
Informatik

Datenintegrität
Skript

Cyril Wendl

« Winterthur, 14. Januar 2026

mailto:cyril.wendl@edu.zh.ch
mailto:

Inhaltsverzeichnis

1 Datenintegrität 2
1.1 Einführung . 2
1.2 Prüfbits . 2
1.3 Fehler erkennen und korrigieren . 8
1.4 Selbstkorrigierende Codes . 13
1.5 Effiziente Codes . 20
1.6 Der XOR-Operator . 24
1.7 RAID . 27

1.7.1 RAID 0: Striping . 27
1.7.2 RAID 1: Mirroring . 28
1.7.3 RAID 4: Paritätsbits . 29
1.7.4 RAID 5: Verteilte Paritätsbits . 29
1.7.5 RAID 6: Zwei Paritätsbits . 31

A Lernziele 34

1

Kapitel 1

Datenintegrität

1.1 Einführung
Stellen Sie sich vor, Sie feiern Ihren 18. Geburtstag und wollen ihren besten Freunden einige Fotos
aus ihrer Kindheit zeigen. Die Fotos sind aber leider alle verpixelt und können nicht richtig angezeigt
werden! Oder stellen Sie sich vor, sie wollen in einigen Jahren Bilder von ihrem Date anschauen,
die Bilder auf ihrer Festplatte sind jedoch unleserlich. Bad luck? Fast genau dies ist dem Profi-
Fotografen Tony Northrup geschehen, als er den 18. Geburtstag seiner Tochter mit Fotos aus deren
Kindheit feiern wollte: Video.

Bei der Übertragung von Bits über das Internet können einzelne Bits spontan verändert oder gelöscht
werden – dies kann fatale Folgen haben! Bei spontaner Änderung von einem 1 zu einem 0 (oder
umgekehrt) spricht man von sogenanntem bit rot.

Dies ist ein klassisches Beispiel für einen Fehler, der bei der Übertragung von Daten auftreten kann.
Mit dem Begriff „Datenintegrität“ bezeichnen wir die Korrektheit und Vollständigkeit von Daten.
Datenintegrität ist ein wichtiges Thema in der Informatik, da es darum geht, sicherzustellen, dass
Daten während ihrer Speicherung und Übertragung nicht verändert oder beschädigt werden.

1.2 Prüfbits
Buchstaben können auf unterschiedliche Weise kodiert sein – bei American Standard Code for
Information Interchange (ASCII) werden beispielsweise sieben Bits pro Zeichen verwendet:

Buchstabe Kodierung

A 010000001

B 010000010

C 010000011

· · · · · ·

Bei der Datenübertragung können aber einzelne Bits spontan von einem 1 zu einem 0 werden (oder
umgekehrt). Was könnte getan werden, um dieser Gefahr vorzubeugen?

Ein erster, einfacher Ansatz bestünde darin, jedem Code noch ein weiteres Bit anzuhängen, so dass
die Summe der Bits immer gerade ist:

2

https://www.youtube.com/watch?v=xvbnhCDfREk

Datenintegrität « Cyril Wendl, Informatik, 2026

Buchstabe Kodierung

A 0100000010

B 0100000100

C 0100000111

· · · · · ·

Wenn sich ein Bit nun spontan verändert, wird der Code als fehlerhaft erkannt, da die Summe der
Bits, welche den Wert 1 haben, nicht mehr gerade ist. Ein Computer könnte nun also anfordern,
dass der Code nochmals geschickt wird.

Die Idee von Prüfziffern ist, dass jede Prüfziffer nach dem gleichen Prinzip berechnet ist. Stimmt
bei einem erhaltenen Code die Formel mit der Prüfziffer nicht überein, wird der Code als fehlerhaft
erkannt.

EDIT Aufgabe 1.1

Folgende Prüfziffern sind alle nach der gleichen Regel berechnet. Können Sie die Regel erken-
nen?

• 316
• 12980
• 33335742
• 28
• 109

Was wäre die Kontrollziffer für die Zahl 4163?

Check Lösungsvorschlag zu Aufgabe 1.1

3 + 1 + 6 = 10

1 + 2 + 9 + 8 + 0 = 20

3 + 3 + 3 + 3 + 5 + 7 + 4 + 2 = 30

etc. Für die Zahl 4163: 41636

Mit einem European Article Number (EAN) wird ein Standard für die Kodierung von Waren ent-
wickelt. Fast alle käuflich erhältlichen Waren auf dem Markt enthalten einen solchen Code, welcher
aus 13 Ziffern besteht. Häufig wird er in Form eines Strichcodes dargestellt, wobei zwei Striche eine
Ziffer darstellen, sowie 2 mal 2 Striche, die den Rand angeben (siehe Abbildung 1.1).

3

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Abbildung 1.1: Bestandteile eines EAN

Ein EAN besteht aus 12 Ziffern und einer Prüfziffer:

x1x2x3x4x5x6x7x8x9x10x11x12x13 (1.1)

Das Scannen eines falschen Codes könnte zu falschen Preisen an der Kasse führen, weshalb EAN
ebenfalls eine Prüfziffer enthalten, die sich wie folgt berechnet:

1. s = x1 + x3 + x5 + x7 + x9 + x11 + 3 × (x2 + x4 + x6 + x8 + x10 + x12)
2. Anschliessend wird x13 so gewählt, dass s + x13 durch 10 teilbar ist.

EDIT Aufgabe 1.2

Welche folgender Fehler werden durch einen EAN erkannt?

• Vertippen (eine Ziffer ist falsch)
• Vertauschen zweier benachbarter Ziffern
• Auslassen (eine Ziffer wird vergessen)
• 2 mal Vertippen → 2 Ziffern werden falsch getippt

EDIT Aufgabe 1.3

Berechnen Sie für 978314221213 die EAN-13-Prüfziffer.

Check Lösungsvorschlag zu Aufgabe 1.3

5

4

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.4

Bestimmen Sie für den folgenden EAN-Code alle Paare von benachbarten Ziffern, deren
Austausch in der Reihenfolge nicht erkannt werden kann:

403
3
053

6
865

9
746

12
5

Check Lösungsvorschlag zu Aufgabe 1.4

Damit ein Austausch zweier benachbarter Ziffern nicht entdeckt würde, müsste sich
die Summe s um ein Vielfaches von 10 (oder 0) ändern. Dies wäre beispielsweise der
Fall, wenn die zwei Ziffern 3 und 8 (Positionen 6 und 7) vertauscht würden.

Der Beitrag der Ziffern zu s im ursprünglichen und im abgeänderten Code sind in
folgender Tabelle aufgelistet:

Position Ziffer Gewichtung
(siehe Glei-
chung (1.1))

Beitrag zu s

6 3 3 9
7 8 1 8

⇓

Position Ziffer
(vertauscht)

Gewichtung
(siehe Glei-
chung (1.1))

Beitrag zu s

6 8 3 24
7 3 1 3

Die Summe s ändert sich also um:

(24 + 3) − (9 + 8) = 27 − 17 = +10

Da sich s um ein Vielfaches von 10 verändert, bleibt die Prüfziffer gleich, und der
Fehler wird nicht entdeckt.

