
Informatik

Datenbanken
Skript

Cyril Wendl

« Winterthur, 14. Januar 2026

mailto:cyril.wendl@edu.zh.ch
mailto:


Inhaltsverzeichnis

1 Daten & SQL 3
1.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Was sind Daten? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Datenmengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Tabellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Einzelne Tabellen abfragen mit Structured Query Language (SQL) . . . . . . . . . . 10
1.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Einfache Selektion: SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Selektion mit Filter: WHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Eindeutige Selektion: SELECT DISTINCT . . . . . . . . . . . . . . . . . . . . . 12
1.2.5 Ungefähre Treffer: LIKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.6 Sortieren: ORDER BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.7 Aggregatsfunktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.7.1 COUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.7.2 MAX, MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.7.3 SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.7.4 AVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.7.5 LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.8 Gruppieren: GROUP BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.9 Filtern nach Gruppieren: HAVING . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.10 Erste / Letzte Zeilen: LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.11 Verzweigungen: CASE WHEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.12 Anwendung: Personalisierte Werbung auf InstaHub . . . . . . . . . . . . . . . 19

1.3 ERM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Informationen aus mehrere Tabellen kombinieren . . . . . . . . . . . . . . . . . . . . 26

1.4.1 Primärschlüssel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.2 Fremdschlüssel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.3 Tabellen verbinden mit oder ohne JOIN . . . . . . . . . . . . . . . . . . . . . 27

1.5 JOIN-Typen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.1 INNER JOIN (=JOIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.2 LEFT JOIN (=LEFT OUTER JOIN) . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5.3 RIGHT JOIN (=RIGHT OUTER JOIN) . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5.4 FULL JOIN (=FULL OUTER JOIN) . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Daten bearbeiten mit SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6.1 Eine neue Tabelle erstellen: CREATE TABLE . . . . . . . . . . . . . . . . . . . . 33
1.6.2 Tabellen verändern: ALTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6.3 Tabellen löschen: DROP TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6.4 Daten einfügen: INSERT INTO . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6.5 Daten verändern: UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.6.6 Einträge löschen: DELETE FROM . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.7 Weiterführende Links und Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



Danksagungen

Besonderer Dank gilt Thomas Graf für seine zahlreichen Beiträge sowie das sorgfältige Lektorat
dieses Skripts.

2



Kapitel 1

Daten & SQL

1.1 Einführung

1.1.1 Was sind Daten?

Der Begriff „Daten“ ist der Plural von Datum und kommt aus dem Latenischen (datum = gegeben,
bzw. dare = geben). „Daten“ bedeuten also im weitesten Sinne etwas „Gegebenes“, bzw. ein
Faktum. Dies wiederum wirft die philosophische Frage auf, was ein Faktum ist. Beispiele von Fakten
sind:

• „Mein Nachbar heisst Marco Odermatt.“
• „Aktuell findet an der KLW Unterricht statt.“
• „Das Billett von Zürich nach Winterthur kostet CHF 6.80.“
• „Das Logo der KLW besteht aus blauen und roten Farben.“
• . . .

Anhand des letzten Beispiels sieht man, dass Fakten nicht unbedingt wahr sein müssen, um als
Fakten zu gelten.

In der Informatik sind Daten so gut wie immer durch Nullen und Einsen repräsentiert. Also zum
Beispiel:

• . . . 10100010101111011101001001 . . .
• . . . 11101110110000111011010111 . . .
• . . .

Die Nullen und Einsen können beliebige Informationen darstellen, also beispielsweise Bilder, Texte,
Videos oder Zahlen.

1.1.2 Datenmengen

Seit etwa einem guten halben Jahrhundert nehmen die Datenmengen stets zu. Tabelle 1.1 zeigt die
gängigen Grössenordnungen von Datenmengen auf.

3



Datenbanken « Cyril Wendl, Informatik, 2026

Masseinheit Dezimalsystem Grössenordnung

KB (Kilobyte) 103 B(yte) 1’000 B eine Text-Datei
MB (Megabyte) 106 B 1’000’000 B eine Musik-Datei
GB (Gigabyte) 109 B 1’000’000’000 B eine Video-Datei
TB (Terabyte) 1012 B 1’000’000’000’000 B kleiner Firmen-Server
PB (Petabyte) 1015 B ... Facebook-Server
EB (Exabyte) 1018 B ... alle CERN-Daten
ZB (Zettabyte) 1021 B ... alle Daten (∼ 100 ZB)
YB (Yottabyte) 1024 B ... ∼ 2030?

Tabelle 1.1: Gängige Daten-Grössenordnungen in der Informatik (ein Byte = 8 bit)

Die gesamten weltweit vorhandenen Daten machen aktuell ca. 100 Zettabyte aus. Es wird erwartet,
dass das erste Yottabyte gegen 2030 erreicht wird (siehe Abbildung 1.1).

Abbildung 1.1: Entwicklung der globalen Datenmenge

Dies hat zur Folge, dass Datenzentren immer grösser werden und mehr Energie verbrauchen, wie
das folgende Video verdeutlicht: https://youtu.be/_r97qdyQtIk?t=2m14s

1.1.3 Tabellen

Der allergrösste Teil der oben erwähnten Daten befindet sich in sogenannten Datenbanken. Daten-
banken bestehen im Wesentlichen aus Tabellen, weshalb wir im Folgenden zunächst anschauen, wie
eine Tabelle aufgebaut ist. Eine Beispiel einer Tabelle ist gegeben in Tabelle 1.2.

4

mailto:cyril.wendl@edu.zh.ch
https://youtu.be/_r97qdyQtIk?t=2m14s


Datenbanken « Cyril Wendl, Informatik, 2026

Name Region Fläche Einwohner BIP

Afghanistan Asien 652 25.8M 21.0B
Albanien Europa 28.7 3.49M 5.6B
Algerien Afrika 2,381.7 31.2M 147.6B
Amerikanische... Ozeanien 0.199 65.4K 0.15B
Andorra Europa 0.468 66.8K 1.2B
Angola Afrika 1,246.7 10.1M 11.6B
Anguilla Mittelamerika 0.091 11.8K 0.088B
Antarktik Antarktis 14M 0 0
Antigua und... Mittelamerika 0.442 66.4K 0.524B
Argentinien Südamerika 2,766.9 36.9M 367B

... ... ... ... ...

Tabelle 1.2: Länder-Tabelle

Eine Tabelle besteht aus Zeilen und Spalten, wie in Tabelle 1.3 gezeigt.

Name Region Fläche Einwohner BIP

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

Spalte (= Kolonne, Attribut)

Zeile

Schlüsselattribut (eindeutig!)

Tabelle 1.3: Typische Tabellenstruktur anhand einer Tabelle mit Informationen zu Ländern

In Tabelle 1.3 enthält jede Zeile Informationen zu einem Land: dessen Name, die Region (=Konti-
nent), Fläche, die Einwohnerzahl und das Bruttoinlandprodukt (BIP). Jede Spalte enthält Informa-
tionen eines selben Typs, beispielsweise die Regionen aller Länder, die Flächen oder die Einwohner-
zahlen. In einer Spalte sollten also alle Werte denselben Typ haben, beispielsweise „Zahl“ (Fläche,
Einwohner, BIP) oder „Text“ (Name, Region). Nicht zuletzt gibt es in gewissen Tabellen (genau) ein
Schlüsselattribut, dessen Werte eindeutig sein müssen. Dies bedeutet in Tabelle 1.3 beispielsweise,
dass kein Ländername zweimal oder mehr vorkommen darf. Weshalb dies wichtig ist, werden wir
später sehen.

Eine Datenbank ist vereinfacht gesagt eine Sammlung aus mehreren Tabellen, auf die mehrere
Geräte zugreifen können (lesen und schreiben), wie in Abbildung 1.2 gezeigt.

5

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

Table ...

Abbildung 1.2: Geräte können Daten von der / zur Datenbank senden / empfangen

Datenbanken und Tabellen finden Anwendung in allen möglichen Bereichen des täglichen Lebens:

• Social Media: Instagram, TikTok, LinkedIn, etc.
• Shopping: Galaxus, AliExpress, etc.
• Netzwerke: SBB, swissgrid (Strom-Netzwerk), etc.

Wie können wir mit den riesigen Datenmengen umgehen und sinnvolle Einsichten daraus gewinnen?

Eine der verbreitetsten Arten, Tabellen und Datenbanken zu erstellen, zu verändern und zu ana-
lysieren ist die Programmiersprache SQL. Im Folgenden verwenden wir die Datenbanken aus der
Lern-Plattform InstaHub, um uns mit SQL vertraut zu machen.

Alle Beispiele können direkt auf InstaHub ausgeführt werden. Die Abgaben sind rot markiert und
befinden sich auf Moodle unter „Quiz SQL“.

6

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.1 Einrichtung von Instahub

Selber eine Datenbank administrieren
Einzelarbeit
ca. 25 min.

Führen Sie folgende Schritte aus:

1. Auf https://instahub.org gehen
2. Auf Hub erstellen (rechts oben) klicken und einen Hub erstellen.

3. Geben Sie folgende Angaben ein (siehe Bild unten):
• Name der Lehrperson (klein geschrieben und ohne Abstände): cyrilwendl oder

thomasgraf
• Der Username lautet admin und kann nicht geändert werden.
• Ihren Namen und Ihr Passwort können Sie frei setzen. Das Passwort sollten Sie

sich irgendwo notieren.
• Sie können entweder eine echte E-Mail-Adresse angeben oder die generierte E-Mail-

Adresse so lassen. Im zweiten Fall können Sie jedoch Ihr Passwort nicht mehr per
Mail zurücksetzen, falls Sie dieses je verlieren sollten.

