
Informatik

Kryptologie
Skript

Hauptautor Ko-Autor
Cyril Wendl Thomas Graf

« Winterthur, 14. Januar 2026

mailto:cyril.wendl@edu.zh.ch
mailto:thomas.graf@edu.zh.ch

Inhaltsverzeichnis

1 Kryptologie 2
1.1 Einführung . 2

2 Symmetrische Kryptosysteme 5
2.1 Verschlüsselung per Transposition . 5

2.1.1 Skytale . 5
2.2 Caesar . 8

2.2.1 Knacken von Caesar . 9
2.3 Monoalphabetische Substitution . 11
2.4 Vigenère . 13

2.4.1 Knacken von Vigenère . 16
2.4.1.1 Bestimmung der Schlüssellänge mit dem Kasiski-Test 19
2.4.1.2 Bestimmung der Schlüssellänge: Friedman’sche Charakteristik . . . 24

2.5 One-Time-Pad . 29
2.5.1 Kryptoanalyse bei mehrfacher Verwendung des Schlüssels 32
2.5.2 Bin-One-Time-Pad (OTP) . 33

3 Schlüsseltausch-Verfahren 37
3.1 Drei-Wege-Schlüsseltausch . 38
3.2 Diffie-Hellman-Merkle-Schlüsseltausch . 41

4 Asymmetrische Kryptosysteme 43
4.1 RSA-Verfahren . 44

4.1.1 Digitale Signaturen mit RSA . 48

A Python-Übungen zu Kryptologie 51
A.1 Allgemeine Zeichenketten-Aufgaben . 51
A.2 Verschlüsselung von Texten in Python . 53
A.3 Caesar-Verschlüsselung in Python . 59
A.4 Vigenère-Verschlüsselung in Python . 62

B Lernziele Kryptologie 67

1

Kapitel 1

Kryptologie

1.1 Einführung
Alice möchte Bob eine wichtige Nachricht zukommen lassen, beispielsweise zu einem gesundheitli-
chen Problem oder um ihre Bankkontoverbindung mit Bob zu teilen. Da das Internet jedoch eine
offene und somit (grundsätzlich) unsichere Technologie ist, kann jedermann jede Nachricht mitlesen.
Somit könnte eine bösartige Person, wie beispielsweise Eve, die Nachricht abhören, um sich Zugriff
auf die Gesundheitsdaten oder das Bankkonto von Alice zu verschaffen.

Damit dies nicht passieren kann, muss Alice ihre Nachricht so verschlüsseln, dass nur Bob sie lesen
kann. Dieses Problem hat sich bereits in der Antike (und vermutlich noch vorher gestellt) und
entspricht einem grundsätzlichen, menschlichen Bedürfnis: Wie kann ein Feldherr seinen Soldaten
Anweisungen geben, ohne dass der Gegner mithört? Oder, um eine andere Situation aufzugreifen:
Wie können Sie sich mit Ihren Geschwistern austauschen, ohne dass Ihre Eltern verstehen, worum
es geht?

In der Informatik spricht man hier davon, dass Alice aus ihrem „Klartext“, also dem für alle Men-
schen verständlichen Text, einen „Kryptotext“ macht, also einen Text, den nur Bob entschlüsseln
kann, d.h., nur Bob weiss, wie man aus diesem Text wieder einen verständlichen Text macht. Hierzu
muss man sich auf eine Verschlüsselungsmethode einigen. In der Informatik spricht man hierbei von
einem Verschlüsselungs-Algorithmus und Entschlüsselungs-Algorithmus. Die Methode, um
eine Nachricht zu verschlüsseln, so dass sie für Dritte unlesbar ist, wird häufig auch „Schlüssel“
genannt, und das Verfahren, um eine Nachricht unlesbar zu machen „Verschlüsselung“ oder „Chif-
frierung“. Im Allgemeinen wird der Bereich der Informatik, der sich mit Ver- und Entschlüsselung
befasst, „Kryptografie“ genannt und die verschiedenen Algorithmen und Ansätze werden häufig als
„Kryptosysteme“ bezeichnet.

2

Kryptologie « Informatik, 2026

Alice (Sender)

(Klartext,
Schlüssel)y(Verschlüsselung)

Kryptotext

Bob (Empfänger)

(Kryp-
totext,

Schlüssel)y(Entschlüsselung)

Klartext

Übermittlung
über unsicheren
Kanal e.g. In-

ternet, Telefonie
Kryptotext

Eve (Gegner / Abhörer)

abhören

Abbildung 1.1: Dieses Schema zeigt die Kommunikation zwischen Alice (Sender) und Bob (Emp-
fänger) unter Verwendung eines Kryptosystems.