Dasselbe würde auch mit Positionen 5 und 6 funktionieren.

5

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Trophy Aufgabe (Challenge) 1.5

Begründen Sie allgemein, für welche Arten von Ziffern ein Vertauschen zweier benach-
barten Ziffern in einer EAN-Prüfziffer nicht entdeckt wird.

Check Lösungsvorschlag zu Aufgabe 1.5

Damit ein Austausch zweier benachbarter Ziffern nicht entdeckt wird, darf sich
die gewichtete Summe s nicht ändern, da die Prüfziffer x13 so gewählt ist, dass

s + x13 ≡ 0 mod 10

gilt.

Bezeichne die beiden benachbarten Ziffern mit a und b an den Positionen i und
i + 1. Die zugehörigen Gewichte im EAN-System sind alternierend 1 und 3, also
entweder (gi, gi+1) = (1, 3) oder (3, 1).

Der ursprüngliche Beitrag dieser beiden Ziffern zur Summe s ist:

salt = gi · a + gi+1 · b

Nach dem Vertauschen lautet der Beitrag:

sneu = gi · b + gi+1 · a

Die Änderung der Summe beträgt also:

∆s = sneu − salt = gi · b + gi+1 · a − (gi · a + gi+1 · b) = (gi − gi+1)(b − a)

Da gi und gi+1 abwechselnd 1 und 3 sind, ist gi − gi+1 ∈ {−2, +2}. Es ergibt
sich also:

∆s = ±2(b − a)

Diese Änderung bleibt genau dann unbemerkt, wenn ∆s ≡ 0 mod 10 ist, also:

±2(b − a) ≡ 0 mod 10 ⇔ b − a ≡ 0 mod 5

Es folgt:
|b − a| ∈ {0, 5}

Der Fall b = a ist trivial, da keine Vertauschung erfolgt. Für eine echte Vertau-
schung mit |b − a| = 5 wird der Fehler nicht erkannt.

Fazit: Ein Vertauschen zweier benachbarter Ziffern im EAN-Code bleibt genau
dann unentdeckt, wenn sich ihre Werte um 5 unterscheiden, also |b−a| = 5 gilt.

6

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.6

Nehmen wir an, dass an der vierten Position im Code aus Aufgabe 1.4 eine 8 statt der 0
getippt wurde. Finden Sie mindestens 5 Möglichkeiten, an anderen Stellen den Fehler so
zu machen, dass die fehlerhafte Darstellung einem EAN-Code entspricht und somit dieser
Doppelfehler unbemerkt bleibt.

Check Lösungsvorschlag zu Aufgabe 1.6

Die Ziffer an Position 4 wurde von 0 auf 8 geändert. Da Position 4 das Gewicht 3 hat,
verändert sich die Summe s um

(8 − 0) · 3 = −24

Damit der Doppelfehler unbemerkt bleibt, muss an einer anderen Stelle ein Fehler mit
dem Beitrag −24, −14, −4, +6, +16 etc. gemacht werden. In diesem Fall verändert
sich s um 0, +10, +20, +30 etc., sodass x13 gleich bleibt.

Dies könnte mit folgenden möglichen Änderungen erfolgen:

Position Gewicht Änderung Fehlerbeitrag Gesamt-Fehler

1 1 4 → 0 −4 24 − 4 = 20

2 3 0 → 2 +6 24 + 6 = 30

3 1 3 → 9 +6 24 + 6 = 30

9 1 5 → 1 −4 24 − 4 = 20

10 3 7 → 9 +6 24 + 6 = 30

In all diesen Fällen bleibt die Prüfziffer x13 unverändert, der Doppelfehler wird also
nicht erkannt.

EDIT Aufgabe 1.7

Die ursprünglichen International Standard Book Number (ISBN)-10-Codes zur eindeutigen
Bezeichnung von Büchern bestanden aus 9 Ziffern und einem Prüfsymbol aus den folgenden
Ziffern:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X}

wobei X die Zahl 10 repräsentierte. Für die neun Ziffern x1, x2, · · · , x9, hat man das Prüf-
symbol x10 wie folgt bestimmt:

10 × x1 + 9 × x2 + 8 × x3 · · · + 2 × x9 + x10

ist ein Vielfaches von 11. Falls x10 = 10 ist das Prüfsymbol X.

1. Bestimmen Sie für die folgenden Symbolfolgen, welche ISBN-10-Codes sind und welche
es nicht sind:

• 0201441241
• 270004302X
• 8090040489

7

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

• 010144124X
2. Die neunstellige Zahl eines Buches ist 354042278. Bestimmen Sie das Prüfsymbol des

ISBN-10-Codes des Buches.

Check Lösungsvorschlag zu Aufgabe 1.7

a) Prüfung der Symbolfolgen

Zur Erinnerung: Ein ISBN-10-Code ist gültig, wenn die gewichtete Summe

10x1 + 9x2 + 8x3 + · · · + 2x9 + x10 ≡ 0 mod 11

ist.

Aufgabe (a): Wenn wir diese Formel anwenden, finden wir heraus, dass alle ausser dem
zweiten Code gültige ISBN-Codes sind.

Aufgabe (b): 3∗10+5∗9+4∗8+0∗7+4∗6+2∗5+2∗4+7∗3+8∗2 = 186 → x10 = 1,
da 187 = 11 ∗ 17.

1.3 Fehler erkennen und korrigieren
Sie kennen Fehlererkennung bereits aus Ihrem Alltag: So beispielsweise bei der Rechtschreibprüfung
in Word, die Ihnen das korrekte Wort vorschlägt (siehe Abbildung 1.2)

Abbildung 1.2: Rechtschreibprüfung im Programm Microsoft Word

Beispiel 1.1:
Wie viele Tippfehler werden im Beispiel aus Abbildung 1.2 in jedem Fall erkannt?

Im gezeigten Beispiel wird ein Tippfehler noch erkannt. Es wird jedoch nicht jeder Tippfehler
garantiert erkannt: So könnte beispielsweise ein Tippfehler vom ursprünglich gemeinten Wort
„Fehler“ hin zu „Zehler“ nicht erkannt werden, da „Zehler“ sowohl einen Buchstaben Abstand
zum (korrekten, beabsichtigten) Wort „Fehler“ wie auch zum (nicht beabsichtigten, aber
korrekten) Wort „Zähler“ hat.

8

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Was können wir aus Beispiel 1.1 lernen? Damit ein Fehler automatisch korrigiert werden kann, muss
der Unterschied zwischen dem vertippten Wort und allen anderen möglichen Wörtern grösser sein
als der Abstand zum ursprünglichen Wort.

Im Folgenden unterscheiden wir zwischen k-fehlererkennenden sowie k-fehlerkorrigierenden
Kodierungen. Eine Kodierung heisst k-fehlererkennend, wenn das Umflippen von 1, 2, · · · bis
und mit k Bits in der Nachricht als Fehler erkannt wird. Falls bis zu k Fehler nicht nur erkannt
sondern auch behoben werden können, spricht man von k-fehlerkorrigierenden Kodierungen.

