NOT NULL UNIQUE,

“password” varchar(191) NOT NULL,

“name” varchar(191) NOT NULL,

“bio” varchar(191) DEFAULT NULL,

“gender” enum('male','female') DEFAULT NULL,

“birthday” datetime DEFAULT NULL,

“city” varchar(191) DEFAULT NULL,

“country” varchar(191) DEFAULT NULL,

“centimeters” int(11) DEFAULT NULL,

“avatar® varchar(191) NOT NULL DEFAULT 'avatar.png',
“role” enum('user','dba', 'teacher', 'admin') NOT NULL DEFAULT 'user',
“is_active” tinyint(1) NOT NULL DEFAULT O,
“remember_token~ varchar(100) DEFAULT NULL,

“created_at”™ timestamp NULL DEFAULT NULL,

‘updated_at”™ timestamp NULL DEFAULT NULL

Nach dem Kolonnennamen folgt zuerst der Kolonnentyp, d.h., die Angabe, welche Art von Daten
in der Kolonne gespeichert werden. Einige der hdufigsten Datentypen sind:

INT(laenge) bezeichnet eine Ganzzahl, fir die laenge bytes zur Verfiigung stehen. Beispiels-
weise speichert die Kolonne centimeters eine Zahl von 0 bis 21, d.h. 2048.

TINYINT(1) speichert den Wert 0 oder 1, wobei O typischerweise ,falsch* und 1 ,wahr“ be-
deuten.

DATETIME ist ein Datum mit einer Uhrzeit

VARCHAR (laenge) bezeichnet eine Zeichenkette, d.h. ein Text, der mit maximal laenge vielen
Bit kodiert wird.

TEXT bezeichnet eine Zeichenkette mit maximaler Linge von 65’535 bytes.

ENUM('wertl', 'wert2',...) bezeichnet eine Auflistung (engl. enumeration) moglicher Wer-
te. Beispielsweise konnen nur ,male“ und ,female“ im Feld gender eingetragen werden.

38

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

Zudem konnen folgende Eingeschaften fiir Kolonnen angegeben werden:

A Achtung \

Je nach SQL-Version muss ein Fremdschliissel erst nach dem FErstellen einer Tabelle als
Fremdschliissel deklariert werden. Dies kann mit dem Befehl ALTER TABLE gemacht werden.

NOT NULL: Feld darf nicht leer sein. Falls kein DEFAULT-Wert angegeben wird, muss, der Wert
fiir diese Kolonne beim Erstellen eines neuen Benutzerkontos immer mitgeliefert werden.
DEFAULT wert: Standard-Wert, falls nichts anderes angegeben wird. Das Attribut avatar
nimmt beispielsweise den Wert avatar.png an, falls kein anderes Bild hochgeladen wird.
AUTO_INCREMENT: Zahl, die bei jedem neuen Eintrag automatisch immer um 1 grésser wird
PRIMARY KEY: Primérschliissel (siehe Tabelle 1.3).

FOREIGN KEY (kolonneID) REFERENCES tabelle2(kolonneID2): Fremdschliissel (siehe Ta-
belle 1.3).

UNIQUE: Darf keine doppelten Werte enthalten

UNSIGNED: Ohne Vorzeichen (+-), also nur positive Zahlen

Beispiel 1.22:
In folgendem Beispiel wird in Tabelle table2 das Attribut £ID nachtraglich als Fremd-
schliissel deklariert, indem es auf das Attribut ID bei tablel zeigt.

CREATE TABLE tablel (
ID int(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

)
CREATE TABLE table2 (

“ID” int(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
“fID” int(10) UNSIGNED NOT NULL

)

ALTER TABLE table2
ADD FOREIGN KEY (fID) REFERENCES tablel(ID)

A Achtung

Auf InstaHub kann immer nur ein Befehl pro Mal ausgefiihrt werden, das ,,;“-Zeichen funk-
tioniert also leider nicht. Stattdessen miissen Sie in InstaHub jeden Befehl einzeln eingeben.