Im Folgenden setzen wir uns zuerst mit einigen grundlegenden Verschlüsselungs-Methoden ausein-
ander, um zu verstehen, was ein sicheres Kryptosystem auszeichnet. Der niederländische Kryptologe
und Linguist Auguste Kerckhoffs stellte im Jahr 1883 sechs Grundsätze für sichere Verschlüsselungs-
verfahren auf:

Abbildung 1.2: Auguste Kerckhoffs (1835-1903)

1. Das System muss unentzifferbar sein.
2. Das System darf keiner Geheimhaltung bedürfen.
3. Das System muss leicht übermittelbar sein und man muss sich die Schlüssel ohne schrift-

liche Aufzeichnung merken können.
4. Das System sollte mit telegraphischer Kommunikation kompatibel sein.
5. Das System muss transportabel sein und die Bedienung darf nicht mehr als eine Person

erfordern.
6. Das System muss einfach anwendbar sein.

Ein System, das diese Anforderungen erfüllt, gab es damals nicht. Von besonderer Wichtigkeit war
seine Forderung nach Öffentlichkeit des Kryptosystems:

3

Kryptologie « Informatik, 2026

„Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber entre les
mains de l’ennemi.“ – Auguste Kerckhoffs, La cryptographie militaire (1883)

Demgegenüber steht die Auffassung, dass Kryptosysteme geheimgehalten werden sollten (Security
through Obscurity), eine Haltung, die häufiger von militärischen Institutionen sowie kommerziellen
Anbietern von Verschlüsselungsmethoden verfechtet wird.

Folgende Sicherheits-bezogenen Anforderungen können zusätzlich an moderne Kryptosysteme ge-
stellt werden:

1. Vertraulichkeit: Es soll sichergestellt sein, dass wirklich nur diejenige Person eine Nachricht
lesen kann, für die diese bestimmt ist.

2. Integrität: Der Empfänger soll feststellen können, ob die Nachricht nach ihrer Erzeugung
verändert wurde (wir wollen ja die originale Nachricht!).

3. Authentizität: Die Verfasserin einer Nachricht soll identifizierbar sein, bzw. der Empfänger
soll nachprüfen können, wer die Verfasserin ist.

4. Verbindlichkeit: Die Verfasserin soll nicht abstreiten können, dass sie die Verfasserin der
Nachricht ist.

4

Kapitel 2

Symmetrische Kryptosysteme

2.1 Verschlüsselung per Transposition
In einem mit Transposition (oder Permutation) verschlüsselten Text bleiben die Buchstaben des
Klartexts im Kryptotext erhalten, ändern aber die Reihenfolge.

EDIT Aufgabe 2.1

Entziffern Sie den folgenden Kryptotext durch ausprobieren:

1. RKPYOTOLIGEEMREOLGCITHEGEHMIINSSE
2. HCSFIRILTAHCZFUEBUHAWNERDNUKUZMMOINUEIZNER

Check Lösungsvorschlag zu Aufgabe 2.1

Ursprünglicher Text:

1. KRYPTOLOGIE ERMOEGLICHT GEHEIMNISSE
2. SCHRIFTLICH AUFZUBEWAHREN UND ZU KOMMUNIZIEREN

Der Kryptotext entsteht durch Austauschen der Positionen der Buchstaben, wie gezeigt
in Abbildung 2.1.

… …
A B C D E F

B A D C F E
(a) „Zweiertausch“

… …
A B C D E F

C FA DB E
(b) „Dreiertausch“

Abbildung 2.1: „Zweiertausch“ und „Dreiertausch“

2.1.1 Skytale

Das Kyrptosystem Skytale wurde bereits von den Griechen für militärische Zwecke verwendet. Der
Verschlüsselungsalgorithmus kann wie folgt beschrieben werden:

• Schreibe den Klartext zeilenweise in eine Tabelle (Matrix) von links nach rechts.

5

Kryptologie « Informatik, 2026

• Allfällige leere Felder in der letzten Zeile der Tabelle werden mit beliebigen Buchstaben gefüllt.
• Den Kryptotext erhalten wir, indem wir die Buchstaben Spalte für Spalte von links nach

rechts und von oben nach unten lesen.

Praktisch umgesetzt werden kann dieser Algorithmus mit einem Stab und einem Band, siehe Ab-
bildung 2.2. Die Anzahl Zeichen, die auf eine Windung des Bandes um den Stab passen, entspricht
der Anzahl Zeilen in der Tabelle. Diese Anzahl, also die Anzahl Zeilen, entspricht dem Schlüssel des
Skytale-Verschlüsselungsverfahrens.

Abbildung 2.2: Praktische Umsetzung der Skytale-Verschlüsselung mit einem Stab und einem Band
Quelle

EDIT Aufgabe 2.2

Der Kryptotext

WNGIAEIEMATSMKRTTEAGIEINANINTUGNDOJEEENL

wurde mit einer Tabelle mit 5 Zeilen und 8 Spalten erzeugt. Wie lautet der Klartext?

Check Lösungsvorschlag zu Aufgabe 2.2

Wir beginnen mit einer leeren 5 × 8 Tabelle und schreiben den Kryptotext zeilenweise
(von links nach rechts und von oben nach unten) in die leere Tabelle. Damit erhalten
wir:

W E T T I N G E
N I S T E I N E
G E M E I N D E
I M K A N T O N
A A R G A U J L

Der Klartext

Wettingen ist eine Gemeinde im Kanton Aargau

lässt sich nun einfach ablesen.