• Geben Sie mir mündlich Bescheid, dass Sie die Seite erstellt haben. Wir müssen
Ihren persönlichen Hub (= Ihre Webseite) manuell aktivieren. Dies dauert nur
wenige Sekunden.

7

mailto:cyril.wendl@edu.zh.ch
https://instahub.org


Datenbanken « Cyril Wendl, Informatik, 2026

4. Merken oder notieren Sie sich Ihr Passwort an einem sicheren Ort.
5. Sie haben nun eine eigene Webseite unter https://[meinefarbeXX].instahub.org,

wobei [meinefarbeXX] durch Ihre Farbe ersetzt werden muss (siehe Bild oben).
6. Sie können sich jetzt auf Ihrer individuellen Webseite mit dem Benutzername admin

(nicht Ihrer Email) und dem von Ihnen zuvor gewählten Passwort anmelden. Sie sind
nun als AdministratorIn Ihres eigenen sozialen Netzwerks eingeloggt.

EDIT Aufgabe 1.2

Schreiben Sie sich den Namen Ihrer InstaHub-Seite auf, also z.B.

https://[meinefarbeXX].instahub.org,

wobei [meinefarbeXX] durch Ihre Farbe ersetzt werden muss! Laden Sie diesen auf Moodle
unter „Name InstaHub“ hoch, so dass Sie den Link auf Ihr InstaHub später einfach wieder
finden. Merken oder notieren Sie sich Ihr Passwort an einem sicheren Ort.

EDIT Aufgabe 1.3 Inbetriebnahme von Instahub

Lernen, mithilfe von SQL eigene Abfragen zu machen
2er- bis 3er-Gruppen
ca. 60 min.

Bestimmen Sie eine Person pro Gruppe, die sich auf der eigenen Webseite mit dem Benut-
zername admin und dem von Ihnen gewählten Passwort anmeldet. Ihre eigene Webseite ist:

https://meinefarbeXX.instahub.org

Wobei [meinefarbeXX] durch Ihre Farbe ersetzt werden muss.

Die zwei anderen Personen sollen das folgende Kapitel aus diesem Skript lesen und der ersten
Person dabei helfen, die SQL-Befehle zu schreiben.

Sie können jetzt unter folgendem Menu-Punkt Ihre eigene Datenbank administrieren:

Als Erstes sehen Sie eine Liste der verfügbaren Tabellen sowie der dazugehörigen Spaltenna-
men (siehe Bild unten). Tabellennamen sind in Orange, Spaltennamen in grün markiert.

8

mailto:cyril.wendl@edu.zh.ch
https://[meinefarbeXX].instahub.org
https://[meinefarbeXX].instahub.org
https://meinefarbeXX.instahub.org


Datenbanken « Cyril Wendl, Informatik, 2026

Abbildung 1.3: Die Tabellen von InstaHub und deren Attribute

9

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

1.2 Einzelne Tabellen abfragen mit SQL

1.2.1 Syntax

Die Sprache Structured Query Language (SQL) besteht, wie wir sehen werden, aus verschiedenen
Schlüsselwörtern, wie etwa SELECT, WHERE, GROUP BY, ORDER BY usw. Dazu gibt es Folgendes zu
beachten:

• Ob wir diese Schlüsselwörter gross oder klein schreiben, spielt keine Rolle. Allerdings wird
empfohlen, die Schlüsselwörter immer in Grossbuchstaben zu schreiben, um sie von Kolonnen-
Namen, Tabellen-Namen usw. abzugrenzen.

• Wir können alle SQL-Befehle auf einer einzigen Zeile schreiben, dadurch wird der Code
aber deutlich weniger lesbar. Stattdessen empfiehlt es sich, vor gewissen Schlüsselwörtern wie
SELECT, WHERE oder GROUP BY eine neue Zeile zu erstellen. Dazu lohnt es sich, die Beispiele
genau anzuschauen.

Kommentare können in SQL auf zwei Arten geschrieben werden:

-- 1. Kommentar auf einer Zeile
/* 2. Kommentar über
mehrere Zeilen */

1.2.2 Einfache Selektion: SELECT

Mit dem Befehl „SELECT col1,col2,... FROM tablename“ können wir gewisse Spalten (= Kolon-
nen) col1,col2,... aus einer Tabelle mit dem Namen tablename auswählen. Wir können statt
den Spaltennamen auch einfach einen Stern (*) tippen, um alle Kolonnen einer Tabelle zu erhalten,
d.h. die gesamte Tabelle.

Beispiel 1.1:
Geben Sie auf InstaHub den folgenden Befehl ein (der Kommentar muss nicht kopiert werden,
er dient lediglich zur Erklärung des Codes):

-- wähle alle Spalten aus der Tabelle users aus
SELECT *
FROM users

Mit diesem Befehl wählen wir alle Spalten (*) der Tabelle users aus. Sie sollten nun die
gesamte Tabelle users sehen.

EDIT Aufgabe 1.4

Geben Sie alle Benutzernamen (username) aus users aus.

EDIT Aufgabe 1.5

Geben Sie die Benutzernamen (username) und echten Namen (name) aller Einträge aus users
aus.

10

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.6

Geben Sie die Namen und Wohnorte aller Mitglieder aus.

1.2.3 Selektion mit Filter: WHERE

Fügen wir zu einer SQL-Abfrage den Befehl „WHERE conditions“ hinzu, können wir das erhaltene
Resultat nach gewissen Bedingungen (conditions) filtern.

Beispiel 1.2:
Geben Sie folgendes Beispiel in Instahub ein:

SELECT name, city, gender
FROM users
WHERE gender="male"

Nebst dem Gleich-Zeichen (im obigen Beispiel) stehen folgende Filter-Operatoren zur Verfügung:

Operator
in SQL

Mathematische
Bedeutung

= gleich (=)
<> ungleich (6=)
< kleiner als (<)
<= kleiner oder gleich (≤)
> grösser als (>)
>= grösser oder gleich (≥)

BETWEEN x AND y ein Wert zwischen (inklusive) x und y
IN (wert1, wert2, ...) einer von mehreren möglichen Werten

IS NULL Wert existiert nicht (ist leer)

Um mehrere Bedingungen miteinander zu verknüpfen, können wir die Befehle AND, NOT sowie OR
verwenden.

Beispiel 1.3:
Folgender Code gibt alle Mitglieder aus, die zwischen 172 cm und 174 cm gross sind. Dabei
gehören 172 cm und 174 cm selbst ebenfalls dazu (inklusive).

SELECT name, centimeters, gender
FROM users
WHERE centimeters BETWEEN 172 AND 174

Beispiel 1.4:
Folgender Code gibt den Namen und die Stadt aller Mitglieder aus, die entweder in Leipzig,
Berlin oder Hamburg wohnen.

SELECT name, city
FROM users
WHERE city IN ("Leipzig", "Berlin", "Hamburg")

11

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

Exclamation-Triangle Achtung

Wie Sie anhand der Beispiele 1.3 und 1.4 sehen, spielt es in SQL eine Rolle, ob wir nach Zahlen
oder nach Text filtern: Wenn nach einem Text gefiltert wird, muss dieser in Anführungszeichen
stehen (wie z.B. "Berlin" in Beispiel 1.4). Bei Zahlen dürfen Sie keine Anführungszeichen
schreiben (siehe z.B. die Zahl 172 in Beispiel 1.3).

NULL ist ein spezielles SQL-Wort, welches bedeutet, dass ein Feld leer ist, bzw. keinen Wert hat. NULL
muss von „0“ unterschieden werden: Beispielsweise könnte die Zahl 0 in einer Tabelle über Bank-
konten bedeuten, dass jemand 0 Franken auf seinem Konto hat, während der Wert NULL bedeuten
würde, dass keine Informationen zum Kontostand vorhanden sind.

Beispiel 1.5:
Folgender Code gibt die Namen aller Mitglieder an, die ihre Grösse nicht angegeben haben.

SELECT name, centimeters
FROM users
WHERE centimeters IS NULL

EDIT Aufgabe 1.7

Geben Sie die Namen aller weiblichen Mitglieder aus, die zwischen 150 und 155 gross sind.

EDIT Aufgabe 1.8

Zeigen Sie den Namen, das Geburtsdatum sowie die Grössen aller Frauen an, die kleiner oder
gleich 160 Zentimeter sind.

EDIT Aufgabe 1.9

Verwenden Sie die Tabelle comments und geben Sie alle Kommentare aus, die vom user mit
der ID 10 oder vom user mit der ID 38 stammen.

1.2.4 Eindeutige Selektion: SELECT DISTINCT

Der Befehl DISTINCT nach einem SELECT führt dazu, dass jeder mögliche Wert nur höchstens einmal
ausgegeben wird, d.h. Duplikate werden entfernt.

EDIT Aufgabe 1.10

Vergleichen Sie folgende zwei Befehle. Überlegen Sie sich zuerst, was der Code ausgeben sollte,
bevor Sie die Befehle in InstaHub ausführen.

SELECT gender
FROM users

SELECT DISTINCT gender
FROM users

12

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.11

Geben Sie jeden Wohnort nur einmal aus.

EDIT Aufgabe 1.12

Geben Sie jede Benutzerrolle nur einmal aus. dba bedeutet „Database Administrator“, also
Datenbank-AdministratorIn.

1.2.5 Ungefähre Treffer: LIKE

Mit dem Befehl LIKE können wir die Tabelle nach Zeilen filtern, welche in einer gewissen Spalte ein
bestimmtes Wort enthalten.

Beispiel 1.6:
Mit folgendem Befehl erhalten wir alle Städte, die mit „Be“ beginnen:

SELECT DISTINCT city
FROM users
WHERE city LIKE "Be%"

Das „%“-Zeichen ist eine sogenannte wildcard und dient hier als Platzhalter, der Folgendes bedeutet:
„es kann noch weiterer Text an dieser Stelle stehen, muss aber nicht“ (siehe Tabelle 1.4).