39

mailto:cyril.wendl@edu.zh.ch

Datenbanken

O Cyril Wendl, Informatik, 2026

@ Aufgabe 1.45

Schreiben Sie die SQL-Befehle, um Tabelle 1.7 und Tabelle 1.8 zu erstellen. Sie miissen dabei
lediglich eine leere Tabelle mit den korrekten Kolonnen-Namen und Kolonnen-Typen (Zahl,

Text, etc.) erstellen, Daten miissen Sie noch keine einfiigen.

v Losungsvorschlag zu Aufgabe 1.45

CREATE TABLE abteilungen (
aID int(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
abteilungsname varchar(191) NOT NULL UNIQUE

)

CREATE TABLE angestellte (
mID” int(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
“name” varchar(191) NOT NULL UNIQUE,
“aID” int(10) UNSIGNED NOT NULL

)

ALTER TABLE angestellte
ADD FOREIGN KEY (aID) REFERENCES abteilungen(aID)

1.6.2 Tabellen verandern: ALTER

Mit dem Befehl ALTER tabellenname kénnen Tabellen und deren Attribute nachtréglich, d.h. nach

der Erstellung der Tabelle, verdandert werden.

Beispiel 1.23:
Um eine weitere Kolonne hinzuzufiigen, kann folgender Befehl verwendet werden:

ALTER TABLE tabellenname
ADD neue_kolonne eigenschaften

Beispiel 1.24:
Um eine Kolonne umzubenennen, kann folgender Befehl verwendet werden:

ALTER TABLE tabellenname
RENAME COLUMN alter_name TO neuer_name;

A Achtung

Beim Umbenennen einer Kolonne kénnen Datenbankschemen (z.B. Fremschliissel-Referenzen)
zerstort werden, z.B. falls ein Primérschliissel umbenannt wird, welcher von einer anderen

Tabelle per Fremschliissel referenziert wird (siehe Unterabschnitt 1.6.1).

1.6.3 Tabellen 16schen: DROP TABLE

Mit dem Befehl DROP TABLE tabellenname kann eine Tabelle komplett 16schen.

40

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

A Achtung

Dieser Schritt ist irreversibel. Falls Sie eine Tabelle irrtiimlich 16schen, geben Sie mir Bescheid,
damit ich Thre Datenbank zuriicksetzen kann.

[#' Aufgabe 1.46 .

Erstellen Sie auf InstaHub eine Tabelle users2 mit denselben Eigenschaften wie users (siehe
Beispiel 1.21)

v Losungsvorschlag zu Aufgabe 1.46

CREATE TABLE users2 (
“id” int(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
“username” varchar(191) NOT NULL UNIQUE,
“email” varchar(191) NOT NULL UNIQUE,
“password™ varchar(191) NOT NULL,
“name” varchar(191) NOT NULL,
“bio” varchar(191) DEFAULT NULL,
“gender” enum('male','female') DEFAULT NULL,
"birthday” datetime DEFAULT NULL,
“city” varchar(191) DEFAULT NULL,
“country” varchar(191) DEFAULT NULL,
“centimeters” int(11) DEFAULT NULL,
“avatar® varchar(191) NOT NULL DEFAULT 'avatar.png',
“role” enum('user','dba', 'teacher','admin') NOT NULL DEFAULT 'user',
“is_active” tinyint(1) NOT NULL DEFAULT O,
“remember_token” varchar(100) DEFAULT NULL,
“created_at® timestamp NULL DEFAULT NULL,
“updated_at”™ timestamp NULL DEFAULT NULL
)

. 7

@ Aufgabe 1.47 |

Loschen Sie danach die Tabelle users2 wieder.

v Losungsvorschlag zu Aufgabe 1.47

DROP TABLE users2

1.6.4 Daten einfiigen: INSERT INTO
Mit INSERT INTO kénnen neue Zeilen in eine bestehende Tabelle eingefiigt werden.

Die Syntax von INSERT INTO sieht wie folgt aus:

INSERT INTO tabelle name (kolonnel, kolonne2, kolonne3, ...)
VALUES (wertl, wert2, wert3, ...)