Beispiel 1.2:
Tabelle 1.1 zeigt, wie eine Nachricht so kodiert werden kann, dass Fehler erkannt werden:

• In Kodierung 1 handelt es sich schlicht und einfach um die ursprüngliche Nachricht.
• In Kodierung 2 wird die ursprüngliche Nachricht verdreifacht.
• In Kodierung 3 wird die ursprüngliche Nachricht verdoppelt, dazu kommt ein Pari-

tätsbit (unterstrichen) am Ende der Nachricht.

Kodierung1 Kodierung2 Kodierung3

Weiss 00 000000 00000

Gelb 01 010101 01011

Blau 10 101010 10101

Schwarz 11 111111 11110

Tabelle 1.1: Kodierungstabelle

Wie viele Fehler werden durch die unterschiedlichen Kodierungen bestimmt erkannt?

• In der ursprünglichen Kodierungen können Fehler nicht erkannt werden. Wird beispiels-
weise Weiss (00) fälschlicherweise als 01 versandt, geht der Empfänger davon aus, dass
Gelb gesandt wurde und erkennt keine Fehler.

• In der zweiten Kodierung werden zwei Fehler erkannt, da es zwei „Mutationen“ benötigt,
um zu einem anderen Code zu werden.

• Bei der dritten Kodierung verhält es sich ebenso wie bei der zweiten.

Kodierung2 und Kodierung3 sind also betreffend Fehlererkennung gleich gut, allerdings ist
Kodierung3 kürzer und daher zu bevorzugen.

Um zu bestimmen, wie viele Fehler eine bestimmte Kodierung erkennen kann, müssen wir uns die
Abstände zwischen allen möglichen Code-Wörtern anschauen.

Beispiel 1.3:
Angenommen, wir hätten drei Code-Wörter, ANNA, ENZO und HANS, dann könnten die Ab-
stände zwischen allen Code-Wörtern wie folgt bestimmt werden:

9

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

A N N A
E N Z O
x o x x

Abstand 3

A N N A
H A N S
x x o x

Abstand 3

E N Z O
H A N S
x x x x

Abstand 4

Tabelle 1.2: Abstände zwischen den Codewörtern ANNA, ENZO und HANS

Die „x“ bezeichnen Stellen, an denen sich die Buchstaben unterscheiden und die „o“ Stellen,
an denen die Buchstaben gleich sind. Der Abstand zwischen einem Wort-Paar ergibt sich aus
der Summe der „x“.

Der minimale Abstand in diesem Beispiel ist 3, daher könnten in dieser Kodierung bis zu 2
Fehler, bzw. „Mutationen“ erkannt werden. ANNA → ANZA würde als Fehler erkannt, ANNA →
ENZO jedoch nicht, da ENZO ein korrektes Code-Wort ist.

Binär funktioniert die Abstandsbestimmung genau gleich wie in Beispiel 1.3.

Beispiel 1.4:
Basierend auf Kodierung2 aus Tabelle 1.1 könnten die Abstände zwischen allen Code-Wörtern
wie folgt bestimmt werden:

0 0 0 0 0 0
0 1 0 1 0 1
o x o x o x

Abstand 3

0 0 0 0 0 0
1 0 1 0 1 0
x o x o x o

Abstand 3

0 0 0 0 0 0
1 1 1 1 1 1
x x x x x x

Abstand 6
0 1 0 1 0 1
1 0 1 0 1 0
x x x x x x

Abstand 6

0 1 0 1 0 1
1 1 1 1 1 1
x o x o x o

Abstand 3
1 0 1 0 1 0
1 1 1 1 1 1
o x o x o x

Abstand 3

Tabelle 1.3: Abstände zwischen allen Codewörtern der Kodierung2 aus Tabelle 1.1

Damit können auch in diesem Beispiel bis zu 2 Fehler erkannt werden.

10

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.8

Xavier schlägt vor, die Code-Wörter für die Farben aus Beispiel 1.2 anders zu konstruieren.
Man soll zu den Darstellungen (zwei Bits, z.B. 11) der Farben das Prüfbit anhängen (z.B.
110), sodass die Anzahl der Einsen gerade wird. Danach sollte man diese drei Bits in zwei
Kopien (z.B. 110110 für „Schwarz“) zu einem Code-Wort machen. Konstruieren Sie alle Code-
Wörter der Kodierung und bestimmen Sie, wie viele Fehler man damit erkennen kann.

Check Lösungsvorschlag zu Aufgabe 1.8

0 0 0 0 0 0
0 1 1 0 1 1
o x x o x x

Abstand 4

0 0 0 0 0 0
1 0 1 1 0 1
x o x x o x

Abstand 4

0 0 0 0 0 0
1 1 0 1 1 0
x x o x x o

Abstand 4
0 1 1 0 1 1
1 0 1 1 0 1
x x o x x o

Abstand 4

0 1 1 0 1 1
1 1 0 1 1 0
x o x x o x

Abstand 4
1 0 1 1 0 1
1 1 0 1 1 0
o x x o x x

Abstand 4

Tabelle 1.4: Abstände zwischen allen Codewörtern der Kodierung von Xavier

Da der Mindestabstand zwischen allen Kodewörtern 4 ist, können bis zu 3 Fehler
erkannt werden.

EDIT Aufgabe 1.9

Bestimmen Sie, wie viele Fehler jede der folgenden Kodierungen erkennen kann. Bestimmen
sie dazu als erstes den Mindest-Abstand innerhalb jeder Kodierung:

4-Kopien Xavier 1-Parity 0-Parity

Weiss 00000000 000000 000 001

Gelb 01010101 011011 011 010

Blau 10101010 101101 101 100

Schwarz 11111111 110110 110 111

Tabelle 1.5: Kodierungstabelle

11

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 1.9

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
o x o x o x o x

Abstand 4

0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
x o x o x o x o

Abstand 4

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
x x x x x x x x

Abstand 8
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
x x x x x x x x

Abstand 8

0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1
x o x o x o x o

Abstand 4
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1
o x o x o x o x

Abstand 4

Tabelle 1.6: Abstände zwischen allen Codewörtern der 4-Kopien-Kodierung

Check Lösungsvorschlag zu Aufgabe 1.9

Kodierung von Xavier: s. Lösungen zu Aufgabe 1.8.

Check Lösungsvorschlag zu Aufgabe 1.9

0 0 0
0 1 1
o x x

Abstand 2

0 0 0
1 0 1
x o x

Abstand 2

0 0 0
1 1 0
x x o

Abstand 2
0 1 1
1 0 1
x x o

Abstand 2

0 1 1
1 1 0
x o x

Abstand 2
1 0 1
1 1 0
o x x

Abstand 2

Tabelle 1.7: Abstände zwischen allen Codewörtern der 1-Parity-Kodierung

12

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 1.9

0 0 1
0 1 0
o x x

Abstand 2

0 0 1
1 0 0
x o x

Abstand 2

0 0 1
1 1 1
x x o

Abstand 2
0 1 0
1 0 0
x x o

Abstand 2

0 1 0
1 1 1
x o x

Abstand 2
1 0 0
1 1 1
o x x

Abstand 2

Tabelle 1.8: Abstände zwischen allen Codewörtern der 0-Parity-Kodierung

Check Lösungsvorschlag zu Aufgabe 1.9

Mindest-Abstände:

• 4-Kopien: 4
• Xavier: 4
• 1-Parity: 2
• 0-Parity: 2

Trophy Aufgabe (Challenge) 1.10

Finden Sie eine binäre Kodierung mit 3 Code-Wörtern der Länge 5 und Mindest-Abstand 3.

