
Datenintegrität
Kartentrick-Codierung

Cyril Wendl

Fachschaft Informatik
Kantonsschule im Lee



Rückblick 1-fehlerkorrigierende Kodierung

00000

00001 00010

00011

00100

00101 00110

00111

01000

01001 01010

01011

01100

01101 01110

01111

10000

10001 10010

10011

10100

10101 10110

10111

11000

11001 11010

11011

11100

11101 11110

11111

Nachteil:
I Für Bitfolgen der Länge n → n-dimensionaler Hyperwürfel

I Anzahl Knoten? → 2n

I Für längere Nachrichten wird der Hyperwürfel riesig
I Aufwand wächst exponentiell!
I Bessere Methode gesucht!



Rückblick 1-fehlerkorrigierende Kodierung

00000

00001 00010

00011

00100

00101 00110

00111

01000

01001 01010

01011

01100

01101 01110

01111

10000

10001 10010

10011

10100

10101 10110

10111

11000

11001 11010

11011

11100

11101 11110

11111

Nachteil:
I Für Bitfolgen der Länge n → n-dimensionaler Hyperwürfel
I Anzahl Knoten? → 2n

I Für längere Nachrichten wird der Hyperwürfel riesig
I Aufwand wächst exponentiell!
I Bessere Methode gesucht!



Rückblick 1-fehlerkorrigierende Kodierung

00000

00001 00010

00011

00100

00101 00110

00111

01000

01001 01010

01011

01100

01101 01110

01111

10000

10001 10010

10011

10100

10101 10110

10111

11000

11001 11010

11011

11100

11101 11110

11111

Nachteil:
I Für Bitfolgen der Länge n → n-dimensionaler Hyperwürfel
I Anzahl Knoten? → 2n

I Für längere Nachrichten wird der Hyperwürfel riesig

I Aufwand wächst exponentiell!
I Bessere Methode gesucht!



Rückblick 1-fehlerkorrigierende Kodierung

00000

00001 00010

00011

00100

00101 00110

00111

01000

01001 01010

01011

01100

01101 01110

01111

10000

10001 10010

10011

10100

10101 10110

10111

11000

11001 11010

11011

11100

11101 11110

11111

Nachteil:
I Für Bitfolgen der Länge n → n-dimensionaler Hyperwürfel
I Anzahl Knoten? → 2n

I Für längere Nachrichten wird der Hyperwürfel riesig
I Aufwand wächst exponentiell!

I Bessere Methode gesucht!



Rückblick 1-fehlerkorrigierende Kodierung

00000

00001 00010

00011

00100

00101 00110

00111

01000

01001 01010

01011

01100

01101 01110

01111

10000

10001 10010

10011

10100

10101 10110

10111

11000

11001 11010

11011

11100

11101 11110

11111

Nachteil:
I Für Bitfolgen der Länge n → n-dimensionaler Hyperwürfel
I Anzahl Knoten? → 2n

I Für längere Nachrichten wird der Hyperwürfel riesig
I Aufwand wächst exponentiell!
I Bessere Methode gesucht!



„Zaubertrick“

Q

Q

10

10

A

A

A

A

J

J

J

J

5

5

3

3

5

5

J

J

Erster Schritt: Auslegen der ursprünglichen Karten (n = m = 4)



„Zaubertrick“
8

8

J

J

Q

Q

10

10

A
A

A
A

J
J

8
8

J

J

5

5

3

3

4

4

5

5

J

J

Zweiter Schritt: Hinzufügen einer Reihe und einer Spalte (Hilfszauberer)



„Zaubertrick“
8

8

J

J

Q

Q

10

10

A
A

A
A

J
J

8
8

J

J

3

3

4

4

5

5

J

J

Dritter Schritt: Karten, nachdem jemand eine Karte umgedreht hat



„Zaubertrick“ (binär als Matrix)


1 0 1 0
0 1 1 1
1 0 1 1
0 0 1 1


Erster Schritt: Ursprüngliche Bitmatrix (n = m = 4)



„Zaubertrick“ (binär als Matrix)


