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Nachteil:
I Für Bitfolgen der Länge n → n-dimensionaler Hyperwürfel

I Anzahl Knoten? → 2n

I Für längere Nachrichten wird der Hyperwürfel riesig
I Aufwand wächst exponentiell!
I Bessere Methode gesucht!
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„Zaubertrick“
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Erster Schritt: Auslegen der ursprünglichen Karten (n = m = 4)
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Zweiter Schritt: Hinzufügen einer Reihe und einer Spalte (Hilfszauberer)
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Dritter Schritt: Karten, nachdem jemand eine Karte umgedreht hat



„Zaubertrick“ (binär als Matrix)


1 0 1 0
0 1 1 1
1 0 1 1
0 0 1 1


Erster Schritt: Ursprüngliche Bitmatrix (n = m = 4)



„Zaubertrick“ (binär als Matrix)


0 1 0 1 0
1 0 1 0 0
0 1 1 1 1
1 0 1 1 1
0 0 1 1 0


Zweiter Schritt: Hinzufügen einer Reihe und einer Spalte

(Kontrollbits)



„Zaubertrick“ (binär als Matrix)


0 1 0 1 0
1 0 1 0 0
0 1 1 1 1
1 0 0 1 1
0 0 1 1 0


Dritter Schritt: Eine Bitkarte wurde umgedreht (Fehlerfall)



Die Kartentrickmethode

Für die folgende 6-stellige Bitfolge soll eine 1-fehlerkorrigierende
Kodierung gefunden werden: 010101

0 1 0

1 0 1

Ursprüngliche Nachricht



Die Kartentrickmethode

Für die folgende 6-stellige Bitfolge soll eine 1-fehlerkorrigierende
Kodierung gefunden werden: 010101

0 1 0

1 0 1

Ursprüngliche Nachricht
→

1 1 1 1

0 1 0 1

1 0 1 0

Ursprüngliche Nachricht +
Kontrollbits



Optimalität: so wenig Kontrollbits wie möglich

Mehrere Möglichkeiten für Codewörter der Länge 16
I 16 = 4 · 4 → Kontrollbits: 4 + 4 + 1 = 9

I 16 = 2 · 8 → Kontrollbits: 2 + 8 + 1 = 11
I 16 = 1 · 16 → Kontrollbits: 1 + 16 + 1 = 18
I Die beiden Seiten des Rechtecks sollten möglichst gleich gross

sein
I Bei Codewörtern der Länge 48 → 6 · 8 ist optimal!
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Auftrag (Skript)

I PENCIL-ALT 1.20, 1.21
Falls bereits fertig:
I Kapitel 1.6 lesen und die Aufgaben 1.22 - 1.23 lösen