6

https://commons.wikimedia.org/wiki/File:Skytale.png

Kryptologie « Informatik, 2026

EDIT Aufgabe 2.3

Der folgende Kryptotext der Länge 75 wurde mit SKYTALE verschlüsselt:

ETIFIITNUTNFGENKURRELEODIERSILIMSEANIE
MRECREMRHSNSSAPSTCBRCRHEUHORRNHNIEGEG

Dabei konnten mit dem Klartext alle Zeilen der Tabelle vollständig aufgefüllt werden.

1. Welches ist hier der Schlüssel, d.h. die Anzahl Zeichen auf einer Windung (bzw. Anzahl
Zeilen der Tabelle)? Tipp: Probieren Sie die Schlüssel 3 und 5 aus. Sie können diesen
Link, Entschlüsselungswerkzeug „Tabelle“ dazu verwenden.

2. Wie lautet der Klartext?
3. Wie viele Schlüssel müssen im schlimmsten Fall ausprobiert werden, bis der korrekte

Schlüssel gefunden wurde? Das heisst, wie viele potentielle Schlüssel gibt es? Es gilt
immer noch, dass alle Zeilen der Tabelle vollständig befüllt waren.

Check Lösungsvorschlag zu Aufgabe 2.3

E I N K L E I N E R S C H R I
T T F U E R M I C H A B E R E
I N G R O S S E R S P R U N G
F U E R D I E M E N S C H H E
I T N E I L A R M S T R O N G

1. Durch Ausprobieren finden wir, dass die Wahl des Schlüssels 5 zu einem sinnvollen
Klartext führt, die Wahl des Schlüssels 3 jedoch nicht.

2. Der Klartext lautet also:
EIN KLEINER SCHRITT FUER MICH ABER EIN GROSSER

SPRUNG FUER DIE MENSCHHEIT NEIL ARMSTRONG
3. Wir müssen 75 = 3 · 5 · 5 Buchstaben auf ein Rechteck verteilen. Damit könnten

3, 5, 15 und 25 mögliche Schlüssel sein. 1 und 75 sind keine Schlüssel, da der
gegebene Text kein Klartext ist.

Trophy Aufgabe (Challenge) 2.4

Sie möchten einen Klartext der Länge 87 mit Hilfe einer Tabelle mit 10 Zeilen chiffrieren.
Wie viele Spalten benötigt diese Tabelle?

Check Lösungsvorschlag zu Aufgabe 2.4

Die Tabelle benötigt 9 Spalten. Allgemein lässt sich die Anzahl benötigter Spalten
berechnen durch⌈Länge des Textes

Anzahl Zeilen

⌉
(“ d...e ”bedeutet“nachobenaufgerundet′′).

7

https://cryptbreaker.marcwidmer.xyz/solve
https://cryptbreaker.marcwidmer.xyz/solve

Kryptologie « Informatik, 2026

2.2 Caesar
Eines der bekanntesten Verschlüsselungssysteme der Antike ist die Caesar-Verschlüsselung, die von
Julius Caesar verwendet wurde. Dieses Verschlüsselungssystem besteht essentiell aus einer Ver-
schiebung aller Buchstaben um eine vordefinierte Anzahl Positionen im Alphabet. Der Schlüssel
bezeichnet dabei die Anzahl Positionen, um die jeder Buchstabe verschoben wird. Ausgedrückt wird
der Schlüssel auch als Buchstabe, der dem Buchstaben A entsprechen würde.

Beispiel 2.1:
Mit dem Schlüssel „D“ (3 Positionen) würde das Wort „HALLO“ als „KDOOR“ geschrieben:

A B C D
E

F
G

H
I

J

K
LMNOPQ

R
S

T
U

V
W

X
Y Z

A B
C

D
E

F
G

H
IJKLMNO

P
Q

R
S

T
U VWX Y Z

3

Der Schlüssel „B“ bedeutet also eine Verschiebung um 1 Position, „C“ um 2 Positionen, „D“ um
drei Positionen usw. Im Allgemeinen lässt sich die Verschiebung folgendermassen schreiben:

Verschiebung = Ord(�), wobei Ord(A) = 0.

Beispiel 2.2:
Folgender Text wurde mit dem Schlüssel „G“ (6 Positionen) verschlüsselt:

Klartext: JEMANDMUSSTEJOSEFKVERLEUMDETHA...
Schlüssel: GGGGGGGGGGGGGGGGGGGGGGGGGGGGGG...
Kryptotext: PKSGTJSAYYZKPUYKLQBKXRKASJKZNG...

EDIT Aufgabe 2.5

Der Kryptotext

X G T Y G P F G U E J N W G U U G N B Y G K

wurde mit CAESAR verschlüsselt, der Schlüssel ist aber unbekannt. Entschlüsseln Sie den
Kryptotext, ohne alle Schlüssel auszuprobieren, wenn Sie wissen, dass der häufigste Buchstabe
im Klartext E ist.