0 1 0 1 0
1 0 1 0 0
0 1 1 1 1
1 0 1 1 1
0 0 1 1 0


Zweiter Schritt: Hinzufügen einer Reihe und einer Spalte

(Kontrollbits)



„Zaubertrick“ (binär als Matrix)


0 1 0 1 0
1 0 1 0 0
0 1 1 1 1
1 0 0 1 1
0 0 1 1 0


Dritter Schritt: Eine Bitkarte wurde umgedreht (Fehlerfall)



Die Kartentrickmethode

Für die folgende 6-stellige Bitfolge soll eine 1-fehlerkorrigierende
Kodierung gefunden werden: 010101

0 1 0

1 0 1

Ursprüngliche Nachricht



Die Kartentrickmethode

Für die folgende 6-stellige Bitfolge soll eine 1-fehlerkorrigierende
Kodierung gefunden werden: 010101

0 1 0

1 0 1

Ursprüngliche Nachricht
→

1 1 1 1

0 1 0 1

1 0 1 0

Ursprüngliche Nachricht +
Kontrollbits



Optimalität: so wenig Kontrollbits wie möglich

Mehrere Möglichkeiten für Codewörter der Länge 16
I 16 = 4 · 4 → Kontrollbits: 4 + 4 + 1 = 9

I 16 = 2 · 8 → Kontrollbits: 2 + 8 + 1 = 11
I 16 = 1 · 16 → Kontrollbits: 1 + 16 + 1 = 18
I Die beiden Seiten des Rechtecks sollten möglichst gleich gross

sein
I Bei Codewörtern der Länge 48 → 6 · 8 ist optimal!



Optimalität: so wenig Kontrollbits wie möglich

Mehrere Möglichkeiten für Codewörter der Länge 16
I 16 = 4 · 4 → Kontrollbits: 4 + 4 + 1 = 9
I 16 = 2 · 8 → Kontrollbits: 2 + 8 + 1 = 11

I 16 = 1 · 16 → Kontrollbits: 1 + 16 + 1 = 18
I Die beiden Seiten des Rechtecks sollten möglichst gleich gross

sein
I Bei Codewörtern der Länge 48 → 6 · 8 ist optimal!



Optimalität: so wenig Kontrollbits wie möglich

Mehrere Möglichkeiten für Codewörter der Länge 16
I 16 = 4 · 4 → Kontrollbits: 4 + 4 + 1 = 9
I 16 = 2 · 8 → Kontrollbits: 2 + 8 + 1 = 11
I 16 = 1 · 16 → Kontrollbits: 1 + 16 + 1 = 18

I Die beiden Seiten des Rechtecks sollten möglichst gleich gross
sein

I Bei Codewörtern der Länge 48 → 6 · 8 ist optimal!



Optimalität: so wenig Kontrollbits wie möglich

Mehrere Möglichkeiten für Codewörter der Länge 16
I 16 = 4 · 4 → Kontrollbits: 4 + 4 + 1 = 9
I 16 = 2 · 8 → Kontrollbits: 2 + 8 + 1 = 11
I 16 = 1 · 16 → Kontrollbits: 1 + 16 + 1 = 18
I Die beiden Seiten des Rechtecks sollten möglichst gleich gross

sein

I Bei Codewörtern der Länge 48 → 6 · 8 ist optimal!



Optimalität: so wenig Kontrollbits wie möglich

Mehrere Möglichkeiten für Codewörter der Länge 16
I 16 = 4 · 4 → Kontrollbits: 4 + 4 + 1 = 9
I 16 = 2 · 8 → Kontrollbits: 2 + 8 + 1 = 11
I 16 = 1 · 16 → Kontrollbits: 1 + 16 + 1 = 18
I Die beiden Seiten des Rechtecks sollten möglichst gleich gross

sein
I Bei Codewörtern der Länge 48 → 6 · 8 ist optimal!



Auftrag (Skript)

I PENCIL-ALT 1.20, 1.21
Falls bereits fertig:
I Kapitel 1.6 lesen und die Aufgaben 1.22 - 1.23 lösen