Trophy Aufgabe (Challenge) 1.11

Gibt es eine binäre Kodierung mit 3 Code-Wörtern der Länge 5 und Mindest-Abstand 3,
welche die Code-Wörter 00000 und 11111 beinhaltet?

1.4 Selbstkorrigierende Codes
Bisher haben wir gelernt, Kodierungen für gewisse Nachrichten zu finden, so dass ein gewisser Min-
destabstand gewährleistet wird. Durch einen Mindestabstand von 2 (Bits) zwischen jedem Nachrich-
tenpaar wird gewährleistet, dass ein Fehler bestimmt erkannt wird, da es zwei Fehler (ungewollte
Bit-Änderungen) bräuchte, damit aus einem gültigen Codewort ein anderes, gültiges Codewort wird.

Falls wir einen Mindestabstand von 3 haben, können wir einen Fehler sogar korrigieren: Bei einer
einzigen Änderung eines Bits wäre das resultierende Codewort dann immer noch näher an am
ursprünglichen Codewort als an allen anderen Codewörtern.

13

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.12

Finden Sie für die drei Nachrichten Rot, Blau und Grün eine Kodierung aus Bitfolgen der
Länge 5, die 1-fehlerkorrigierend ist.

Das bedeutet, wenn ein Fehler vorkommt, weiss man nicht nur, dass die Nachricht fehlerhaft
ist, sondern man kann das ursprüngliche Codewort aus der fehlerbehafteten Bitfolge eindeutig
rekonstruieren. Was können Sie über den Abstand einer solchen Kodierung sagen?

Farbe Kodierung

Rot 00000

Grün

Blau

14

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 1.12

Mehrere Lösungen sind möglich, zum Beispiel:

Farbe Kodierung

Rot 00000

Grün 00111

Blau 11100

Weshalb funktioniert die in diesem Beispiel dargestellte Kodierung, um einen Fehler
zu korrigieren?

Wir haben zwischen allen drei Kodierungen mindestens einen Abstand von 3:

0 0 0 0 0
0 0 0 1 1
o o x x x
Abstand 3

0 0 0 0 0
1 1 1 0 0
x x x o o
Abstand 3

0 0 1 1 1
1 1 1 0 0
x x 0 x x
Abstand 4

Tabelle 1.9: Abstände zwischen allen Codewörtern der vorgeschlagenen Kodierung

Angenommen, rot mutiert spontan zu folgendem Code:

0 0 0 0 0 → 0 0 0 1 0

Wir wissen, dass es sich bei 0 0 0 1 0 nicht um eine gültige Codefolge handelt. Die
Abstände zu den gültigen Codefolgen sind:

0 0 0 1 0
0 0 0 0 0
o o o x o

Rot: Abstand 1

0 0 0 1 0
0 0 1 1 1
o o x o x

Grün: Abstand 2

0 0 0 1 0
1 1 1 0 0
x x x x o

Blau: Abstand 4

Tabelle 1.10: Abstände des mutierten Codes zu allen gültigen Codewörtern

Es gibt nur ein Codewort, zu dem der Abstand am kürzesten ist: rot (Abstand 1).
Daher muss es sich beim ursprünglichen Code um das Wort „rot“ gehandelt haben
und wir können den Code somit automatisch korrigieren, sofern wir wissen, dass genau
ein Fehler passiert ist.

Trophy Aufgabe (Challenge) 1.13

Könnte man Aufgabe 1.12 auch mit nur 4 Bits lösen?

In Challenge 1.13 haben wir versucht, eine binäre Kodierung mit 4 Bits für 3 Nachrichten zu finden.
Um die Aufgabe einfacher zu lösen, können wir uns ein Hilfsmittel zunutze machen. Dabei zeichnen
wir alle möglichen Codes der Länge 4 auf und verbinden diejenigen Codes, welche Abstand 1 haben,

15

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

miteinander (siehe Abbildung 1.5). Wenn wir nun einen Fehler korrigieren wollen, brauchen wir
mindestens einen Abstand von 3 zwischen jedem benachbarten Bitpaar.

Definition 1.1:
Um die Anzahl möglicher 1-fehlerkorrigierender Codewörter für eine gewisse Code-Länge
herauszufinden, gehen wir wie folgt vor:

1. Wähle irgendein Codewort als erstes Codewort aus, z.B., 0000.
2. Streiche alle Code-Wörter, welche von allen bisher ausgewählten Codewörtern weniger

als Abstand 3 entfernt sind, also alle Codewörter mit Abstand 1 oder 2.
3. Wiederhole Schritte 1 und 2, bis alle Codewörter entweder ausgewählt oder durchge-

strichen sind.

Auf diese Weise erhalten wir eine maximale Anzahl an Codewörtern, die 1-fehlerkorrigierend
sind. Diese Methode funktioniert auch für andere Code-Längen, wie z.B. 3 (Abbildung 1.4)
oder 5 (Abbildung 1.6).

Soll der Code nur 1-fehlererkennend und nicht 1-fehlerkorrigierend sein, reicht es aus, in
Schritt 2 alle Codewörter mit Abstand 1 zu streichen.

Dieses Vorgehen funktioniert auch für andere Code-Längen, beispielsweise 2 (Abbildung 1.3),
3 (Abbildung 1.4) oder 5 (Abbildung 1.6).

00

01 10

11

Abbildung 1.3: 2D-Hyperwürfel

000

001 010

011

100

101 110

111

Abbildung 1.4: 3D-Hyperwürfel

16

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

0000

0001 0010

0011

0100

0101 0110

0111

1000

1001 1010

1011

1100

1101 1110

1111

Abbildung 1.5: 4D-Hyperwürfel

00000

00001 00010

00011

00100

00101 00110

00111

01000

01001 01010

01011

01100

01101 01110

01111

10000

10001 10010

10011

10100

10101 10110

10111

11000

11001 11010

11011

11100

11101 11110

11111

Abbildung 1.6: 5D-Hyperwürfel

EDIT Aufgabe 1.14

Man verwendet eine Kodierung mit folgenden 4 gültigen Code-Wörtern der Länge 5:

(A) 00000
(B) 00110
(C) 11001
(D) 11111

Folgende vier fehlerhafte Bitfolgen wurden empfangen. Bei welchen dieser vier Bitfolgen kann
man eindeutig den Fehler korrigieren, falls man sicher ist, dass in jeder Bitfolge genau ein
Fehler passiert ist?