8

Kryptologie « Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 2.5

Der häufigste Buchstabe im Kryptotext ist „G“ Wir können den Text mithilfe der
folgenden Verschiebung entschlüsseln (G → E) :

A B C D

E
F

G
H

I
J

K
LMNOPQ

R
S

T
U

V
W

X
Y Z

A B C
D

E
F

G
H

IJKLMNO

P
Q

R
S

T
U

VWX Y Z

2

V E R W E N D E D E N S C H L U E S S E L Z W E I

2.2.1 Knacken von Caesar
• Einerseits reicht es, alle 25 möglichen Verschiebungen auszuprobieren. Ein moderner Computer

hat dies in einigen Milisekunden erledigt.
• Andererseits kann, wenn der Text genügend lange ist, anhand der Häufigkeit der verschlüssel-

ten Buchstaben mittels Häufigeitsanalyse in kürzester Zeit bestimmt werden, was der Schlüssel
war. Abbildung 2.3 zeigt die Häufigkeiten der Buchstaben eines langen, mit Caesar verschlüs-
selten Texts im Kryptotext.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0%

2%

5%

8%

10%

12%

15%

18%

20%

Abbildung 2.3: Buchstabenhäufigkeit in einem nach Caesar verschlüsselten Text

Die durchschnittlichen Häufigkeiten von Buchstaben, Bi- und Tri-Grammen in deutschen Texten ist

9

Kryptologie « Informatik, 2026

in Tabelle 2.1 angegeben.

Buchstabe Relative
Häufigkeit
(%)

E 17.40

N 9.78

I 7.55

S 7.27

R 7.00

A 6.51

T 6.15

D 5.08

H 4.76

U 4.35
(a) Buchstabenhäufigkeit

Bigramm Relative
Häufigkeit
(%)

ER 3.94

EN 3.07

CH 2.73

DE 2.41

EI 2.29

ND 2.07

IE 1.97

GE 1.88

TE 1.88

IN 1.82
(b) Bigrammhäufigkeit

Trigramm Relative
Häufigkeit
(%)

DER 1.44

SCH 1.21

ICH 1.08

DIE 0.98

UND 0.95

DEN 0.78

CHE 0.77

EIN 0.75

NDE 0.74

GEN 0.72
(c) Trigrammhäufigkeit

Tabelle 2.1: Relative Häufigkeiten der Buchstaben, Bigramme und Trigramme im Deutschen

EDIT Aufgabe 2.6

Können Sie aus Tabelle 2.1 entschlüsseln, was der Klartext ist?

Kryptotext:

WMILEFIRIWKIWGLEJJXHMIWIRXIBXDYOREGOIR

Check Lösungsvorschlag zu Aufgabe 2.6

Offensichtlich ist der häufigste Buchstabe im Kryptotext „I“ und der häufigste Buch-
stabe in deutschen Texten ist der Buchstabe „E“, wir haben hier also vermutlich eine
Verschiebung von „E“ zu “I”, also eine Verschiebung um 4 Stellen. Der Klartext lautet
daher: SIEHABENESGESCHAFFTDIESENTEXTZUKNACKEN

Trophy Aufgabe (Challenge) 2.7

Kann man immer wie in Aufgabe 2.6 vorgehen? In welchen Fällen funktioniert dieses Vorgehen
eventuell nicht?

Check Lösungsvorschlag zu Aufgabe 2.7

Falls der Text zu kurz ist, funktioniert die Häufigkeitsanalyse nicht immer, da der
häufigste Buchstabe im Originaltext nicht immer der Buchstabe “E” ist. Dies wird
beispielsweise im Wort “Wort” illustriert, das keinen Buchstaben “E” enthält. In diesem
Fall müsste man alle 26 möglichen Verschiebungen durchprobieren.

10

Kryptologie « Informatik, 2026

Trophy Aufgabe (Challenge) 2.8

Um zu verschlüsseln, liest man die Caesar-Scheibe von innen (Klartext) nach aussen (Krypto-
text). Um zu entschlüsseln, liest man von aussen (Kryptotext) nach innen (Klartext). Gibt es
Schlüssel bei Caesar, bei denen es sowohl für die Ver- wie Entschlüsselung keine Rolle spielt,
in welche Richtung man die Scheiben liest?

Check Lösungsvorschlag zu Aufgabe 2.8

Ja, dies tritt bei Schlüsseln 0 (A, keine Verschlüsselung) und 13 (N, die Hälfte des
Alphabets) auf.

2.3 Monoalphabetische Substitution
Eine Weiterentwicklung der Caesar-Veschlüsselung besteht darin, nicht jeden Buchstaben im Klar-
text um dieselbe Anzahl Positionen zu verschieben, sondern für jeden Klartext-Buchstaben BK

einen Kryptotext-Buchstaben BG zu definieren, durch den der Buchstabe ersetzt wird (siehe Ab-
bildung 2.4).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Z E A B C D Y X W H I V U T G F J K R Q L M S N P O

Abbildung 2.4: Monoalphabetische Substitution

Diese Verschlüsselungsmethode kann nicht geknackt werden, indem alle Buchstaben um gleich viele
Positionen verschoben werden. Man kann also nicht lediglich alle 25 möglichen Verschiebungen
ausprobieren.