41

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

Beispiel 1.25:
Folgender Code fiigt eine neue Person in die Tabelle users ein:

INSERT INTO users (username, email, password, name, bio, gender, birthday,
city, country, centimeters, avatar, role, is_active, remember_token,
created_at, updated_at)

VALUES ('guenther37', 'guenther@instahub.test', '12345', 'Ginther Maller', '
Ginther mag Kartoffelsalat.', 'male', '2006-06-06 00:00:00', 'Leipzig', '
Deutschland', '173', 'avatar.png', 'user', 'O', NULL, now(), now())

Wie Sie sehen, wird zuerst die Tabelle (users) aufgelistet, danach die Kolonnen und schliess-
lich die Werte.

= Aufgabe 1.48 .

Fiir welche Kolonnen miissen fiir einen neuen Benutzer immer die Werte mitgegeben werden?
S. die Erklarungen zu NOT NULL und DEFAULT in Unterabschnitt 1.6.1.

v Losungsvorschlag zu Aufgabe 1.48

username, email, password, name, role, is_active

[#' Aufgabe 1.49 .

Erstellen Sie einen neuen Eintrag in der Tabelle users mit folgenden Eigenschaften:

Kolonne | Wert
id 300
username testuser
email testOtest.com
password test123
name Test-Vorname Test-Nachname
role user
is_active 1

Uberpriifen Sie danach, ob der Eintrag korrekt erstellt worden ist, indem Sie die Daten des
users testuser abfragen (alle Attribute).

v Losungsvorschlag zu Aufgabe 1.49

INSERT INTO users (id, username, email, password,
name, role, is_active)
VALUES (300, 'testuser', 'test@test.com', 'test123', 'Test-Vorname Test
-Nachname', 'user', '1")

Das Resultat kann mit einer zweiten Abfrage tiberpriift werden:

SELECT * FROM users WHERE username="testuser"

42

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

1.6.5 Daten verandern: UPDATE

Mit UPDATE kénnen Werte einer Tabelle aktualisiert werden. Die Syntax von UPDATE sieht wie folgt
aus:

UPDATE tabelle_name
SET kolonnel = wertl, kolonne2=wert2,
WHERE bedingung(en)

[# Aufgabe 1.50)

Ersetzen Sie die Stadt ,,Berlin“ iiberall durch ,,Bern*

v Losungsvorschlag zu Aufgabe 1.50

UPDATE users
SET city="Bern"
WHERE city="Berlin"

\ J

= Aufgabe 1.51 .

Setzen Sie die Kérpergrossen aller ménnlichen Mitglieder auf 190. Uberpriifen Sie danach die
Richtigkeit Thres Befehls, die Kolonnen fiir die Kérpergrosse, das Geschlecht und den Name
aller mannlichen Mitglieder abfragen.

v Losungsvorschlag zu Aufgabe 1.51

UPDATE users
SET centimeters=190
WHERE gender="male"

Um zu iiberpriifen, ob der Befehl funktioniert hat, kénnen Sie danach einfach die
Tabelle nochmals anzeigen:

SELECT centimeters, gender, name
FROM users
WHERE gender="male"

1.6.6 Eintrige 16schen: DELETE FROM

Mit dem Befehl DELETE FROM kénnen Eintrdge aus einer Tabelle geloscht werden.

DELETE FROM tabellenname
WHERE bedingungen

s)

Beispiel 1.26:
Folgender Code 16scht den Eintrag fiir user guenther37:

DELETE FROM users
WHERE username="guenther37"

43

mailto:cyril.wendl@edu.zh.ch

Datenbanken O Cyril Wendl, Informatik, 2026

@ Aufgabe 1.52 ‘

Loschen Sie den Eintrag, den Sie in Aufgabe 1.49 erstellt haben. Uberpriifen Sie, ob der
Eintrag verschwunden ist, indem Sie danach SELECT * FROM users ausfiihren.

v Losungsvorschlag zu Aufgabe 1.52

DELETE FROM users
WHERE username="testuser"