1. 10000
2. 11101
3. 01111
4. 00100

Check Lösungsvorschlag zu Aufgabe 1.14

1. 10000 – ja: Abstand zu (A) kleiner als zu allen anderen gültigen Codewörtern
2. 11101 – nein: Abstand zu (C) und (D) gleich
3. 01111 – ja: Abstand zu (D) kleiner als zu allen anderen gültigen Codewörtern
4. 00100 – nein: Abstand zu (A) und (B) gleich

17

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.15

Zeichnen Sie alle 1-Fehler-erkennenden Kodierungen im unten stehenden Hyperwürfel ein,
ausgehend vom Code 011. Wie viele Code-Wörter können Sie finden?

000

001 010

011

100

101 110

111

Abbildung 1.7: 3D-Hyperwürfel

Check Lösungsvorschlag zu Aufgabe 1.15

000

001 010

011

100

101 110

111

Abbildung 1.8: 3D-Hyperwürfel

Vier gültige Codewörter: 011, 101, 000 und 110

EDIT Aufgabe 1.16

Zeichnen Sie alle 1-Fehler-korrigierenden Kodierungen im unten stehenden Hyperwürfel
ein, ausgehend vom Code 011.

000

001 010

011

100

101 110

111

Abbildung 1.9: 3D-Hyperwürfel

18

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 1.16

000

001 010

011

100

101 110

111

Abbildung 1.10: 3D-Hyperwürfel

Zwei gültige Codewörter: 011 und 100.

EDIT Aufgabe 1.17

Zeichnen Sie alle 1-Fehler-erkennenden Kodierungen im unten stehenden Hyperwürfel ein,
ausgehend vom Code 0000.

0000

0001 0010

0011

0100

0101 0110

0111

1000

1001 1010

1011

1100

1101 1110

1111

Abbildung 1.11: 4D-Hyperwürfel

Check Lösungsvorschlag zu Aufgabe 1.17

0000

0001 0010

0011

0100

0101 0110

0111

1000

1001 1010

1011

1100

1101 1110

1111

19

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.18

Zeichnen Sie alle 1-Fehler-korrigierenden Kodierungen im unten stehenden Hyperwürfel
ein, ausgehend vom Code 0000. Wie viele 1-Fehler-korrigierenden Codewörter gibt es?

0000

0001 0010

0011

0100

0101 0110

0111

1000

1001 1010

1011

1100

1101 1110

1111

Abbildung 1.12: 4D-Hyperwürfel

Check Lösungsvorschlag zu Aufgabe 1.18

Es gibt 2 Codewörter (unterschiedliche Lösungen möglich):

0000

0001 0010

0011

0100

0101 0110

0111

1000

1001 1010

1011

1100

1101 1110

1111

1.5 Effiziente Codes
Bisher haben wir primär eine Art kennengelernt, wie Fehler automatisch behoben werden können.
Allerdings haben wir uns bisher in allen Beispielen auf sehr wenige gültige Codewörter beschränkt.
Stellen Sie sich nur schon vor, Sie möchten alle Zeichen des Alphabets schicken. Die Suche nach
geeigneten Codewörtern würde schnell sehr lang und unübersichtlich, der entsprechende Hyperwürfel
könnte wohl kaum auf einem A4-Blatt dargestellt werden. Daher schauen wir uns in diesem Kapitel
einen anderen Ansatz an, welcher für beliebig lange Codes funktioniert. Dazu schauen wir uns zuerst
einen Zaubertrick an.

Dazu braucht es zwei Zauberer. Der erste Zauberer verlässt zu beginn des Spiels den Raum.

Der zweite Zauberer bittet eine beliebige Person, ein n · m-Feld von Spiel-Karten auf dem Tisch
auszulegen, so dass einige Karten mit dem Kopf nach oben zeigen und andere mit dem Kopf nach
unten (siehe Abbildung 1.13).

20

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Q

Q

10

10

A

A

A

A

J

J

J

J

5

5

3

3

5

5

J

J

Abbildung 1.13: Erster Schritt: Auslegen der Karten durch eine beliebige Person (n = m = 4)

Der zweite Zauberer (der immer noch im Raum ist) legt nun noch eine weitere Zeile (oben) und
eine weitere Spalte (rechts) dazu. Der Zauberer kann das Hinzufügen der neuen Zeilen und Spalten
beispielsweise damit begründen, dass dies „das Spiel noch etwas schwieriger machen soll“ (siehe
Abbildung 1.14).

8

8

J

J

Q

Q

10

10
A

A

A

A

J

J

8

8

J

J

5

5

3

3

4

4

5

5

J

J

Abbildung 1.14: Zweiter Schritt: Hinzufügen einer Reihe und einer Spalte durch den Hilfszauberer

Eine zuschauende Person darf nun genau eine Karte umdrehen (siehe Abbildung 1.15).

21

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

8

8

J

J

Q

Q

10

10

A

A

A

A

J

J

8

8

J

J

3

3

4

4

5

5

J

J

Abbildung 1.15: Dritter Schritt: Karten, nachdem jemand aus dem Publikum eine Karte umgedreht
hat

Der erste Zauberer, welcher bisher während dem ganzen Spiel ausserhalb des Raums war, betritt
nun wieder den Raum und errät, welche Karte umgedreht wurde.

Trophy Aufgabe (Challenge) 1.19

Können Sie erraten, welche Karte in Abbildung 1.15 umgedreht wurde, ohne die vorherigen
Bilder anzuschauen?

Um zu erraten, welche Karte umgedreht wurden, zählt der Zauberer nun, wie viele Karten mit dem
Kopf nach oben in jeder Zeile und Spalte liegen.

• Zeilen: 2, 2, 4, 3, 2
• Spalten: 2, 2, 3, 4, 2

Die umgedrehte Karte muss sich also genau auf der vierten Zeile und in der dritten Spalte befinden,
da nur dort eine ungerade Anzahl Karten mit dem Kopf nach oben ist!

Erklärung: Die helfende Person hat in Schritt 3 die Karten nicht ganz „zufällig“ hinzugefügt,
sondern sie so arrangiert, dass die Summe der Karten mit dem Kopf nach oben in jeder Zeile und
in jeder Spalte gerade war.

Definition 1.2 (Kartentrick):
In der Kartentrick-Kodierung werden Codewörter in eine Tabelle eingefügt, danach werden
für jede Spalte und jede Zeile Kontrollbits rechts, bzw. oben angefügt.

Nehmen wir an, wir wollen folgendes Wort verschicken:

0 1 0 1 0 1

Dieses Wort der Länge 6 liesse sich gut in eine 2 × 3-Tabelle eintragen:

0 1 0

1 0 1

Tabelle 1.11: Ursprüngliche Nachricht als Tabelle

22

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Nun fügen wir der Tabelle die Kontrollbits oben und rechts hinzu:

1 1 1 1

0 1 0 1

1 0 1 0

Tabelle 1.12: Ursprüngliche Nachricht + Kontrollbits

Die Kontrollbits sind so gewählt, dass jede Spalte und jede Zeile eine gerade Anzahl Einsen
enthält. Wenn nun ein Bit geflippt wird, gibt es genau eine Spalte und eine Zeile, in welcher die
Anzahl Einsen nicht gerade ist, somit können wir den Ort des abgefälschten Bits lokalisieren
und den Fehler automatisch beheben.