Obschon es nun eine Vielzahl möglicher Schlüssel gibt, kann diese Verschlüsselungsmethode ebenfalls
sehr einfach geknackt werden per Häufigkeitsanalyse, die wir bereits in Abschnitt 2.2 gesehen und
in Aufgabe 2.6 mittels Tabelle 2.1 durchgeführt haben.

Beispiel 2.3:
Folgender Kryptotext wurde abgefangen:

MUMMUXJUQYMHQOUSUTUQNGWTJQVHUMXQUXQJSUVYPPUM

Wir wissen, dass er per monoalphabetische Verschlüsselung erstellt wurde, wie beispielsweise
in Abbildung 2.4, kennen jedoch den Schlüssel nicht. Wir verwenden Tabelle 2.1, um den
Schlüssel zu erraten und den Text zu entschlüsseln. Dabei gehen wir wie folgt vor:

• Wir beginnen damit, die häufigsten Buchstaben zu zählen: U kommt 10-mal vor, M
kommt 6-mal vor, Q kommt 6-mal vor. Aufgrund von Tabelle 2.1 versuchen wir, folgen-
des einzusetzen: U=E, M=N, Q=I. Wir erhalten folgenden Teil-Klartext:
KRYPTOTEXT: MUMMUXJUQYMHQOUSUTUQNGWTJQVHUMXQUXQJSUVYPPUM
KLARTEXT: NENNE--EI-N-I-E-E-EI-----I--EN-IE-I--E----EN

• Nun könnten wir weiterfahren, indem wir die häufigsten Trigramme anschauen. Dabei

11

Kryptologie « Informatik, 2026

suchen wir im bisherigen Klartext nach Klartext-Teilen, wo wir Trigramme einsetzen
könnten. Laut Tabelle 2.1 ist ein häufiges Trigramm in deutschen Texten ``DIE''.
Dieses probieren wir einzusetzen (D=X):
KRYPTOTEXT: MUMMUXJUQYMHQOUSUTUQNGWTJQVHUMXQUXQJSUVYPPUM
KLARTEXT: NENNED-EI-N-I-E-E-EI-----I--ENDIEDI--E----EN

• Der Klartext nimmt langsam Form an und wir können nun damit beginnen, verbleibende
Worte zu erraten. Könnte es sich beim ersten Wort um das Wort “DREI” handeln? Wir
setzen ein:
KRYPTOTEXT: MUMMUXJUQYMHQOUSUTUQNGWTJQVHUMXQUXQJSUVYPPUM
KLARTEXT: NENNEDREI-N-I-E-E-EI----RI--ENDIEDIR-E----EN

• Sobald einzelne Wörter erkannt werden, können wir sie mit Trennlinien voneinander
abgrenzen:
KRYPTOTEXT: MUMMU|XJUQ|YMHQOUSUTUQNGWTJQVHUM|XQU|XQJ|SUVYPPUM
KLARTEXT: NENNE|DREI|-N-I-E-E-EI----RI--EN|DIE|DIR|-E----EN

• Wir fahren durch Ausprobieren und Erraten weiter, bis das Lösungswort gefunden ist:
KRYPTOTEXT: MUMMU|XJUQ|YMHQOU|SUTUQNGWTJQVHUM|XQU|XQJ|SUVYPPUM
KLARTEXT: NENNE|DREI|ANTIKE|GEHEIMSCHRIFTEN|DIE|DIR|GEFALLEN

Je länger ein Text ist, desto zuverlässiger funktioniert das Erraten der Buchstaben per Häu-
figkeitsanalyse.

EDIT Aufgabe 2.9

Entschlüsseln Sie den Text “ECRRCKZVRAZCRZK” mit dem Schlüssel aus Abbildung 2.4.

Check Lösungsvorschlag zu Aufgabe 2.9

BESSERALSCAESAR

Trophy Aufgabe (Challenge) 2.10

Lösen Sie eine Knobelaufgabe aus dem Kapitel “Substitution”.

Trophy Aufgabe (Challenge) 2.11

Wie viele Verschlüsselungs-Möglichkeiten gibt es in der Verschlüsselungsmethode aus Abbil-
dung 2.4?

Check Lösungsvorschlag zu Aufgabe 2.11

Für jeden Buchstaben gibt es 26 mögliche Verschiebungen (keine Verschiebung ist auch
eine Möglichkeit), also gibt es insgesamt 2626 mögliche Verschiebungen.

12

https://cryptbreaker.marcwidmer.xyz/problems/substitution

Kryptologie « Informatik, 2026

2.4 Vigenère
Wie wir in Aufgabe 2.6 gesehen haben, ist es extrem einfach, Texte, die mit Caesar verschlüsselt wor-
den sind, anzugreifen, entweder mittels Buchstabenhäufigkeitsanalyse oder indem man einfach alle
25 möglichen Verschiebungen ausprobiert. Auch weitere monoalphabetische Substitutions-Verfahren
wie Abbildung 2.4 können durch etwas Knobeln relativ einfach geknackt werden.

Vigenère hatte eine andere Idee: Statt den ganzen Text mit einem einzigen Schlüssel zu verschlüsseln,
verwendete er ein Wort, mit welchem er den Text “zyklisch”, also gruppenweise verschlüsselte.