Symbol Bedeutung

"%" Stellt null oder mehrere, beliebige Zeichen dar
"_" Stellt ein einzelnes, beliebiges Zeichen dar

Tabelle 1.4: wildcards in SQL

Beispiel 1.7:
Mit folgendem Befehl erhalten wir alle Städte, die mit „H“ beginnen und ein „m“ an dritter
Stelle haben:

SELECT DISTINCT city
FROM users
WHERE city LIKE "H_m%"

13

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.13

Vergleichen Sie folgende drei Befehle. Überlegen Sie sich zuerst, was der Code ausgeben sollte,
bevor sie die Befehle in InstaHub ausführen.

SELECT username, city
FROM users
WHERE city = "Berlin" AND name LIKE "Fabian%"

SELECT username, city
FROM users
WHERE city = "Berlin" OR name LIKE "Fabian%"

SELECT username, city
FROM users
WHERE city = "Berlin" AND NOT name LIKE "Fabian%"

EDIT Aufgabe 1.14

Finden Sie alle Berliner, die Marc heissen.

EDIT Aufgabe 1.15

Finden Sie alle Person mit dem Vornamen Lina oder Lorena.

Trophy Aufgabe (Challenge) 1.16

Überprüfen Sie, welche Mitglieder im Jahr 2001 geboren sind (mit der Spalte birthday).

EDIT Aufgabe 1.17

Wählen Sie alle Personen mit dem Namen Naomi aus, die nicht aus Berlin kommen.

Trophy Aufgabe (Challenge) 1.18

Geben Sie die Grösse und den Wohnort von Juliette Amsel sowie Juliette Unger aus. Sie
sollten das Zeichen "%" nicht verwenden.

1.2.6 Sortieren: ORDER BY

Mit dem Befehl ORDER BY col ASC oder ORDER BY col DESC kann das Resultat einer SQL -Abfrage
nach einer bestimmten Kolonne col sortiert werden. Mit ASC wird das Resultat aufsteigend und
mit DESC absteigend sortiert.

Beispiel 1.8:
Beobachten Sie das Resultat folgender Abfrage:

SELECT DISTINCT city
FROM users

14

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

ORDER BY city DESC

EDIT Aufgabe 1.19

Geben Sie alle Benutzernamen in sortierter Reihenfolge aus (a → z).

EDIT Aufgabe 1.20

• Lösen Sie Aufgaben 1–11 unter folgendem Link:
https://sql-tutorial.de/home/uebungen.php?lektion=1 (keine Abgabe notwen-
dig / möglich)

• Geben Sie danach auf Moodle die „Übungen 1 (Einfache Selektion)“ ab.

1.2.7 Aggregatsfunktionen

1.2.7.1 COUNT

Mit dem Befehl COUNT kann man die Anzahl Resultate zählen.

SELECT COUNT(*)
FROM users

Wir können den berechneten Wert zudem zur besseren Lesbarkeit umbenennen, indem wir den
Befehl AS verwenden:

SELECT COUNT(*) AS "Registrierte Mitglieder"
FROM users

EDIT Aufgabe 1.21

Geben Sie die Anzahl registrierten Mitglieder in Berlin aus. Die resultierende Spalte soll
„Registrierte Mitglieder in Berlin“ heissen.

1.2.7.2 MAX, MIN

Um die höchsten, bzw. tiefsten Werte einer Kolonne zu erhalten, können die Befehle MIN und MAX
verwendet werden:

Beispiel 1.9:
Beobachten Sie das Resultat folgender Abfrage:

SELECT MAX(centimeters) AS "Maximale Körpergrösse"
FROM users

EDIT Aufgabe 1.22

Zeigen Sie, wie gross das kleinste Mitglied ist.

15

mailto:cyril.wendl@edu.zh.ch
https://sql-tutorial.de/home/uebungen.php?lektion=1


Datenbanken « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.23

Zeigen Sie, wann sich zuletzt ein Mitglied registriert hat.

1.2.7.3 SUM

Mit SUM kann die Summe einer Datenserie ausgegeben werden.

Beispiel 1.10:
Folgender Code berechnet die Summe der Körpergrössen aller Personen, die Felix heissen:

SELECT SUM(centimeters)
FROM users
WHERE name LIKE "Felix%"

1.2.7.4 AVG

Mit AVG kann der Durchschnitt einer Datenserie ausgegeben werden.

Beispiel 1.11:
Folgender Code berechnet die durchschnittliche Körpergrössen aller Personen, die Felix heis-
sen:

SELECT AVG(centimeters)
FROM users
WHERE name LIKE "Felix%"

1.2.7.5 LENGTH

Mit LENGTH gibt die Anzahl Zeichen eines Texts zurück.

Beispiel 1.12:
Folgender Code berechnet die Länge aller Namen:

SELECT name, LENGTH(name)
FROM users

EDIT Aufgabe 1.24

• Lösen Sie Aufgaben 1–6 unter diesem folgendem Link (keine Abgabe notwendig / mög-
lich)

• Geben Sie danach auf Moodle die „Übungen 2 (Aggregatsfunktionen)“ ab.

1.2.8 Gruppieren: GROUP BY

Um die Resultate einer Anfrage pro Untergruppen zu sehen, kann der Befehl GROUP BY verwendet
werden.

16

mailto:cyril.wendl@edu.zh.ch
https://sql-tutorial.de/home/uebungen.php?lektion=2


Datenbanken « Cyril Wendl, Informatik, 2026

Beispiel 1.13:
Folgender Code gibt die Anzahl Mitglieder pro Stadt aus:

SELECT city, COUNT(*) AS "Mitglieder pro Stadt"
FROM users
GROUP BY city

Zudem ist es möglich, Daten auch in Untergruppen zusammenzufassen.

Beispiel 1.14:
Folgender Code gibt die Anzahl männlicher und weiblicher Mitglieder pro Stadt aus:

SELECT city, gender, COUNT(*)
FROM users
GROUP by city, gender

1.2.9 Filtern nach Gruppieren: HAVING

Falls nach einem GROUP BY die Resultate noch weiter eingegrenzt werden sollen, muss statt WHERE
der Befehl HAVING verwendet werden. Der Befehl WHERE wird verwendet, um die ursprünglichen
Daten vor einem GROUP BY zu filtern, der Befehl HAVING wird verwendet, um die Resultate nach
einem GROUP BY zu filtern.

Trophy Aufgabe (Challenge) 1.25

Geben Sie die durchschnittliche Körpergrösse aller Mitglieder in jeder Stadt aus. Zeigen Sie
nur die Städte, in denen die Menschen im Durchschnitt zwischen 150 und 155 gross sind.

Trophy Aufgabe (Challenge) 1.26

Geben Sie die maximale Körpergrösse aus, gruppiert nach Stadt und Geschlecht, für alle
Städte, die mit dem Buchstaben ”B”beginnen

1.2.10 Erste / Letzte Zeilen: LIMIT

Mit dem Befehl LIMIT n kann das Resultat einer beliebigen SQL-Abfrage auf eine gewisse Anzahl
Zeilen beschränkt werden. Dies bedeutet, dass das Resultat nach den ersten n Zeilen abgeschnitten
wird. Der Befehl steht immer am Ende einer SQL-Abfrage.

Beobachten Sie das Resultat folgender Abfrage:

EDIT Aufgabe 1.27

Zeigen Sie nur 3 Mitglieder (nur deren Namen) an.

EDIT Aufgabe 1.28

Geben Sie die drei Städte mit den meisten Mitgliedern an.

17

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.29

Zeigen Sie die Namen und Körpergrösse der 5 grössten Mitglieder an.

Trophy Aufgabe (Challenge) 1.30

Geben Sie die Stadtnamen aus, wo die meisten Mitglieder mit einem „b“ im Namen wohnen
(nur die ersten drei Zeilen).

Tipps:

• Berechnen Sie zuerst mit einem GROUP BY-Befehl die Anzahl Einwohner pro Stadt
• Beschränken Sie danach Ihre Abfrage mit dem WHERE-Befehl auf Benutzer, die ein „b“

im Namen haben
• Sortieren Sie dann nach der Anzahl Mitglieder
• Verwenden Sie den LIMIT-Befehl erst am Schluss

EDIT Aufgabe 1.31

• Lösen Sie Aufgaben 1–5 unter diesem Link.
• Geben Sie danach auf Moodle „Übungen 3 (GROUP BY)“ ab.

1.2.11 Verzweigungen: CASE WHEN

Der SQL-Befehl CASE WHEN kann helfen, Ausdrücke basierend auf Bedingungen zu schreiben, also
ähnlich wie if-elif-else-Verzweigungen in Python.

Beispiel 1.15:
Die durchschnittliche Körpergrösse in Deutschland beträgt 179 cm für Männer. Folgender
Code berechnet für alle Männer, ob sie grösser, kleiner oder gleich dem Durchschnitt sind,
und gibt das Resultat in einer neuen Kolonne aus.

SELECT name, centimeters,
CASE

WHEN centimeters > 179 THEN 'Gross'
WHEN centimeters < 179 THEN 'Klein'
ELSE 'Genau im Durchschnitt'

END AS Durchschnittlich
FROM users
WHERE gender="male"

EDIT Aufgabe 1.32

Berechnen Sie eine neue Kolonne, die den Text „langer Name“ enthält, falls ein Name länger
als 20 Zeichen lang ist, und ansonsten „kurzer Name“. BenutzerInnen mit langem Namen
sollen zuoberst stehen. Zeigen Sie nur die ersten 5 Zeilen.