Um das neue Codewort (mit Kontrollbits) zu bilden, wird wie folgt vorgegangen: Fügen Sie
dem ursprünglichen Code-Wort zuerst die erste Zeile, und danach die letzte Spalte ohne erstes
Bit an.

EDIT Aufgabe 1.20

Wir haben 212 = 4096 Nachrichten der Länge 12 Bits. Nutzen Sie den Kartentrick, um Code-
Wörter für die folgenden Nachrichten zu generieren:

1. 010111101010
2. 000000000000
3. 111100101100

Check Lösungsvorschlag zu Aufgabe 1.20

0 0 0 1 1

0 1 0 1 0

1 1 1 0 1

1 0 1 0 0

Tabelle 1.13: Kartentrick-Kodierung für Nachricht 010111101010

23

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.21

Man verwendet für die Nachrichten a1a2a3a4a5a6, der Länge 6 eine 2 × 3-Tabelle mit 6
Kontrollbits wie in Definition 1.2. Die folgenden Nachrichten sind leider beschädigt worden.
Bestimmen Sie die ursprüngliche Nachricht (das gesendete Code-Wort), wenn Sie annehmen,
dass genau 1 Bit umgeflippt wurde.

1. 0 1 0 1 0 1 1 1 0 0 0 0
2. 0 1 1 1 0 1 1 1 0 1 0 0
3. 1 1 1 0 1 0 1 1 1 1 0 1
4. 1 1 1 0 1 0 1 1 1 1 1 0

Check Lösungsvorschlag zu Aufgabe 1.21

Das rot eingefärbte Bit wurde beschädigt:

1 1 0 0

0 1 0 0

1 0 1 0

1 1 0 1

0 1 1 0

1 0 1 0

1 1 1 1

1 1 1 0

0 1 0 1

1 1 1 1

1 1 1 1

0 1 0 0

1.6 Der XOR-Operator
Um das Paritätsbit zweier binären Codes zu berechnen wird der XOR-Operator („Exklusives
Oder“, ⊕) verwendet. Die Addition modulo 2 zweier Bits (XOR) ist definiert in Tabelle 1.14.

A B A ⊕ B

0 0 0

0 1 1

1 0 1

1 1 0

Tabelle 1.14: XOR (Addition modulo 2) für alle 4 möglichen Bit-Kombinationen

Das Ergebnis ist also genau dann 1, wenn genau eines der beiden Eingangsbits gleich 1 ist. XOR
wird auch „Addition modulo 2“ genannt, da das Resultat einer XOR-Operation immer genau der
Summe beider Bits modulo 2 entspricht.

XOR kann nicht nur auf einzelne Bits, sondern auch auf mehrere Bitfolgen angewendet werden.
Dabei wird jedes Bit der Folge 1 mit dem Bit der Folge 2 an derselben Stelle verglichen. Das
Resultat einer XOR-Operation wird Parität (P) genannt.

Beispiel 1.5:
Gegeben seien drei Datenblöcke:

D1 = 10112, D2 = 11002, D3 = 01102

24

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Die Parität P wird durch XOR-Verknüpfung berechnet:

P = D1 ⊕ D2 ⊕ D3

Wir berechnen schrittweise:

D1 ⊕ D2 = 10112 ⊕ 11002 = 01112

P = 01112 ⊕ 01102 = 00012

Das Paritätsbit wird zusammen mit den Daten gespeichert. Fällt eine Festplatte aus, kann
der fehlende Wert durch Umstellen der XOR-Operation wiederhergestellt werden.

EDIT Aufgabe 1.22

Gegeben sind die folgenden binären Codes:

A = 11012, B = 10102

Berechnen Sie A ⊕ B.

Check Lösungsvorschlag zu Aufgabe 1.22

Die Berechnung des XOR-Operators erfolgt bitweise:

A ⊕ B = 11012 ⊕ 10102

Wir berechnen XOR für jedes Bitpaar:

A B A ⊕ B

1 1 0
1 0 1
0 1 1
1 0 1

Das ergibt:

A ⊕ B = 01112

Erklärung: Der XOR-Operator liefert 1, wenn die Eingangsbits unterschiedlich sind,
und 0, wenn sie gleich sind. Da A und B an den Positionen 2, 3 und 4 unterschiedlich
sind, stehen dort Einsen im Ergebnis.

25

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.23

Gegeben sind vier binäre Codes:

A = 10112, B = 11002, C = 01102, D = 10012

Berechnen Sie A ⊕ B ⊕ C ⊕ D.

Check Lösungsvorschlag zu Aufgabe 1.23

Die XOR-Berechnung erfolgt schrittweise:

A ⊕ B = 10112 ⊕ 11002

Bitweise Berechnung:

A B A ⊕ B

1 1 0
0 1 1
1 0 1
1 0 1

Das ergibt:

A ⊕ B = 01112

Nun XOR mit C:

01112 ⊕ 01102

01112 ⊕ 01102 = 00012

Danach XOR mit D:

00012 ⊕ 10012

00012 ⊕ 10012 = 10002

Das Endergebnis lautet:

A ⊕ B ⊕ C ⊕ D = 10002

26

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

1.7 RAID
Redundant Array of Independent Disks (RAID) ist eine spannende Technologie, um die Funkti-
onsweise von Paritätsbits in der Praxis zu Illustrieren. RAID ist ein Standard zur Organisation
mehrerer Festplatten zu einem sogenannten logischen Laufwerk. Dabei werden meherere physische
Festplatten zu einer „virtuellen“ Festplatte zusammengefasst. Ziel ist es, die Datensicherheit, die
Ausfallsicherheit und/oder die Lese- und Schreib-Leistung zu verbessern. RAID wird häufig in Ser-
vern und Speichersystemen eingesetzt, um Redundanz zu gewährleisten oder die Geschwindigkeit
von Speicherzugriffen zu erhöhen.

Im Kontext der fehlerkorrigierenden und fehlererkennenden Kodierung spielt RAID eine wichtige
Rolle. Während RAID 0 sich auf Performance ohne Redundanz konzentriert, nutzen andere RAID-
Level, insbesondere RAID 5 und RAID 6, Paritätsdaten zur Fehlerkorrektur. Im folgenden schauen
wir uns nur diejenigen RAID-Typen an, welche heute am weitesten verbreitet sind.

1.7.1 RAID 0: Striping

RAID 0 verteilt Daten in Blöcken auf mehrere Festplatten (striping), um die Lese- und Schreibge-
schwindigkeit zu erhöhen. Dabei gibt es keine Redundanz, sodass der Ausfall einer einzigen Fest-
platte zu einem vollständigen Datenverlust führt.

• Vorteil: Sehr hohe Geschwindigkeit bei Lese- und Schreiboperationen.
• Nachteil: Keine Fehlerkorrektur oder Redundanz; hoher Datenverlust bei Festplattendefekt.