Beispiel 2.4:
Wenn der Schlüssel beispielsweise “KEY” war, wurden die Buchstaben folgendermassen ver-
schlüsselt (siehe Beispiel unterhalb):

• Buchstaben 1, 4, 7, 10 etc. mit “K”
• Buchstaben 2, 5, 8, 11 etc. mit “E”
• Buchstaben 3, 6, 9, 12 etc. mit “Y”

Klartext: JEM|AND|MUS|STE|JOS|EFK|VER|LE...
Schlüssel: KEY|KEY|KEY|KEY|KEY|KEY|KEY|KE...
Kryptotext: TIK|KRB|WYQ|CXC|TSQ|OJI|FIP|VI...

Im Vergleich dazu wird bei Caesar jeder Buchstabe durch denselben Schlüssel verschlüsselt,
beispielsweise:

Klartext: JEMANDMUSSTEJOSEFKVERLEUMDETHA...
Schlüssel: GGGGGGGGGGGGGGGGGGGGGGGGGGGGGG...
Kryptotext: PKSGTJSAYYZKPUYKLQBKXRKASJKZNG...

Wie Sie wissen, ist der Buchstabe “E” der häufigste Buchstabe in deutschen Texten. Diese Eigen-
schaft haben wir uns in Aufgabe 2.6 zunutze gemacht, um den Text zu knacken. Da bei Vigenère
jedoch der Buchstaben nun nicht mehr immer mit demselben Schlüssel verschlüsselt ist, sondern
je nach Position mit dem Schlüssel “K”, “E”, oder “Y”, wird der Buchstabe “E” im Kryptotext
nun breiter auf andere Buchstaben verteilt (siehe Abbildung 2.5). Anders gesagt, ein Buchstabe
im Kryptotext repräsentiert nun nicht mehr immer den gleichen Buchstaben im Klartext, sondern
kann einen von drei Buchstaben repräsentieren.

E

O

I

C

K

E

Y

Klartext Kryptotext

E

K

Q

O

K

E

Y

Klartext Kryptotext

Abbildung 2.5: Verschlüsselungs-Möglichkeiten mit Vigenère, mit dem Schlüssel “KEY” aus Bei-
spiel 2.4

Diese Verschlüsslungsmethode galt während mehreren Jahrehunderten als sicher und war der Gold-

13

Kryptologie « Informatik, 2026

Standard in vielen militärischen Verschlüsslungs-Anwendungen. Um einen Text zu verschlüsseln,
wurde jeder Buchstabe im Klartext einzeln verschlüsselt, und je nach Schlüssel (z.B. “K”, “E”
oder “Y” in Beispiel 2.4) wurde der entsprechende Buchstabe des Kryptotexts aus einer Tabelle
herausgelesen (siehe Tabelle 2.2)

Abbildung 2.6 zeigt die Buchstabenhäufigkeit im Kryptotext für einen langen Text, welcher einmal
mit Caesar und einmal mit Vigenère verschlüsselt wurde.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0%

2%

5%

8%

10%

12%

15%

18%

20%

(a) Caesar

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0%

2%

5%

8%

10%

12%

15%

18%

20%

(b) Vigenère

Abbildung 2.6: Buchstabenhäufigkeit in einem langen Text, welcher mit unterschiedlichen Verfahren
verschlüsselt wurde

Abbildung 2.6 zeigt, dass Vigenère zu einer insgesamt homogeneren Verteilung aller Buchstaben
im Kryptotext führt. Dies kommt daher, dass bei Vigenère jeder Klartext-Buchstaben auf mehrere
Kryptotext-Buchstaben verteilt wird, währenddem bei Caesar jeder Klartext-Buchstaben durch
genau einen Buchstaben im Kryptotext kodiert wird. Tabelle 2.2 zeigt die Vigenère-Tabelle, mithilfe
welcher man einen Text mit der Vigenère-Methode ver- sowie entschlüsseln kann, sofern der Schlüssel
bekannt ist. Folgende zwei Beispiele zeigen auf, wie diese Tabelle genutzt werden kann:

1. Verschlüsselung: Soll beispielsweise der Klartext-Buchstabe „E“ mit dem Schlüsselteil „K“
verschlüsselt werden, so findet man in der Tabelle den entsprechenden Kryptotext-Buchstaben
„O“.

2. Entschlüsselung: Soll beispielsweise der Kryptotext-Buchstabe „O“ mit dem Schlüsselteil
„K“ entschlüsselt werden, so sucht man in der Tabelle nach dem Klartext-Buchstaben, der
mit „O“ und „K“ korrespondiert. Dies ist in diesem Fall der Buchstabe „E“.