1.7 Weiterfiihrende Links und Ubungen

Folgende Links dienen der Vertiefung in das Thema SQL (und der Priifungsvorbereitung).
Allgemein zu Datenbanken:

e https://oinf.ch/kurs/vernetzung-und-systeme/datenbanken/
e https://wi-wissen.github.io/instahub-doc-de/#/exercices

Zu SQL:

e https://www.w3schools.com/sql/default.asp (auf Englisch)

e https://sql-island.informatik.uni-kl.de

e https://sql-tutorial.de/home/lektionen.php?lektion=1. Hier wird unter anderem fol-
gende Datenbank verwendet:

Cregon) Claeehe D aiwomar >

44

mailto:cyril.wendl@edu.zh.ch
https://oinf.ch/kurs/vernetzung-und-systeme/datenbanken/
https://wi-wissen.github.io/instahub-doc-de/#/exercices
https://www.w3schools.com/sql/default.asp
https://sql-island.informatik.uni-kl.de
https://sql-tutorial.de/home/lektionen.php?lektion=1

Datenbanken O Cyril Wendl, Informatik, 2026

Lernziele: SQL

O

g
g

Ich kann zwischen Bits und Bytes unterscheiden und kenne die Bedeutungen von géngigen
Grosseneinheiten (Kilo-, Mega-, Giga-, Tera- und Petabyte).

Ich weiss betreffend eine Tabelle, was eine Attribut und was eine Zeile ist.

Ich kann einfache SQL-Abfragen formulieren mit Befehlen wie SELECT, WHERE, ORDER BY,
LIMIT und weiteren Befehlen (siche Cheatsheet fiir vollsténdige Liste aller zu lernenden SQL-
Befehle).

Ich kann Aggregatsfunktionen wie SUM, MIN, MAX, COUNT oder LENGTH auf einzelne Kolonnen
anwenden und kenne deren Bedeutung.

Ich kann die oben erwdhnten SQL-Begriffe gruppenweise anwenden, indem ich sie mit dem
Befehl GROUP BY kombiniere.

Ich kann den Unterschied zwischen einem Primér- und einem Fremdschliissel benennen und
erklaren.

Ich kann anhand einer Ubersicht von Tabellen in einer Datenbank erkennen, welche Attribute
Primér- und welche Sekundérschliissel sind.

Ich kann Informationen aus mehreren Tabellen kombinieren, indem ich den JOIN-Befehl ver-
wenden.

Ich kann Tabellenverbindungen sowohl mit dem Befehl ON wie USING erstellen und verstehe,
welcher Begriff in welchen Situationen besser geeignet ist.

Ich kann aus kombinierten Tabellen neue Informationen gewinnen, indem ich die bereits er-
wéahnten SQL-Codewoérter wie z.B. GROUP BY in Kombination mit einem einem JOIN verwende.
Ich kann Tabellen erstellen, 16schen und verdndern, indem ich (unter anderem) die Befehle
CREATE TABLE, DROP TABLE und ALTER TABLE verwenden.

Ich kann Eintrige (Zeilen) in einer existierenden Tabelle hinzufiigen, verandern oder 16schen,
indem ich die Befehle INSERT INTO, UPDATE und DELETE FROM verwende.

45

mailto:cyril.wendl@edu.zh.ch

Cheatsheet

Folgendes Cheatsheet ist basiert auf der Daten-
bank der Social-Media-Plattform InstaHub. In
den ersten Befehlen wird insbesondere die Tabelle
users verwendet. Die Tabelle enthélt unter ande-
rem folgende Informationen:

id‘ username ‘ name ‘ birthday ‘ city ‘ centimeters

T Sortieren: ORDER BY J

Mit dem Befehl ORDER BY kénnen Resul-
tate sortiert werden, nach einer oder meh-
reren Spalten. Mit folgendem Befehl er-
halten wir die Namen aller Users, sortiert
nach Stadt und nach Region:

SELECT name, city
FROM users
ORDER BY city ASC, name ASC

e DESC = absteigend (descending)

1 | niclas258 Niclas 2001-01-31 | Wremen 182

Schwei- e ASC = aufsteigend (ascending)

zer

\ J

2 | rafacl54 ‘ Rafael ‘ 2004-08-06 ‘ Leipzig ‘ 187

Probst "[Erste / Letzte Zeilen: LIMIT I
3 | luis52 ‘ Luis ‘ 2004-12-15 | Lautertal | 173

Kriiger Mit dem Befehl LIMIT koénnen eine Ta-

Daneben enthélt die Tabelle noch viele weitere
Spalten mit Informationen zum Land, Geschlecht
usw.