A7
A5
A3
A1

A8
A6
A4
A2

RAID 0

Disk 0 Disk 1

Abbildung 1.16: RAID-0-Architektur mit zwei physischen Festplatten

EDIT Aufgabe 1.24

Ein System verwendet RAID 0 mit zwei Festplatten, wobei die Daten in 4-Byte-Blöcken
verteilt werden. Gegeben ist die folgende Datei:

ABCDEFGH

Wie werden die Daten auf den beiden Festplatten gespeichert?

27

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 1.24

RAID 0 nutzt Striping ohne Redundanz. Die Daten werden abwechselnd auf die beiden
Festplatten geschrieben:

Festplatte 1: A C E G
Festplatte 2: B D F H

Dieses Verfahren erhöht die Geschwindigkeit, bietet jedoch keine Ausfallsicherheit.

1.7.2 RAID 1: Mirroring

RAID 1 speichert identische Kopien der Daten auf zwei Festplatten (mirroring). Fällt eine Festplatte
aus, können die Daten von der zweiten Festplatte wiederhergestellt werden.

• Vorteil: Sehr hohe Datensicherheit, da jede Information doppelt gespeichert wird.
• Nachteil: Speicherplatz wird ineffizient genutzt, da nur die Hälfte der Gesamtkapazität ver-

fügbar ist.

A4
A3
A2
A1

A4
A3
A2
A1

RAID 1

Disk 0 Disk 1

Abbildung 1.17: RAID-1-Architektur mit zwei physischen Festplatten

Absicherung gegen Datenverlust kann mit lediglich 2 Festplatten nicht Speicherplatz-effizienter als
mit RAID 1 erfolgen, d.h., ein Verlust von 50% des physischen Speicherplatzes muss in Kauf genom-
men werden. Effizientere Lösungen bieten sich an, wenn weitere Speicherplatten vorhanden sind.
Selbstverständlich kann RAID 1 auch mit 4, 6, 8 oder mehr Festplatten umgesetzt werden.

28

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.25

Ein Server verwendet RAID 1 mit zwei Festplatten. Was passiert, wenn eine der beiden
Festplatten ausfällt? Kann das System weiterhin genutzt werden?

Check Lösungsvorschlag zu Aufgabe 1.25

RAID 1 speichert eine vollständige Kopie aller Daten auf beiden Festplatten (Mirro-
ring). Wenn eine Festplatte ausfällt, kann das System weiterhin auf die zweite Fest-
platte zugreifen, sodass keine Daten verloren gehen. Die ausgefallene Festplatte sollte
jedoch ersetzt werden, um die Redundanz wiederherzustellen.

1.7.3 RAID 4: Paritätsbits

RAID 4, 5 und 6 nutzen für die Datensicherheit statt mirroring (Spiegelung der Daten) einen effizi-
enteren Ansatz, um Daten über mehrere Laufwerke zu verteilen, indem sie Paritätsbits verwenden.
Dabei verwendet RAID 5 ein einzelnes Paritätsbit, welches es über verschiedene Festplatten verteilt,
so dass jeder „Striping-Block“ A1A2A3 · · · über genau ein Paritätsbit Ap verfügt (Abbildung 1.19).

RAID 4

D1
C1
B1
A1

Disk 0

D2
C2
B2
A2

Disk 1

D3
C3
B3
A3

Disk 2

D p

C p

B p

A p

Disk 3

Abbildung 1.18: RAID-4-Architektur mit vier physischen Festplatten und einem Paritätsbit

1.7.4 RAID 5: Verteilte Paritätsbits

Da das Paritätsbit bei jedem Schreibvorgang neu geschrieben werden muss (auch bei kleinen Da-
teien), wird bei RAID-4 die Paritäts-Festplatte übermässig stark beansprucht. Daher werden die
Paritätsbits bei RAID-5 im Gegenteil zu RAID-4 auf alle Festplatten verteilt. Ansonsten funktio-
niert RAID-5 identisch wie RAID-4 (siehe Abbildung 1.19).

29

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

RAID 5

D p

C1
B1
A1

Disk 0

D1
C p

B2
A2

Disk 1

D2
C2
B p

A3

Disk 2

D3
C3
B3
A p

Disk 3

Abbildung 1.19: RAID-5-Architektur mit vier physischen Festplatten und einem verteilten Paritäts-
bit

Falls nun eine Festplatte ausfällt, können die verlorengegangenen Daten einfach rekonstruiert wer-
den, indem das parity bit über die verbliebenen Datenblöcke erneut berechnet wird. Somit ist ein
Speicher-System bei RAID 5 gegen den Ausfall einer Festplatte gesichert.

Bei RAID 5 ist das Paritätsbit für jeden Block auf einer anderen Festplatte gespeichert, wodurch
die Performance beim Schreiben von Daten erhöht wird, da die Schreib-Last so auf alle Festplatten
gleichmässig verteilt werden kann.

Im Folgenden wird aufgezeigt, wie diese berechnet werden.

RAID 5 verteilt die Paritätsinformationen über alle Festplatten. Die Berechnung erfolgt mit einer
XOR-Operation. Beispiel mit vier Datenblöcken D1, D2, D3, D4:

P = D1 ⊕ D2 ⊕ D3 ⊕ D4 (1.2)

Beispiel 1.6:
Nehmen wir an, wir berechnen die Parität für folgende Datenblöcke:

D1 = 11012

D2 = 10112

D3 = 01102

D4 = 10012

Die Paritätsberechnung ergibt:

P = 11012 ⊕ 10112 ⊕ 01102 ⊕ 10012

= 10012

Falls ein Datenblock ausfällt, kann er durch Umstellen der XOR-Operation rekonstruiert werden.

30

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.26

Ein RAID-5-System besteht aus drei Festplatten. Die gespeicherten Datenblöcke lauten:

D1 = 10112

D2 = 11002

Berechne das Paritätsbit P für RAID 5.

Check Lösungsvorschlag zu Aufgabe 1.26

Das Paritätsbit wird durch die XOR-Operation berechnet:

P = D1 ⊕ D2

= 10112 ⊕ 11002

= 01112

Das Paritätsbit P wird auf der dritten Festplatte gespeichert, während die Daten auf
den ersten beiden Festplatten liegen.

Je mehr Festplatten verfügbar sind, desto mehr Speicherplatz ist prozentual für die Speicherung
von Daten verfügbar. Da immer eine Festplatte für die Datensicherheit verwendet wird, stehen bei
3 Festplatten 2 für die Speicherung von Daten zur Verfügung, bei 4 Festplatten 3, bei 5 Festplatten
4 usw.

1.7.5 RAID 6: Zwei Paritätsbits

Bei RAID-6 werden sogar zwei Paritätsbits verwendet, womit diese Konfiguration Schutz von zwei
Festplatten-Ausfällen bietet (Abbildung 1.20). Dadurch fallen jedoch auch zwei Festplatten als mög-
liche Speichermedien weg, da diese für die Datensicherheit benötigt werden.