14

Kryptologie « Informatik, 2026

A
A
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

B

B
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A

C

C
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B

D

D
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C

E

E
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D

F

F
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E

G

G
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F

H

H
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G

I

I
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H

J

J
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I

K

K
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J

L

L
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K

M

M
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L

N

N
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M

O

O
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N

P

P
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

Q

Q
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

R

R
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q

S

S
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R

T

T
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S

U

U
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T

V

V
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U

W

W
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V

X

X
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W

Y

Y
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
XZ

Z
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

O

Schlüsselbuchstabe
K

la
rt

ex
tb

uc
hs

ta
be

Tabelle 2.2: Vigenère-Tabelle

EDIT Aufgabe 2.12

Entschlüsseln Sie folgenden Text von Hand, wenn Sie wissen, dass er mit dem Schlüssel
„TOP“ und mit der Methode von Vigenère verschlüsselt worden ist:

UFPOCVNHVXAPVVI

Check Lösungsvorschlag zu Aufgabe 2.12

BRAVOGUTGEMACHT

15

Kryptologie « Informatik, 2026

EDIT Aufgabe 2.13

Verschlüsseln Sie folgenden Text von Hand, mit dem Schlüssel „YES“ und mit der Methode
von Vigenère:

NIEMANDKANNDASLESEN

Check Lösungsvorschlag zu Aufgabe 2.13

LMWKEFBOSLRVYWDCWWL

2.4.1 Knacken von Vigenère

Wenn die Schlüssellänge eines mit Vigenère verschlüsselten Texts bekannt ist, ist dieser relative
einfach zu knacken: Man unterteilt den Text in diesem Fall einfach in Gruppen und geht für jede
Gruppe gleich vor wie bei Caesar, um den Schlüssel zu finden.

Beispiel 2.5:
Angenommen, wir wüssten, dass folgender Text mit einem Schlüssel verschlüsselt worden ist,
der drei Zeichen lang ist:

MKU MYB VFL ZDH ZGO MKA MTR MKA PCA UGP VGN IPG MUL MNL MKU OGU WOT MPN TGP KJK MPZ CGZ
AGU NTB MJS QPN AOV ZIL VFP MKJ POP BIH VBL UJL ZBL VIL VKL AUL QEO JKU INS MKU CPK NTL
CGT QEO UGP VGZ TGI MPZ QPK QGZ MTN MIL VFK QGM CGY AQS KJL AGL TGU OGZ KJH NHL VKZ BYP
MFP MOL QPL QEO JKU AQN TWL KMS QEO UGP VDL AVL ZUV OCU HKU LGT OGM CGO TGC WPY CJP OGT
LCZ MKU DGY AWU SGU LCZ AOL QPL SWU AVK ITB VVL ZNL QFL BKJ PMV MPU BGQ MVG BPP KJA HGP
KJU MPU QEO BGP VGU AVY QEO CPK JKU VKL MKU OTV MUZ MTL ZOH TGY OGD MUL VCS AKU LKL AGU
IWN MPI TKJ SGU EGU VFH ANP MDL

Den Schlüssel selbst kennen wir nicht, wir wissen jedoch, dass jeder der grün markierten
Buchstaben beispielsweise mit demselben Buchstaben verschlüsselt worden ist. Wir können
also für jede der Gruppen (grün, blau, rot) die Häufigkeit der Buchstaben betrachten (siehe
Abbildung 2.7).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0%

2%

5%

8%

10%

12%

15%

18%

20%

FCT : 5.04%

(a) Untergruppe 1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0%

2%

4%

6%

8%

10%

12%

14%

16%

FCT : 4.07%

(b) Untergruppe 2

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0%

5%

10%

15%

20%

25%

FCT : 7.03%

(c) Untergruppe 3

Abbildung 2.7: Buchstabenhäufigkeit in einem mit Vigenère verschlüsselten Text, pro Unter-
gruppe

Dabei erkennen wir, dass die häufigsten Buchstaben pro Gruppe M, G, bzw. L sind. Wir
haben es also mit folgenden Verschiebungen zu tun:

16

Kryptologie « Informatik, 2026

A B C D

E
F

G
H

I
J

K
LMNOPQ

R
S

T
U

V
W

X
Y Z

A
B

CDEFGHIJ
K

L
M

N
O

P Q R S T U VW
X

Y
Z

8

A B C D

E
F

G
H

I
J

K
LMNOPQ

R
S

T
U

V
W

X
Y Z

A B C
D

E
F

G
H

IJKLMNO

P
Q

R
S

T
U

VWX Y Z

2

A B C D

E
F

G
H

I
J

K
LMNOPQ

R
S

T
U

V
W

X
Y Z

A
B

C

DEFGHIJK
L

M
N

O
P

Q R S T U VW

X
Y

Z7

Der Schlüssel muss demnach “ICH” sein und wir können den Text somit entschlüsseln.

EDIT Aufgabe 2.14

Kopieren Sie den folgenden Kryptotext und versuchen Sie, ihn mit dem Analysetool zu entzif-
fern, wenn Sie wissen, dass die Schlüssellänge drei ist. Schauen Sie sich die Buchstabenhäufig-
keiten für jede der 3 Gruppen an, indem Sie unter „Analysewerkzeug“ die Häufigkeitsanalyse
auswählen und stride (Schrittgrösse) 3. Unterhalb der Grafiken kann man zwischen jeder der
drei Gruppen hin- und herwechseln. Probieren Sie den wahrscheinlichsten Schlüssel aus, in-
dem Sie beim „Entschlüsselungswerkzeug“ „Vigenère“ auswählen und den Schlüssel eingeben.