'-[Spalten auswéhlen: SELECT I

Auswahl aller Spalten der Tabelle:

SELECT =*
FROM users

Auswahl der Spalten city und gender der
Tabelle users:

SELECT city, gender
FROM users

J

'-[Duplikate 16schen: DISTINCT I

Mit dem Zusatz DISTINCT werden Dupli-
kate aus den Resultaten gel6scht.

SELECT DISTINCT gender
FROM users

belle auf die ersten n Zeilen beschriankt
werden. Z.B. konnen die Namen der ers-
ten drei Personen der Tabelle users wie
folgt abgefragt werden:

SELECT name
FROM users
LIMIT 3

'-[Zeilen Filtern: WHERE J

Mit dem Befehl WHERE konnen die Resul-
tate einer Abfrage nach eigenen Kriterien
gefiltert werden:

SELECT name, city, gender
FROM users
WHERE gender='male'

Operatoren | Bedeutung (spalte)) oder die Anzahl unterschied-

_ gleich (=) licher Werte in einer Spalte (COUNT(

< ungleich () DISTINCT spalte)) zu zidhlen oder um

< kleiner als (<) - das Maximum, das Minimum, die Sum-

<>= l;ilsr;?r Z‘lise? f;emh (=) me oder den Mittelwert einer Spalte zu

e grosser oder gleich (2) berechnen (MAX(spalte) / MIN(spalte)

BETWEEN x AND y ein Wert zwischen x und y / SUM(spalte) / AVG(spalte)) 7Z.B. be-

IN (wertl, wert2, ...) | einer Yon mehreren Werten rechnet folgender Ausdruck die Anzahl

IS NULL Wert ist leer . g
|) Users in Leipzig:

'-[Filter kombinieren: AND, OR I

Mehrere Filter konnen mit AND (,,und“ —
beides muss wahr sein) oder OR (,oder* —
eine der beiden Bedingungen muss wahr
sein) verbunden werden.

Users aus Leipzig, Berlin oder Hamburg,
welche grosser als 170 sind:

SELECT name, city

FROM users

WHERE city IN ('Leipzig','Berlin',
'Hamburg')

AND centimeters > 170

\. J

'-[Ungefahre Treffer: LIKE I

Mit folgendem Befehl erhalten wir alle
Stadte, die mit ,,Be...“ beginnen:

SELECT DISTINCT city
FROM users
WHERE city LIKE 'Be}'

Das Prozentzeichen (%) ist ein Platzhal-
ter und steht fiir ,irgendetwas kommt
hier (oder nicht)“ In diesem Beispiel be-
deutet das, dass 0, 1, oder mehr Zeichen
auf das ,,Be...“ folgen kénnen.

'[Aggregatsfunktionen])

Mit Aggregatsfunktionen werden Daten
zusammengefasst, beispielsweise um die
Anzahl Zeilen (COUNT(*)), die Anzahl
nicht leerer Zellen in einer Spalte (COUNT

SELECT city, COUNT (%)
FROM users
WHERE city = 'Leipzig'

'-[Rechnen und umbenennen: AS J

Mit Spalten sowie Aggregatsfunktionen
kann man rechnen, beispielsweise um ein
Resultat durch eine andere Zahl zu divi-
dieren. Zudem konnen Spalten-Titel mit
dem Befehl AS umbenannt werden:

SELECT centimeters/100 AS 'Grosse
in Metern'
FROM users

"[Gruppieren: GROUP BY]

Aggregatsfunktionen koénnen auch pro
Gruppe verwendet werden, z.B. um die
Anzahl Mitglieder in jeder Stadt zu be-
rechnen:

SELECT city, COUNT(*) AS 'Users
pro Stadt'

FROM users

GROUP BY city

F[Filtern nach Gruppieren: HAVING I

Mit HAVING kénnen Resultate mach dem
Gruppieren gefiltert werden. WHERE filtert
vor dem Gruppieren und steht demnach
immer vor einem GROUP BY.