18

mailto:cyril.wendl@edu.zh.ch
https://sql-tutorial.de/home/uebungen.php?lektion=4


Datenbanken « Cyril Wendl, Informatik, 2026

1.2.12 Anwendung: Personalisierte Werbung auf InstaHub

Auf InstaHub können Werbungen an verschiedene User angepasst werden. Dafür sind auf InstaHub
noch einige weitere Tabellen angelegt, deren Entity-Relationship Model (ERM) in Abbildung 1.4
abgebildet ist.

ads users photosanalyticsn m

Abbildung 1.4: ERM für den Werbe-Teil von InstaHub

Mit der Tabelle analytics beginnt InstaHub das Verhalten der Besucher zu überwachen. Dabei
wird der Besuch von Photo-Detailansichten mit folgenden Werten dokumentiert:

Feld Beschreibung

id Primärschlüssel, fortlaufende Nummer
ip Die ersten drei Blöcke der IPv4-Adresse

device desktop, mobile, tablet oder bot
brand_family wird oft nur bei Smartphones mitgesendet, etwa Apple oder Samsung
brand_model wird oft nur bei Smartphones mitgesendet, etwa GALAXY S5

browser_family Broswer (Firefox, Chrome, Safari...)
browser_version Versionsnummer des Browsers
platform_family Betriebssystem (Windows, Mac, GNU/Linux, iOS, Android...)
platform_version Die Versionsnummer der Plattform

user_id Benutzer, der sich das Foto angesehen hat
photo_id Angesehenes Foto

created_at Zeitpunkt, als das Foto sich angesehen wurde
updated_at i.d.R. wie created_at , nur anders, wenn manuell geändert

Tabelle 1.5: Kolonnen der Tabelle analytics

Mit diesen Informationen, sowie weiteren Informationen (Hashtags, Geschlecht, Wohnort etc.) kann
InstaHub gezielt personalisierte Werbung schalten. Nach diesem Prinzip funktionieren auch andere
soziale Medien wie TikTok, Instagram oder Snapchat.

Exclamation-Triangle Achtung

Für die nachfolgenden Teile müssen Sie, sofern Sie Adblockers in Ihrem Browser verwenden,
diese deaktivieren (oder zumindest eine Ausnahme für InstaHub erstellen), da Ihnen die
Werbungen ansonsten nicht angezeigt werden.

19

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

Auf InstaHub können Werbeanzeigen mit SQL personalisiert werden. Dafür geht man zunächst auf
die Werbungs-Seite (siehe Abbildung 1.5)

Abbildung 1.5: Übersicht der existierenden Werbungs-Kampagnen

Von dort aus kann man auf eine Werbekampagne klicken, um mehr Details zu sehen. Die Detail-
Ansicht der ersten Kampagne ist abgebildet auf Abbildung 1.6.

Abbildung 1.6: Beispielkampagne

20

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

Als erstes sehen wir den (frei wählbaren) Kampagnen-Namen bergalm. Wir sehen auch dass die
Werbung vom Typ „banner“ ist, sie wird also bei Fotos angezeigt. Nebst weiteren Informationen
sehen wir insbesondere zuunterst die „SQL-Query“, also die SQL-Abfrage, mit der eine Werbung
personalisiert wird. Für diese Natur-Werbung haben wir folgende Abfrage:

SELECT CASE
WHEN description LIKE '%natur%'
OR description LIKE '%landschaft%'
OR description LIKE '%berg%' THEN true
ELSE false

END
FROM photos
WHERE id=$photo

Diese Abfrage wird nun auf der Webseite für jedes Foto ausgeführt, um zu sehen, ob die Werbung
zum Foto passt.

Wir sehen zuerst, dass die Kolonne description der Tabelle photos, also die Kolonne, die Hash-
tags speichert, auf Texte wie „Natur“, „Landschaft“ und „Berg“ abgesucht wird. Falls so ein Text
vorhanden ist in den Hashtags des Fotos, wird der Wert true zurückgegeben, und somit wird die
Werbung potentiell angezeigt, andernfalls wird der Wert false zurückgegeben. Auf der letzten Zeile
sehen wir eine Variable $photo, mit welcher jedes Foto der gesamten Webseite nach den genannten
Kriterien abgesucht werden kann.

EDIT Aufgabe 1.33

Verändern Sie den SQL-Befehl so, dass die Werbung auch für Fotos mit dem Hashtag „#Wasser“
angezeigt werden. Testen Sie danach, ob es geklappt hat, indem Sie Fotos mit diesem Hashtag
suchen. Sie können auf Ihrer Instahub-Webseite überprüfen, ob es geklappt hat:

[ihrefarbe].instahub.org/p/1517

Trophy Aufgabe (Challenge) 1.34

Erstellen Sie eine neue Werbekampagne (siehe Abbildung 1.5).

Trophy Aufgabe (Challenge) 1.35

Gemeinsam ein soziales Netzwerk verwalten
3er- bis 4er-Gruppen
ca. 25 min.

Um sich ein Konto auf einer Seite einer anderen Person zu erstellen:

• Bestimmen Sie jemanden als AdministratorIn und verwenden Sie nur die Webseite
dieser Person, also z.B. https://purpurrot21.instahub.org. Die anderen Personen
sind BenutzerInnen.

• BenutzerInnen: Gehen Sie auf die von der Administratorin erstellte Webseite (https://
namedesnetzwerks.instahub.org, wobei „namedesnetzwerks“ ersetzt werden muss)
und erstellen Sie ein neues Konto für sich.

21

mailto:cyril.wendl@edu.zh.ch
[ihrefarbe].instahub.org/p/1517
https://purpurrot21.instahub.org
https://namedesnetzwerks.instahub.org
https://namedesnetzwerks.instahub.org


Datenbanken « Cyril Wendl, Informatik, 2026

• AdministratorIn: Die neuen Accounts der BenutzerInnen muss dann von Ihnen als Ad-
ministratorIn aktiviert werden, indem Sie den User suchen, auf „Bearbeiten“ und dann
ganz unten auf „Account ist freigeschaltet“ klicken.

• AdministratorIn und BenutzerIn: Posten Sie nun falls Sie möchten Bilder in den sozialen
Netzwerken Ihrer Kollegen, vergeben Sie Likes, folgen Sie anderen und kommentieren
Sie fleissig in den anderen Netzwerken (max. 5 Minuten).

• Erstellen Sie nun personalisierte Werbungen für Ihre KlassenkameradInnen (siehe Ab-
bildung 1.5).

22

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

1.3 ERM
Ein Entity-Relationship Model (ERM) ist eine abstrakte Darstellung der Tabellen (Entities), die in
einer Datenbank angelegt sind, sowie der Beziehungen (Relationships) zwischen den Tabellen. Jede
Tabelle kann mehrere Kolonnen (=Attribute) haben.

Wenn man eine Datenbank erstellt, kann es nützlich sein, zuerst ein ERM aufzuzeichnen, um sich
zu überlegen, welche Tabellen es braucht.

Das ERM des sozialen Netzwerks InstaHub ist in Abbildung 1.7 abgebildet. Abbildung 1.8 zeigt die
Darstellung der Komponenten eines ERM in der sogenannten Chen-Notation.

usersfollows

owns

photos has tagscomments

likes
haspassword_resets

m
n

1 n

n mn m

n m
1

n

Abbildung 1.7: ERM von InstaHub

Entity

Attribute

Attribute

Relationshipn Entitym

AttributeTabellen (Entities) und Attribute

Beziehungen (Relationships)

Abbildung 1.8: ERM-Komponenten in der sogenannten Chen-Notation

Die entities, die meistens einer Tabelle entsprechen, werden als Rechtecke angegeben. Beziehungen
stellen „Verknüpfungen“ zwischen verschiedenen Tabellen dar und sind meist als Raute dargestellt.
Die Attribute werden typischerweise als Kreise angegeben. In Abbildung 1.7 sind die Attribute
einfachheitshalber nicht angegeben.

Die Zahlen über den Strichen bezeichnen die Kardinalität der Beziehungen: Mit der Kardinalität
wird ausgedrückt, wie viele Entitäten mit einer anderen Entität in Verbindung stehen können oder

23

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

müssen:

• Eins-zu-Eins (1:1): Dies wird normalerweise angezeigt, indem eine „1“ in der Nähe beider
Entitäten platziert wird, die durch eine Beziehung verbunden sind. Es bedeutet, dass eine
Instanz einer Entität mit genau einer Instanz einer anderen Entität assoziiert ist.

• Eins-zu-Viele (1:n): Dies wird dargestellt, indem eine „1“ in der Nähe der Entität auf der
’eins’-Seite der Beziehung und ein „n“ oder „m“ (für „many“=viele) in der Nähe der Entität
auf der „viele“-Seite der Beziehung platziert wird. Es zeigt an, dass eine Instanz der ersten
Entität mit null, einer oder mehreren Instanzen der zweiten Entität assoziiert sein kann, aber
eine Instanz der zweiten Entität nur mit einer Instanz der ersten Entität assoziiert sein kann.

• Viele-zu-Viele (m:n): Dies wird gezeigt, indem ein „m“ oder „n“ in der Nähe beider Entitä-
ten platziert wird. Es zeigt an, dass Instanzen der ersten Entität mit null, einer oder mehreren
Instanzen der zweiten Entität assoziiert sein können und umgekehrt.

Folgende Fakten können beispielsweise am ERM in Abbildung 1.7 abgelesen werden:

• Jeder user kann beliebig viele (oder 0) comments schreiben.
• Jeder user kann beliebig vielen (oder 0) anderen Usern followen und kann von beliebig vielen

(oder 0) andern usern gefollowt werden.
• Jedes Foto kann beliebig viele (oder 0) Tags haben. Jeder Tag kann auf n Fotos angewandt

werden.
• Jedes Fotos gehört genau zu einem Benutzerprofil (owns). Jedes Benutzerprofil kann beliebig

viele (oder 0) Fotos veröffentlichen.
• Jeder user kann sein Passwort beliebig viele male (oder 0 mal) zurückgesetzt haben. Jedes

des password_resets kann aber nur einen user betreffen.