RAID 6

D p

C1
B1
A1

Disk 0

D q

C p

B2
A2

Disk 1

D1
C q

B p

A3

Disk 2

D2
C2
B q

A p

Disk 3

D3
C3
B3
A q

Disk 4

E q E1 E2 E3 E p

Abbildung 1.20: RAID 5-Architektur mit fünf physischen Festplatten und zwei Paritätsbits

RAID 6 verwendet zwei Paritätswerte: eine XOR-basierte Parität (P) wie in RAID 5 und eine zweite
Parität Q, die durch eine Galois-Feld-Multiplikation berechnet wird. Für Beispiele einer Berechnung

31

mailto:cyril.wendl@edu.zh.ch

Datenintegrität « Cyril Wendl, Informatik, 2026

des zweiten Paritätsbits sei auf die Webseite von Oracle hingewiesen.

EDIT Aufgabe 1.27

Marina gründet eine IT-Firma und kauft sich 8 Festplatten für die Speicherung ihrer Daten.
Da sie viele Daten hat, möchte sie möglichst viel nutzbaren Speicherplatz haben, gleichzeitig
möchte sie gegen den Ausfall von einer Festplatte geschützt sein. Welche RAID-Konfiguration
empfehlen Sie Marina (0, 1, 5 oder 6)? Begründen Sie Ihre Antwort.

Check Lösungsvorschlag zu Aufgabe 1.27

• Empfohlen: RAID 5 – Maximiert Speicherplatz, schützt vor 1 Festplatten-
Ausfall.

• Speicherausnutzung: 7 von 8 Platten für Daten, 1 für Parität.
• Performance: Gutes Lesen, etwas langsameres Schreiben (Paritätsberech-

nung).
• Alternative: RAID 6 – Mehr Sicherheit (2 Plattenausfälle möglich), aber

weniger Speicher (6 nutzbar).

EDIT Aufgabe 1.28

Lara möchte ihre schönsten Fotos sichern und hat sich dazu zwei Festplatten gekauft. Da ihre
Fotos für sie wichtig sind, möchte sie sich gegen den Ausfall einer Festplatte schützen und
entscheidet sich daher für eine RAID-1-Konfiguration.

• Weshalb kann Lara selbst dann, wenn sie sich zwei gleich grosse Festplatten kauft, nur
maximal die Hälfte des Speicherplatzes für sich nutzen?

• Welche alternative RAID-Konfiguration könnte Lara in Betracht ziehen, um mehr Spei-
cherplatz zu erhalten? Was wären Nachteile davon?

• Welche RAID-Alternative gäbe es für Lara, um sowohl mehr Speicher als auch Redun-
danz zu gewährleisten?

Check Lösungsvorschlag zu Aufgabe 1.28

• RAID 1: Speicherhalbierung, da alle Daten gespiegelt werden (mirroring, red-
undante Kopie).

• Alternative: RAID 0 (striping) → doppelter Speicherplatz, aber kein
Schutz bei Festplattenausfall.

• Kompromiss: RAID 5 (mind. 3 Platten) → mehr Speicher als RAID 1, aber
trotzdem Redundanz.

32

mailto:cyril.wendl@edu.zh.ch
https://blogs.oracle.com/solaris/post/understanding-raid-6-with-junior-high-math

Datenintegrität « Cyril Wendl, Informatik, 2026

EDIT Aufgabe 1.29

Bestimmen Sie für den Fall, dass sie 6 Festplatten gleicher Grösse besitzen, den verfügbaren
Speicherplatz für die Konfigurationen RAID 0, RAID 1, RAID 4, RAID 5 und RAID 6. Geben
Sie den verfügbaren Speicherplatz als Bruch an (z.B. 3/6). Geben Sie zudem die Ausfallsi-
cherheit an (wie viele Festplatten können im schlimmsten Fall ausfallen ohne Datenverlust?).

Konfiguration Verfügbare Festplatten Ausfallsicherheit

RAID 0

RAID 1

RAID 4

RAID 5

RAID 6

Check Lösungsvorschlag zu Aufgabe 1.29

Konfiguration Verfügbare Festplatten Ausfallsicherheit

RAID 0 6/6 0

RAID 1 3/6 1

RAID 4 5/6 1

RAID 5 5/6 1

RAID 6 4/6 2

33

mailto:cyril.wendl@edu.zh.ch

Anhang A

Lernziele

� Ich kann die Prüfziffern eines EAN-Codes berechnen bei gegebener Formel.
� Ich kann bestimmen, ob ein gegebener EAN-Code korrekt ist.
� Ich kann bestimmen, welche Fehler (Vertippen einer Ziffer, Vertauschen von zwei Ziffern, Ziffer

vergessen) durch eine Prüfziffer erkannt werden.
� Ich kann den Abstand zweier Bitfolgen gleicher Länge bestimmen.
� Ich kann den Mindest-Abstand einer Kodierung bestimmen.
� Ich kann bestimmen, wie viele Fehler eine Kodierung erkennt.
� Ich kann bestimmen, wie viele Fehler eine Kodierung korrigieren kann.
� Ich kann erklären, welchen Abstand k-fehlererkennende Kodierungen haben müssen.
� Ich kann erklären, welchen Abstand k-fehlererkorrigierende Kodierungen haben müssen.
� Ich kann den n-dimensionalen Hyperwürfel für kleine n (n ≤ 4) zeichnen.
� Ich kann Kodierungen angeben, die einen bestimmten Abstand haben, bzw. eine bestimmte

Anzahl Fehler erkennen oder korrigieren können.
� Ich kann die „Kartentrick-Kodierung“ einer Bitfolge angeben.
� Ich kann erklären, wie die optimale Kartentrickkodierung (= optimale Länge und Breite für

das Rechteck) für eine Bitfolge mit einer gegebenen Länge aussieht.
� Ich kann überprüfen, ob eine gegebene Kartentrick-Kodierung korrekt ist.
� Ich kann bei einer Kartentrick-Kodierung mit einem Fehler den Fehler finden und korrigieren.
� Ich kann den XOR-Operator auf mehrere Bitfolgen gleicher Länge anwenden.
� Ich kann RAID-0-, RAID-1-, RAID-5- und RAID-6-Konfigurationen schematisch illustrieren

und deren Nutzen erklären, indem ich die Begriffe striping, mirroring und Paritätsbits ver-
wende.

� Ich kann für eine vorgegebene Anzahl Festplatten sowie Anforderungen an Redundanz und
Schreibgeschwindigkeit bestimmen, welche der vier RAID-Konfigurationen am besten geeignet
ist.

� Ich kann ein Paritätsbit mit dem XOR-Operator berechnen.

34

Glossar

ASCII American Standard Code for Information Interchange. 2

EAN European Article Number. 3–7, 34

ISBN International Standard Book Number. 7, 8

RAID Redundant Array of Independent Disks. 27, 34

35

	Datenintegrität
	Einführung
	Prüfbits
	Fehler erkennen und korrigieren
	Selbstkorrigierende Codes
	Effiziente Codes
	Der XOR-Operator
	RAID
	RAID 0: Striping
	RAID 1: Mirroring
	RAID 4: Paritätsbits
	RAID 5: Verteilte Paritätsbits
	RAID 6: Zwei Paritätsbits

	Lernziele