Durchschnittliche Koérpergrosse — aller
maénnlichen Mitglieder in jeder Stadt be-
rechnen, danach auf Stadte beschrénken,
in denen die Menschen durchschnittlich
zwischen 150 und 155 gross sind:

SELECT city, AVG(centimeters) AS '
Koérpergrosse'

FROM users

WHERE gender =

GROUP BY city

HAVING “Korpergrosse™ BETWEEN 150
AND 155

'male’

\. J

Texte werden immer innerhalb von Anfiihrungs-
zeichen ('') geschrieben. Spaltennamen, welche
Spezialzeichen oder Abstdnde enthalten, werden
innerhalb von backticks (*) geschrieben.

https://wi-wissen.github.io/instahub-doc-de/

’-[Tabellen erstellen: CREATE TABLE J

Eine Tabelle meinetabelle kann wie
folgt erstellt werden:

CREATE TABLE meinetabelle(
name_spaltel spaltentypl,
name_spalte2 spaltentyp2,

. ——etc.

)

Géngige Spalten-Typen sind:

'-[Uberpriifen, ob existiert: IF EXISTS]—‘

INTEGER Ganzzahl

Z.B. 35
REAL Kommazahl

Z.B. 3.341
DATE Datum

Format: 'YYYY-MM-DD'
BOOLEAN ‘Wahrheitswert

‘Wahr (1) oder Falsch (0)
VARCHAR (n) ‘ Text

n = maximale Lange

‘Wenn man eine Tabelle erstellen will, wel-
che es bereits gibt, kann eine Fehlermel-
dung erscheinen. Folgender Befehl wird
nur ausgefiihrt, falls es noch keine Tabelle
testtabelle gibt:

CREATE TABLE IF NOT EXISTS
testtabelle(
name_spaltel spaltentypl,
name_spalte2 spaltentyp2,
. ——etc.

)

Ahnlich kann vor man den Befehl DROP
TABLE anpassen, so dass er nur ausgefiihrt
wird, wenn es eine solche Tabelle wirklich
gibt:

DROP TABLE IF EXISTS testtabelle

7

F[Tabellen dndern: ALTER J

Mit dem Befehl ALTER tabellenname
kénnen Tabellen verédndert werden, bei-
spielsweise um eine Spalte hinzuzufiigen
oder umzubenennen.

Daten einfiigen: INSERT INTO I

ALTER TABLE tabellenname
ADD neue_spalte eigenschaften

ALTER TABLE tabellenname
RENAME COLUMN name_vorher TO
name_neu;

F[Tabellen 16schen: DROP TABLE J

DROP TABLE tabellenname

Neue Eintrige (Zeilen) kénnen mit dem
Befehl INSERT INTO in eine Tabelle ein-
gefligt werden. Beispielsweise konnen mit
folgender Befehlsstruktur drei neue Zei-
len eingefiigt werden:

INSERT INTO tabellenname
(spaltel, spalte2, ...)

VALUES
(wertl, wert2, ...),
(wertl, wert2, ...),
(wertl, wert2, ...)

Zuerst werden also die Spalten angege-
ben, fiir welche Werte eingefiigt werden,
danach die Werte fir jede neue Zeile.
Werte in nicht angegebenen Spalten blei-
ben leer.