EDIT Aufgabe 1.36

Eine Schule möchte ihre Datenbankstruktur neu organisieren, um Informationen über Lehrer,
Schüler und Klassen besser verwalten zu können. Die Schule hat entschieden, ein Entity-
Relationship-Modell (ERM) zu entwerfen, um die Beziehungen zwischen diesen Entitäten
klar darzustellen (siehe Abbildung 1.9). Was fällt Ihnen in diesem ERM auf? Stimmen die
Kardinalitäten?

Lehrer SchülerKlasseunterrichtet gehört zun 0:1 1m

Abbildung 1.9: ERM einer Schul-Datenbank

24

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.37

Ein Krankenhaus möchte seine Datenbankstruktur neu organisieren, um Informationen über
Ärzte, Patienten und Behandlungen effizienter zu verwalten. Das Krankenhaus hat sich ent-
schieden, ein Entity-Relationship-Modell (ERM) zu entwerfen, um die Beziehungen zwischen
diesen Entitäten klar darzustellen (siehe Abbildung 1.10).

Ärzte

Patienten

Behandlungenbehandelt

n

m

1

Abbildung 1.10: ERM eines Krankenhaus-Datenbanksystems

Bewerten Sie das dargestellte ERM. Sind die Kardinalitäten korrekt angegeben?

25

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

1.4 Informationen aus mehrere Tabellen kombinieren

1.4.1 Primärschlüssel

Wie in Unterabschnitt 1.1.3 diskutiert wurde, besitzen Tabellen häufig sogenannte Primärschlüssel
(en. primary keys). Tabelle 1.6 beispielsweise verwendet einen Primärschlüssel mID (blaue Kolonne,
hervorgehoben mit dem Symbol ).

mID Name ...

1 Müller ...
2 Schmidt ...
3 Kaufmann ...
... ... ...

Tabelle 1.6: Beispiel-Tabelle: „Angestellte“

Dieser dient in erster Linie dazu, einen Eintrag (in diesem Fall eine Person) eindeutig zu identifi-
zieren. Weshalb ist das nötig?

Zwei Hauptgründe seine angegeben:

• Eindeutigkeit: Es könnte sein, dass zwei Personen gleich heissen. In diesem Fall ist es hilf-
reich, eine eindeutige Identifikationsnummer (oder einen eindeutigen Text) zu haben, um
Information zu genau einer der beiden Personen abfragen zu können.

• Dauerhaftigkeit: Es könnte sein, dass eine Person den Namen wechselt. In diesem Fall möchte
man eine eindeutige Identifikationsnummer haben, damit die Informationen zu den Personen
wie etwa der Gehalt oder die Abteilung weiterhin eindeutig zur selben Person gehören (und
abgefragt werden können).

1.4.2 Fremdschlüssel

Nebst Primärschlüsseln können Tabellen auch sogenannte Fremdschlüssel (en. foreign keys) besitzen,
die sich auf Primärschlüssel von anderen Tabellen beziehen. Dies erlaubt, Informationen aus meh-
reren Tabellen zu kombinieren. Gegeben sei folgendes Beispiel mit je einer Tabellen zu Angestellten
und Abteilungen (Tabelle 1.7, Tabelle 1.8).

mID Name aID Key

1 Müller 31
2 Schmidt 32
3 Kaufmann 32
... ... ...

Tabelle 1.7: Tabelle „Angestellte“

aID Abteilung

31 Verkauf
32 Technik
33 Marketing
... ...

Tabelle 1.8: Tabelle „Abteilungen“

In diesem Beispiel hat die Tabelle „Angestellte“ nicht nur einen Primärschlüssel mID, sondern auch
einen Fremdschlüssel aID (hervorgehoben mit dem Symbol Key), der auf den Primärschlüssel mit
demselben Name der Tabelle „Abteilungen“ verweist. Angenommen wir möchten nun (mit SQL,
nicht mit manuellem Nachschauen) herausfinden, in welcher Abteilung die Person „Kaufmann“
arbeitet, wie lassen sich nun die Informationen aus beiden Tabellen kombinieren?

26

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

1.4.3 Tabellen verbinden mit oder ohne JOIN

Beispiel 1.16:
Eine erste Möglichkeit, Tabelle 1.7 mit Tabelle 1.8 zu verbinden, besteht darin, einfach beide
Tabellen „aufzurufen“:

SELECT *
FROM Angestellte, Abteilung

mID Name A
ng

es
te

llt
e.

aI
D

A
bt

ei
lu

ng
.a

ID

Abteilung

1 Müller 31 31 Verkauf
1 Müller 31 32 Technik
1 Müller 31 33 Marketing
1 Müller 31 ... ...
2 Schmidt 32 31 Verkauf
2 Schmidt 32 32 Technik
2 Schmidt 32 33 Marketing
2 Schmidt 32 ... ...
3 Kaufmann 31 ... ...
... ... ... ... ...

Wie wir sehen, wurden Informationen aus beiden Tabellen zusammengeführt, indem alle mög-
lichen Kombinationen beider Tabellen erstellt wurden. Die beiden gleichnamigen Kolonnen
erhalten zusätzlich einen Präfix (vorausgehender Text) mit dem Namen der Ursprungstabelle,
um diese voneinander abzugrenzen.

Beispiel 1.17:
Wir könnten nun die Auswahl einfach eingrenzen, indem wir zwei Filter einfügen:

SELECT *
FROM Angestellte, Abteilung
WHERE Angestellte.aID = Abteilung.aID
AND Name = "Kaufmann"

mID Name A
ng

es
te

llt
e.

aI
D

A
bt

ei
lu

ng
.a

ID

Abteilung

3 Kaufmann 32 32 Technik

27

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

Bemerkung 1.1:
Bisher haben wir immer auf Kolonnen von Tabellen zugegriffen, indem wir den Namen der
Kolonne geschrieben haben. Wenn wir mit mehreren Tabellen arbeiten, kann es aber pas-
sieren, dass Kolonnen denselben Namen haben. Es kann daher nötig sein, zusätzlich zum
Kolonnennamen den Namen der Tabelle anzugeben.

Die Tatsache, dass unsere Abfrage mehrere Kolonnen aID zurückgibt, mag etwas unschön sein. Dies
könnte umgangen werden, indem wir ein JOIN ... USING-Konstrukt verwenden.

Beispiel 1.18:
Folgender Befehl führt zu einer einzigen Kolonne aID im Endresultat:

SELECT *
FROM Angestellte JOIN Abteilung USING (aID)
WHERE Name = "Kaufmann"

Exclamation-Triangle Achtung

Die Klammer um aID muss gesetzt werden, damit der USING-Befehl funktioniert.

mID Name aID Abteilung

3 Kaufmann 32 Technik

Bemerkung 1.2:
Statt zwei Tabellen können auch drei oder mehr Tabellen nach den oben erklärten Prinzipien
miteinander verbunden werden. Folgendes Beispiel soll Ihnen eine Idee davon geben:

SELECT kolonne1, kolonne2, ...
FROM tabelle1
JOIN tabelle2 USING (kolonne_id1)
JOIN tabelle3 USING (kolonne_id2)
...

Bemerkung 1.3:
Nach einer Tabellenverbindung können Sie alles machen, was Sie sonst auch tun: filtern mit
WHERE, gruppieren mit GROUP BY, summieren mit SUM etc.

EDIT Aufgabe 1.38

Lösen Sie Aufgaben 1–10 unter folgendem Link:
https://sql-tutorial.de/home/uebungen.php?lektion=3.

1.5 JOIN-Typen
Häufig kann es nützlich sein, mehrere Tabellen auf unterschiedliche Arten miteinander zu verbinden,
um neue Einsichten in die Daten zu gewinnen. Verschiedene Tabellen-Verbindungen sind schematisch

28

mailto:cyril.wendl@edu.zh.ch
https://sql-tutorial.de/home/uebungen.php?lektion=3


Datenbanken « Cyril Wendl, Informatik, 2026

in Abbildung 1.11 abgebildet. Die Bedeutung dieser Abbildungen wird in den folgenden Abschnitten
erklärt.

(a) INNER JOIN (b) LEFT OUTER JOIN

(c) RIGHT OUTER JOIN (d) FULL OUTER JOIN

Abbildung 1.11: Venn-Diagramme unterschiedlicher SQL-Joins

1.5.1 INNER JOIN (=JOIN)

Die Syntax eines INNER JOIN-, oder auch einfach JOIN-Befehls sieht wie folgt aus:

SELECT kolonne1, kolonne2, ...
FROM tabelle1
INNER JOIN tabelle2
ON tabelle1.kolonne_id1 = tabelle2.kolonne_id2

Hier verbinden wir zwei Tabellen, indem wir zwei Kolonnen kolonne_id1 und kolonne_id2, die
derselben Information entsprechen (beispielsweise die user-ID), miteinander abgleichen. Beim INNER
JOIN werden nur die Zeilen aus tabelle1 retourniert, für die es einen entsprechenden Wert in
kolonne_id2 in tabelle2 gibt. Alle Werte in tabelle1 die mit keinem Wert in tabelle2 über-
schneiden, sowie umgekehrt, tauchen nicht im Resultat auf (siehe Abbildung 1.12).

Abbildung 1.12: (INNER) JOIN

Wichtig zu wissen ist zudem, dass kolonne1, kolonne2 usw. auf der ersten Zeile nun sowohl von
tabelle1 wie auch tabelle2 stammen können.

Beispiel 1.19:
Folgender Code gibt die ids aller user zurück, denen der user Mika Kaufmann folgt:

SELECT follows.following_id, follows.follower_id, users.name
FROM follows JOIN users

29

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

ON follows.follower_id = users.id
WHERE name="Mika Kaufmann"

Wie Sie sehen, kann es hilfreich sein, im SELECT-Ausdruck explizit die Tabelle zu nennen,
von welcher eine bestimmt Kolonne stammt.

Auch alle anderen SQL-Befehle wie beispielsweise GROUP BY können nach einem JOIN-Befehl ver-
wendet werden.

Beispiel 1.20:
Folgender Code gibt die Anzahl Fotos für alle Benutzer aus (und sortiert die Resultate ab-
steigend):

SELECT name, COUNT(*) AS "Anzahl Fotos"
FROM users
JOIN photos ON users.id = photos.user_id
GROUP BY user_id
ORDER BY `Anzahl Fotos` DESC

Exclamation-Triangle Achtung

Wie Sie in Beispiel 1.20 sehen, können Kolonnen jederzeit mit dem Befehl AS "Neuer Name"
umbenannt werden. Allerdings gilt es zu beachten, dass Abstände im Namen eher ungünstig
sind: Falls der Name später wiederverwendet wird, wie etwa in einem ORDER BY-Ausdruck,
müssen sogenannte backticks (`) vor und nach dem Namen gesetzt werden.

EDIT Aufgabe 1.39

Geben Sie die id aller Fotos in der Tabelle likes an, die der user Mika Kaufmann gelikt hat.

Trophy Aufgabe (Challenge) 1.40

Challenge: Erstellen Sie eine Liste, wo für jedes Hamburger Mitglied die Anzahl seiner Fotos
aufgeführt ist. Die Liste soll in absteigender Reihenfolge die Anzahl Fotos pro Mitglieder
auflisten.

EDIT Aufgabe 1.41

Es soll Werbung an alle Strandurlauber verschickt werden. Finden Sie alle Photos die den
Hashtag meer enthalten. Geben Sie den Namen, die Emailadresse, den Geburtstag und die
Stadt der zugehörigen Benutzer aus.

EDIT Aufgabe 1.42

Geben Sie die 5 User mit den meisten Followern aus.

30

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

Trophy Aufgabe (Challenge) 1.43

Finden Sie heraus, welche 5 Fotos am meisten Likes erhalten haben. Geben Sie den Benut-
zernamen und Namen der Ersteller der Fotos an, die id der Fotos sowie die Anzahl Likes.

1.5.2 LEFT JOIN (=LEFT OUTER JOIN)

Ein LEFT JOIN, oder LEFT OUTER JOIN unterscheidet sich von einem INNER JOIN dadurch, dass alle
Einträge der ersten Tabelle (nach dem SELECT-Befehl) in der neuen Tabelle erscheinen. Werte aus der
zweiten Tabelle, die nicht in der ersten sind, werden jedoch nicht angezeigt (siehe Abbildung 1.13).

Abbildung 1.13: LEFT (OUTER) JOIN

EDIT Aufgabe 1.44

Diejenigen BenutzerInnen, die noch keine Fotos hochgeladen habe, sollen per Email dazu auf-
gefordert werden, Fotos hochzuladen. Finden Sie alle users, die noch keine Fotos hochgeladen
haben. Geben Sie deren Name und Email-Adresse aus. Verwenden Sie statt WHERE den Befehl
HAVING.

1.5.3 RIGHT JOIN (=RIGHT OUTER JOIN)

Ein RIGHT JOIN funktioniert analog zu einem LEFT JOIN (siehe Abbildung 1.14).

Abbildung 1.14: RIGHT (OUTER) JOIN

1.5.4 FULL JOIN (=FULL OUTER JOIN)

Bei einem FULL (OUTER) JOIN werden alle Werte aus der ersten und der zweiten Tabelle angezeigt
(siehe Abbildung 1.15).

31

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

Abbildung 1.15: FULL (OUTER) JOIN

In InstaHub funktioniert der FULL (OUTER) JOIN nicht, weshalb es an dieser Stelle keine Übungen
hierzu gibt.

32

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

1.6 Daten bearbeiten mit SQL
Mit SQL kann man Daten nicht nur abfragen, sondern auch erstellen, verändern und löschen. Im
folgenden Schauen wir uns dafür nötigen Befehle an.

1.6.1 Eine neue Tabelle erstellen: CREATE TABLE

Eine neue Tabelle kann innerhalb einer Datenbank mit dem Befehl CREATE TABLE angelegt werden:

CREATE TABLE tabellenname(
kolonne1 eigenschaften1,
kolonne2 eigenschaften2,
...

)

Beispiel 1.21:
Die Tabelle users wurde mit folgendem Befehl erstellt:

CREATE TABLE users (
`id` int(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
`username` varchar(191) NOT NULL UNIQUE,
`email` varchar(191) NOT NULL UNIQUE,
`password` varchar(191) NOT NULL,
`name` varchar(191) NOT NULL,
`bio` varchar(191) DEFAULT NULL,
`gender` enum('male','female') DEFAULT NULL,
`birthday` datetime DEFAULT NULL,
`city` varchar(191) DEFAULT NULL,
`country` varchar(191) DEFAULT NULL,
`centimeters` int(11) DEFAULT NULL,
`avatar` varchar(191) NOT NULL DEFAULT 'avatar.png',
`role` enum('user','dba','teacher','admin') NOT NULL DEFAULT 'user',
`is_active` tinyint(1) NOT NULL DEFAULT 0,
`remember_token` varchar(100) DEFAULT NULL,
`created_at` timestamp NULL DEFAULT NULL,
`updated_at` timestamp NULL DEFAULT NULL

)

Nach dem Kolonnennamen folgt zuerst der Kolonnentyp, d.h., die Angabe, welche Art von Daten
in der Kolonne gespeichert werden. Einige der häufigsten Datentypen sind:

• INT(laenge) bezeichnet eine Ganzzahl, für die laenge bytes zur Verfügung stehen. Beispiels-
weise speichert die Kolonne centimeters eine Zahl von 0 bis 211, d.h. 2048.

• TINYINT(1) speichert den Wert 0 oder 1, wobei 0 typischerweise „falsch“ und 1 „wahr“ be-
deuten.

• DATETIME ist ein Datum mit einer Uhrzeit
• VARCHAR(laenge) bezeichnet eine Zeichenkette, d.h. ein Text, der mit maximal laenge vielen

Bit kodiert wird.
• TEXT bezeichnet eine Zeichenkette mit maximaler Länge von 65’535 bytes.
• ENUM('wert1', 'wert2',...) bezeichnet eine Auflistung (engl. enumeration) möglicher Wer-

te. Beispielsweise können nur „male“ und „female“ im Feld gender eingetragen werden.

33

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

Zudem können folgende Eingeschaften für Kolonnen angegeben werden:

• NOT NULL: Feld darf nicht leer sein. Falls kein DEFAULT-Wert angegeben wird, muss, der Wert
für diese Kolonne beim Erstellen eines neuen Benutzerkontos immer mitgeliefert werden.

• DEFAULT wert: Standard-Wert, falls nichts anderes angegeben wird. Das Attribut avatar
nimmt beispielsweise den Wert avatar.png an, falls kein anderes Bild hochgeladen wird.

• AUTO_INCREMENT: Zahl, die bei jedem neuen Eintrag automatisch immer um 1 grösser wird
• PRIMARY KEY: Primärschlüssel (siehe Tabelle 1.3).
• FOREIGN KEY (kolonneID) REFERENCES tabelle2(kolonneID2): Fremdschlüssel (siehe Ta-

belle 1.3).
• UNIQUE: Darf keine doppelten Werte enthalten
• UNSIGNED: Ohne Vorzeichen (+-), also nur positive Zahlen

Exclamation-Triangle Achtung

Je nach SQL-Version muss ein Fremdschlüssel erst nach dem Erstellen einer Tabelle als
Fremdschlüssel deklariert werden. Dies kann mit dem Befehl ALTER TABLE gemacht werden.

Beispiel 1.22:
In folgendem Beispiel wird in Tabelle table2 das Attribut fID nachträglich als Fremd-
schlüssel deklariert, indem es auf das Attribut ID bei table1 zeigt.

CREATE TABLE table1 (
ID int(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
...

);

CREATE TABLE table2 (
`ID` int(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
`fID` int(10) UNSIGNED NOT NULL
...

);

ALTER TABLE table2
ADD FOREIGN KEY (fID) REFERENCES table1(ID)

Exclamation-Triangle Achtung

Auf InstaHub kann immer nur ein Befehl pro Mal ausgeführt werden, das „;“-Zeichen funk-
tioniert also leider nicht. Stattdessen müssen Sie in InstaHub jeden Befehl einzeln eingeben.

EDIT Aufgabe 1.45

Schreiben Sie die SQL-Befehle, um Tabelle 1.7 und Tabelle 1.8 zu erstellen. Sie müssen dabei
lediglich eine leere Tabelle mit den korrekten Kolonnen-Namen und Kolonnen-Typen (Zahl,
Text, etc.) erstellen, Daten müssen Sie noch keine einfügen.

34

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

1.6.2 Tabellen verändern: ALTER

Mit dem Befehl ALTER tabellenname können Tabellen und deren Attribute nachträglich, d.h. nach
der Erstellung der Tabelle, verändert werden.