T Daten verandern: UPDATE J

Existierende Daten kénnen wie folgt ge-
dndert werden:

UPDATE tabelle_name
SET spaltel = wertl,
WHERE bedingung(en)

Beispielsweise konnen mit folgendem Be-
fehl alle Users, die zur Stadt Berlin geho-
ren, der Stadt Bern zugeordnet werden:

UPDATE users
SET city='Bern'
WHERE city='Berlin'

"[Unterabfragen (Subqueries) I

Unterabfragen (en. subqueries) kénnen
wie folgt geschrieben werden:

SELECT spaltell

FROM tabellel

WHERE spaltenname IN
(SELECT spalte2 FROM tabelle2
WHERE ...);

Dabei kénnen alle bekannten Vergleichs-
operatoren wie =, IN, >, <, usw. verwendet
werden.

'-[Mehrere Ausdriicke verbinden J

Einzelne Eintrdge (Zeilen) konnen mit
einer WHERE-Bedingung und dem Befehl
DELETE FROM geloscht werden:

DELETE FROM users
WHERE username='guenther37'

'-[Eintrage 16schen: DELETE FROM I

J

'-[Mehrere Tabellen verbinden: JOIN r

Mehrere Tabellen kénnen mit folgendem
Befehl zu einer Tabelle verbunden wer-
den:

SELECT t1.spalte_x, t2.spalte_y,

FROM tabellel AS t1
JOIN tabelle2 AS t2
ON t1.spalte_idl = t2.spalte_id2

Falls Priméar- und Fremdschliissel in bei-
den Tabellen gleich heissen, kann man
USING verwenden:

SELECT =*
FROM tabellel
JOIN tabelle2 USING (spalte_id)

Mehrere SQL-Ausdriicke kénnen mit Se-
mikolon (;) verbunden werden:

-- Tabelle erstellen, danach
wieder 1ldéschen
CREATE TABLE IF NOT EXISTS
testtabelle(
name_spaltel spaltentypil,
name_spalte2 spaltentyp2,
... ——etc.
)8
DROP TABLE IF EXISTS testtabelle

F[Kommentare J

Kommentare werden von SQL ignoriert
und dienen der besseren Leserlichkeit des
Codes. Kommentare werden durch zwei
Bindestriche gekennzeichnet (siehe Box
zu ,Mehrere Ausdriicke verbinden®)

F[Weitere Befehle & Feedback J

Weitere SQIL-Befehle und Erklarungen
finden Sie unter w3schools.com.

Verbesserungsvorschlége konnen gerne an
Cyril Wendl geschickt werden.

https://www.w3schools.com/sql/default.asp
mailto:cyril.wendl@edu.zh.ch

Glossar

ERM Entity-Relationship Model. 22, 23, 27, 28

SQL Structured Query Language. 6, 8, 10-12, 14, 16, 20, 24, 38, 44, 47

48

	Daten & SQL
	Einführung
	Was sind Daten?
	Datenmengen
	Tabellen

	Einzelne Tabellen abfragen mit SQL
	Syntax
	Einfache Selektion: SELECT
	Selektion mit Filter: WHERE
	Eindeutige Selektion: SELECT DISTINCT
	Ungefähre Treffer: LIKE
	Sortieren: ORDER BY
	Aggregatsfunktionen
	COUNT
	MAX, MIN
	SUM
	AVG
	LENGTH

	Gruppieren: GROUP BY
	Filtern nach Gruppieren: HAVING
	Erste / Letzte Zeilen: LIMIT
	Verzweigungen: CASE WHEN
	Anwendung: Personalisierte Werbung auf InstaHub

	ERM
	Informationen aus mehrere Tabellen kombinieren
	Primärschlüssel
	Fremdschlüssel
	Tabellen verbinden mit oder ohne JOIN

	JOIN-Typen
	INNER JOIN (=JOIN)
	LEFT JOIN (=LEFT OUTER JOIN)
	RIGHT JOIN (=RIGHT OUTER JOIN)
	FULL JOIN (=FULL OUTER JOIN)

	Daten bearbeiten mit SQL
	Eine neue Tabelle erstellen: CREATE TABLE
	Tabellen verändern: ALTER
	Tabellen löschen: DROP TABLE
	Daten einfügen: INSERT INTO
	Daten verändern: UPDATE
	Einträge löschen: DELETE FROM

	Weiterführende Links und Übungen