Beispiel 1.23:
Um eine weitere Kolonne hinzuzufügen, kann folgender Befehl verwendet werden:

ALTER TABLE tabellenname
ADD neue_kolonne eigenschaften

Beispiel 1.24:
Um eine Kolonne umzubenennen, kann folgender Befehl verwendet werden:

ALTER TABLE tabellenname
RENAME COLUMN alter_name TO neuer_name;

Exclamation-Triangle Achtung

Beim Umbenennen einer Kolonne können Datenbankschemen (z.B. Fremschlüssel-Referenzen)
zerstört werden, z.B. falls ein Primärschlüssel umbenannt wird, welcher von einer anderen
Tabelle per Fremschlüssel referenziert wird (siehe Unterabschnitt 1.6.1).

1.6.3 Tabellen löschen: DROP TABLE

Mit dem Befehl DROP TABLE tabellenname kann eine Tabelle komplett löschen.

Exclamation-Triangle Achtung

Dieser Schritt ist irreversibel. Falls Sie eine Tabelle irrtümlich löschen, geben Sie mir Bescheid,
damit ich Ihre Datenbank zurücksetzen kann.

EDIT Aufgabe 1.46

Erstellen Sie auf InstaHub eine Tabelle users2 mit denselben Eigenschaften wie users (siehe
Beispiel 1.21)

EDIT Aufgabe 1.47

Löschen Sie danach die Tabelle users2 wieder.

1.6.4 Daten einfügen: INSERT INTO

Mit INSERT INTO können neue Zeilen in eine bestehende Tabelle eingefügt werden.

Die Syntax von INSERT INTO sieht wie folgt aus:

INSERT INTO tabelle_name (kolonne1, kolonne2, kolonne3, ...)
VALUES (wert1, wert2, wert3, ...)

35

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

Beispiel 1.25:
Folgender Code fügt eine neue Person in die Tabelle users ein:

INSERT INTO users (username, email, password, name, bio, gender, birthday,
city, country, centimeters, avatar, role, is_active, remember_token,
created_at, updated_at)

VALUES ('guenther37', 'guenther@instahub.test', '12345', 'Günther Müller', '
Günther mag Kartoffelsalat.', 'male', '2006-06-06 00:00:00', 'Leipzig', '
Deutschland', '173', 'avatar.png', 'user', '0', NULL, now(), now())

Wie Sie sehen, wird zuerst die Tabelle (users) aufgelistet, danach die Kolonnen und schliess-
lich die Werte.

EDIT Aufgabe 1.48

Für welche Kolonnen müssen für einen neuen Benutzer immer die Werte mitgegeben werden?
S. die Erklärungen zu NOT NULL und DEFAULT in Unterabschnitt 1.6.1.

EDIT Aufgabe 1.49

Erstellen Sie einen neuen Eintrag in der Tabelle users mit folgenden Eigenschaften:

Kolonne Wert

id 300
username testuser
email test@test.com

password test123
name Test-Vorname Test-Nachname
role user

is_active 1

Überprüfen Sie danach, ob der Eintrag korrekt erstellt worden ist, indem Sie die Daten des
users testuser abfragen (alle Attribute).

1.6.5 Daten verändern: UPDATE

Mit UPDATE können Werte einer Tabelle aktualisiert werden. Die Syntax von UPDATE sieht wie folgt
aus:

UPDATE tabelle_name
SET kolonne1 = wert1, kolonne2=wert2, ...
WHERE bedingung(en)

EDIT Aufgabe 1.50

Ersetzen Sie die Stadt „Berlin“ überall durch „Bern“

36

mailto:cyril.wendl@edu.zh.ch


Datenbanken « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.51

Setzen Sie die Körpergrössen aller männlichen Mitglieder auf 190. Überprüfen Sie danach die
Richtigkeit Ihres Befehls, die Kolonnen für die Körpergrösse, das Geschlecht und den Name
aller männlichen Mitglieder abfragen.

1.6.6 Einträge löschen: DELETE FROM

Mit dem Befehl DELETE FROM können Einträge aus einer Tabelle gelöscht werden.

DELETE FROM tabellenname
WHERE bedingungen

Beispiel 1.26:
Folgender Code löscht den Eintrag für user guenther37:

DELETE FROM users
WHERE username="guenther37"

EDIT Aufgabe 1.52

Löschen Sie den Eintrag, den Sie in Aufgabe 1.49 erstellt haben. Überprüfen Sie, ob der
Eintrag verschwunden ist, indem Sie danach SELECT * FROM users ausführen.

1.7 Weiterführende Links und Übungen
Folgende Links dienen der Vertiefung in das Thema SQL (und der Prüfungsvorbereitung).

Allgemein zu Datenbanken:

• https://oinf.ch/kurs/vernetzung-und-systeme/datenbanken/
• https://wi-wissen.github.io/instahub-doc-de/#/exercices

Zu SQL:

• https://www.w3schools.com/sql/default.asp (auf Englisch)
• https://sql-island.informatik.uni-kl.de
• https://sql-tutorial.de/home/lektionen.php?lektion=1. Hier wird unter anderem fol-

gende Datenbank verwendet:

cianame

region flaeche einwohner

bip

37

mailto:cyril.wendl@edu.zh.ch
https://oinf.ch/kurs/vernetzung-und-systeme/datenbanken/
https://wi-wissen.github.io/instahub-doc-de/#/exercices
https://www.w3schools.com/sql/default.asp
https://sql-island.informatik.uni-kl.de
https://sql-tutorial.de/home/lektionen.php?lektion=1


Datenbanken « Cyril Wendl, Informatik, 2026

Lernziele: SQL
� Ich kann zwischen Bits und Bytes unterscheiden und kenne die Bedeutungen von gängigen

Grösseneinheiten (Kilo-, Mega-, Giga-, Tera- und Petabyte).
� Ich weiss betreffend eine Tabelle, was eine Attribut und was eine Zeile ist.
� Ich kann einfache SQL-Abfragen formulieren mit Befehlen wie SELECT, WHERE, ORDER BY,

LIMIT und weiteren Befehlen (siehe Cheatsheet für vollständige Liste aller zu lernenden SQL-
Befehle).

� Ich kann Aggregatsfunktionen wie SUM, MIN, MAX, COUNT oder LENGTH auf einzelne Kolonnen
anwenden und kenne deren Bedeutung.

� Ich kann die oben erwähnten SQL-Begriffe gruppenweise anwenden, indem ich sie mit dem
Befehl GROUP BY kombiniere.

� Ich kann den Unterschied zwischen einem Primär- und einem Fremdschlüssel benennen und
erklären.

� Ich kann anhand einer Übersicht von Tabellen in einer Datenbank erkennen, welche Attribute
Primär- und welche Sekundärschlüssel sind.

� Ich kann Informationen aus mehreren Tabellen kombinieren, indem ich den JOIN-Befehl ver-
wenden.

� Ich kann Tabellenverbindungen sowohl mit dem Befehl ON wie USING erstellen und verstehe,
welcher Begriff in welchen Situationen besser geeignet ist.

� Ich kann aus kombinierten Tabellen neue Informationen gewinnen, indem ich die bereits er-
wähnten SQL-Codewörter wie z.B. GROUP BY in Kombination mit einem einem JOIN verwende.

� Ich kann Tabellen erstellen, löschen und verändern, indem ich (unter anderem) die Befehle
CREATE TABLE, DROP TABLE und ALTER TABLE verwenden.

� Ich kann Einträge (Zeilen) in einer existierenden Tabelle hinzufügen, verändern oder löschen,
indem ich die Befehle INSERT INTO, UPDATE und DELETE FROM verwende.

38

mailto:cyril.wendl@edu.zh.ch


Cheatsheet
Folgendes Cheatsheet ist basiert auf der Daten-
bank der Social-Media-Plattform InstaHub. In
den ersten Befehlen wird insbesondere die Tabelle
users verwendet. Die Tabelle enthält unter ande-
rem folgende Informationen:

id username name birthday city centimeters

1 niclas258 Niclas
Schwei-
zer

2001-01-31 Wremen 182

2 rafael54 Rafael
Probst

2004-08-06 Leipzig 187

3 luis52 Luis
Krüger

2004-12-15 Lautertal 173

· · · · · · · · · · · · · · · · · ·

Daneben enthält die Tabelle noch viele weitere
Spalten mit Informationen zum Land, Geschlecht
usw.

Spalten auswählen: SELECT

Auswahl aller Spalten der Tabelle:

SELECT *
FROM users

Auswahl der Spalten city und gender der
Tabelle users:

SELECT city, gender
FROM users

Duplikate löschen: DISTINCT

Mit dem Zusatz DISTINCT werden Dupli-
kate aus den Resultaten gelöscht.

SELECT DISTINCT gender
FROM users

Sortieren: ORDER BY

Mit dem Befehl ORDER BY können Resul-
tate sortiert werden, nach einer oder meh-
reren Spalten. Mit folgendem Befehl er-
halten wir die Namen aller Users, sortiert
nach Stadt und nach Region:

SELECT name, city
FROM users
ORDER BY city ASC, name ASC

• DESC = absteigend (descending)
• ASC = aufsteigend (ascending)

Erste / Letzte Zeilen: LIMIT

Mit dem Befehl LIMIT können eine Ta-
belle auf die ersten n Zeilen beschränkt
werden. Z.B. können die Namen der ers-
ten drei Personen der Tabelle users wie
folgt abgefragt werden:

SELECT name
FROM users
LIMIT 3

Zeilen Filtern: WHERE

Mit dem Befehl WHERE können die Resul-
tate einer Abfrage nach eigenen Kriterien
gefiltert werden:

SELECT name, city, gender
FROM users
WHERE gender='male'

Operatoren Bedeutung

= gleich (=)
<> ungleich ( 6=)
< kleiner als (<)
<= kleiner oder gleich (≤)
> grösser als (>)
>= grösser oder gleich (≥)

BETWEEN x AND y ein Wert zwischen x und y
IN (wert1, wert2, ...) einer von mehreren Werten

IS NULL Wert ist leer

Filter kombinieren: AND, OR

Mehrere Filter können mit AND („und“ →
beides muss wahr sein) oder OR („oder“ →
eine der beiden Bedingungen muss wahr
sein) verbunden werden.

Users aus Leipzig, Berlin oder Hamburg,
welche grösser als 170 sind:

SELECT name, city
FROM users
WHERE city IN ('Leipzig','Berlin',

'Hamburg')
AND centimeters > 170

Ungefähre Treffer: LIKE

Mit folgendem Befehl erhalten wir alle
Städte, die mit „Be...“ beginnen:

SELECT DISTINCT city
FROM users
WHERE city LIKE 'Be%'

Das Prozentzeichen (%) ist ein Platzhal-
ter und steht für „irgendetwas kommt
hier (oder nicht)“. In diesem Beispiel be-
deutet das, dass 0, 1, oder mehr Zeichen
auf das „Be...“ folgen können.

Aggregatsfunktionen

Mit Aggregatsfunktionen werden Daten
zusammengefasst, beispielsweise um die
Anzahl Zeilen (COUNT(*)), die Anzahl
nicht leerer Zellen in einer Spalte (COUNT
(spalte)) oder die Anzahl unterschied-
licher Werte in einer Spalte (COUNT(
DISTINCT spalte)) zu zählen oder um
das Maximum, das Minimum, die Sum-
me oder den Mittelwert einer Spalte zu
berechnen (MAX(spalte) / MIN(spalte)
/ SUM(spalte) / AVG(spalte)). Z.B. be-
rechnet folgender Ausdruck die Anzahl
Users in Leipzig:

SELECT city, COUNT(*)
FROM users
WHERE city = 'Leipzig'

Rechnen und umbenennen: AS

Mit Spalten sowie Aggregatsfunktionen
kann man rechnen, beispielsweise um ein
Resultat durch eine andere Zahl zu divi-
dieren. Zudem können Spalten-Titel mit
dem Befehl AS umbenannt werden:

SELECT centimeters/100 AS 'Grösse
in Metern'

FROM users

Gruppieren: GROUP BY

Aggregatsfunktionen können auch pro
Gruppe verwendet werden, z.B. um die
Anzahl Mitglieder in jeder Stadt zu be-
rechnen:

SELECT city, COUNT(*) AS 'Users
pro Stadt'

FROM users
GROUP BY city

Filtern nach Gruppieren: HAVING

Mit HAVING können Resultate nach dem
Gruppieren gefiltert werden. WHERE filtert
vor dem Gruppieren und steht demnach
immer vor einem GROUP BY.

Durchschnittliche Körpergrösse aller
männlichen Mitglieder in jeder Stadt be-
rechnen, danach auf Städte beschränken,
in denen die Menschen durchschnittlich
zwischen 150 und 155 gross sind:

SELECT city, AVG(centimeters) AS '
Körpergrösse'

FROM users
WHERE gender = 'male'
GROUP BY city
HAVING `Körpergrösse` BETWEEN 150

AND 155

Texte werden immer innerhalb von Anführungs-
zeichen ('') geschrieben. Spaltennamen, welche
Spezialzeichen oder Abstände enthalten, werden
innerhalb von backticks (``) geschrieben.

https://wi-wissen.github.io/instahub-doc-de/


Tabellen erstellen: CREATE TABLE

Eine Tabelle meinetabelle kann wie
folgt erstellt werden:

CREATE TABLE meinetabelle(
name_spalte1 spaltentyp1,
name_spalte2 spaltentyp2,
... --etc.

)

Gängige Spalten-Typen sind:

INTEGER Ganzzahl
Z.B. 35

REAL Kommazahl
Z.B. 3.341

DATE Datum
Format: 'YYYY-MM-DD'

BOOLEAN Wahrheitswert
Wahr (1) oder Falsch (0)

VARCHAR(n) Text
n = maximale Länge

Tabellen ändern: ALTER

Mit dem Befehl ALTER tabellenname
können Tabellen verändert werden, bei-
spielsweise um eine Spalte hinzuzufügen
oder umzubenennen.

ALTER TABLE tabellenname
ADD neue_spalte eigenschaften

ALTER TABLE tabellenname
RENAME COLUMN name_vorher TO

name_neu;

Tabellen löschen: DROP TABLE

DROP TABLE tabellenname

Überprüfen, ob existiert: IF EXISTS

Wenn man eine Tabelle erstellen will, wel-
che es bereits gibt, kann eine Fehlermel-
dung erscheinen. Folgender Befehl wird
nur ausgeführt, falls es noch keine Tabelle
testtabelle gibt:

CREATE TABLE IF NOT EXISTS
testtabelle(

name_spalte1 spaltentyp1,
name_spalte2 spaltentyp2,
... --etc.

)

Ähnlich kann vor man den Befehl DROP
TABLE anpassen, so dass er nur ausgeführt
wird, wenn es eine solche Tabelle wirklich
gibt:

DROP TABLE IF EXISTS testtabelle

Daten einfügen: INSERT INTO

Neue Einträge (Zeilen) können mit dem
Befehl INSERT INTO in eine Tabelle ein-
gefügt werden. Beispielsweise können mit
folgender Befehlsstruktur drei neue Zei-
len eingefügt werden:

INSERT INTO tabellenname
(spalte1, spalte2, ...)

VALUES
(wert1, wert2, ...),
(wert1, wert2, ...),
(wert1, wert2, ...)

Zuerst werden also die Spalten angege-
ben, für welche Werte eingefügt werden,
danach die Werte für jede neue Zeile.
Werte in nicht angegebenen Spalten blei-
ben leer.

Daten verändern: UPDATE

Existierende Daten können wie folgt ge-
ändert werden:

UPDATE tabelle_name
SET spalte1 = wert1, ...
WHERE bedingung(en)

Beispielsweise können mit folgendem Be-
fehl alle Users, die zur Stadt Berlin gehö-
ren, der Stadt Bern zugeordnet werden:

UPDATE users
SET city='Bern'
WHERE city='Berlin'

Einträge löschen: DELETE FROM

Einzelne Einträge (Zeilen) können mit
einer WHERE-Bedingung und dem Befehl
DELETE FROM gelöscht werden:

DELETE FROM users
WHERE username='guenther37'

Mehrere Tabellen verbinden: JOIN

Mehrere Tabellen können mit folgendem
Befehl zu einer Tabelle verbunden wer-
den:

SELECT t1.spalte_x, t2.spalte_y,
...

FROM tabelle1 AS t1
JOIN tabelle2 AS t2
ON t1.spalte_id1 = t2.spalte_id2

Falls Primär- und Fremdschlüssel in bei-
den Tabellen gleich heissen, kann man
USING verwenden:

SELECT *
FROM tabelle1
JOIN tabelle2 USING (spalte_id)

Unterabfragen (Subqueries)

Unterabfragen (en. subqueries) können
wie folgt geschrieben werden:

SELECT spalte11
FROM tabelle1
WHERE spaltenname IN

(SELECT spalte2 FROM tabelle2
WHERE ...);

Dabei können alle bekannten Vergleichs-
operatoren wie =, IN, >, <, usw. verwendet
werden.

Mehrere Ausdrücke verbinden

Mehrere SQL-Ausdrücke können mit Se-
mikolon (;) verbunden werden:

-- Tabelle erstellen, danach
wieder löschen

CREATE TABLE IF NOT EXISTS
testtabelle(

name_spalte1 spaltentyp1,
name_spalte2 spaltentyp2,
... --etc.

);
DROP TABLE IF EXISTS testtabelle

Kommentare

Kommentare werden von SQL ignoriert
und dienen der besseren Leserlichkeit des
Codes. Kommentare werden durch zwei
Bindestriche gekennzeichnet (siehe Box
zu „Mehrere Ausdrücke verbinden“)

Weitere Befehle & Feedback

Weitere SQL-Befehle und Erklärungen
finden Sie unter w3schools.com.

Verbesserungsvorschläge können gerne an
Cyril Wendl geschickt werden.

https://www.w3schools.com/sql/default.asp
mailto:cyril.wendl@edu.zh.ch


Glossar

ERM Entity-Relationship Model. 19, 23, 24

SQL Structured Query Language. 6, 8, 10–14, 17, 20, 33, 37, 40

41


	Daten & SQL
	Einführung
	Was sind Daten?
	Datenmengen
	Tabellen

	Einzelne Tabellen abfragen mit SQL
	Syntax
	Einfache Selektion: SELECT
	Selektion mit Filter: WHERE
	Eindeutige Selektion: SELECT DISTINCT
	Ungefähre Treffer: LIKE
	Sortieren: ORDER BY
	Aggregatsfunktionen
	COUNT
	MAX, MIN
	SUM
	AVG
	LENGTH

	Gruppieren: GROUP BY
	Filtern nach Gruppieren: HAVING
	Erste / Letzte Zeilen: LIMIT
	Verzweigungen: CASE WHEN
	Anwendung: Personalisierte Werbung auf InstaHub

	ERM
	Informationen aus mehrere Tabellen kombinieren
	Primärschlüssel
	Fremdschlüssel
	Tabellen verbinden mit oder ohne JOIN

	JOIN-Typen
	INNER JOIN (=JOIN)
	LEFT JOIN (=LEFT OUTER JOIN)
	RIGHT JOIN (=RIGHT OUTER JOIN)
	FULL JOIN (=FULL OUTER JOIN)

	Daten bearbeiten mit SQL
	Eine neue Tabelle erstellen: CREATE TABLE
	Tabellen verändern: ALTER
	Tabellen löschen: DROP TABLE
	Daten einfügen: INSERT INTO
	Daten verändern: UPDATE
	Einträge löschen: DELETE FROM

	Weiterführende Links und Übungen