W O R B H H H L U Q O W W L D S Y S Q O W O U K S U D S N E G A A Z A E B K I S M R I L H G P C V L I
B Z T R L M H Y U S I E B I L W J K U L Z S P G H C E F Z U Q O I Q O W C O L S B C V K I S Z M O S F
S Z T N B H O S T S U F I L H Z P C V T E W U H S Y Z B V C V Q E B L M K H H B N E B L I U A I V Y D
F H E B N T S B C V G U B B N U B T G V M C L G H P H F D A Z A E B D I S P H F H U G K U B Z T I U D
B L B S S U A T I Q O S H L I U A M S P N P B S

Check Lösungsvorschlag zu Aufgabe 2.14

Mit dem Schlüssel “OHA” kommen wir auf folgende Lösung:

I H R N A H T E U C H W I E D E R S C H W A N K E N D E G E S T A L T E N D I E F R U E H S I C
H E I N S T D E M T R U E B E N B L I C K G E Z E I G T V E R S U C H I C H W O H L E U C H D I
E S M A L F E S T Z U H A L T E N F U E H L I C H M E I N H E R Z N O C H J E N E M W A H N G E
N E I G T I H R D R A E N G T E U C H Z U N U N G U T S O M O E G T I H R W A L T E N W I E I H
R A U S D U N S T U N D N E B E L U M M I C H S T E I G T M E I N B U S

17

https://cryptbreaker.marcwidmer.xyz/solve

Kryptologie « Informatik, 2026

EDIT Aufgabe 2.15 Vigenère knacken bei bekannter Schlüssellänge (zu dritt)

Finden Sie für folgenden Vigenère-Text den Klartext heraus, wenn Sie wissen, dass der Schlüs-
sel Länge 3 hat:
WKJ LMU AKJ WZJ WQV WVV KBG ZBG JAV OMP FRG VMT WZM WVP LEK WMN WUG FBC JMK FMX WZN
SMU KTK UPG NMT KKJ DCG KAG DCP YNW WZW FAG JMH JMK ZMK LQU L

1. Finden Sie zuerst die häufigsten Buchstaben pro Gruppe heraus (Gruppe 3 ist bereits
gemacht, s. unten). Seien Sie genau, ansonsten müssen Sie später wieder von vorne
beginnen!

Notizen

2. Finden Sie danach den Schlüssel heraus, indem Sie annehmen, dass der häufigste Buch-
stabe im Geheimtext den Buchstaben „E“ im Klartext repräsentiert. Für Gruppe 3 ist
die Lösung bereits vorgegeben.

Häufigster Buchstabe Schlüssel

Gruppe 1

Gruppe 2

Gruppe 3 (E →) G (A →) C (=2 Verschiebungen)

3. Enschlüsseln Sie nun den Geheimtext, indem Sie die Caesar-Drehscheibe verwenden
(Tipp: Machen Sie jeweils eine Farbgruppe pro Mal).

___ ___
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _

Check Lösungsvorschlag zu Aufgabe 2.15

Häufigster Buchstabe Schlüssel

Gruppe 1 (E →) W (A →) S (=18 Verschiebungen)

Gruppe 2 (E →) M (A →) I (=8 Verschiebungen)

Gruppe 3 (E →) G (A →) C (=2 Verschiebungen)

ECH TES ICH ERH EIT ENT STE HTE RST WEN NJE DER ERK ENN TWI EEL EME NTA REI NEV
ERL AES SLI CHE VER SCH LUE SSE LUN GFU ERU NSE REF REI HEI TIS T

18

https://inventwithpython.com/cipherwheel/

Kryptologie « Informatik, 2026

Trophy Aufgabe (Challenge) 2.16

Versuchen Sie, auf diesem Link eine weitere Challenge-Aufgabe zu lösen, indem Sie die Werk-
zeuge „Frequency“ (Häufigkeit) und „Vigenère“ verwenden:

2.4.1.1 Bestimmung der Schlüssellänge mit dem Kasiski-Test

Wie Sie gesehen haben, kann man Vigenère gruppenweise mit denselben Methoden knacken, die wir
benutzt haben, um Caesar zu knacken. Falls die Schlüssellänge unbekannt ist, können sowohl der
Kasiski-Test wie auch die Friedman’sche Charakteristik verwendet werden, um diese zu erraten. In
diesem Unterabschnitt schauen wir uns zunächst den Kasiski-Test an.

Friedrich Kasiski war ein preussischer Infanteriemajor (1805 - 1868), welcher mit seinem Kasiski-
Test massgeblich zum Knacken der Vigenère-Verschlüsselung beigetragen hat. Den Kasiski-Test
veröffentlichte er 1863 in seinem Buch „Die Geheimschriften und die Dechiffrir-Kunst“ (siehe Ab-
bildung 2.8).

Abbildung 2.8: Umschlag des Buches „Die Geheimschriften und die Dechiffrir-Kunst“ von Friedrich
Kasiski (1863, Quelle)

19

https://cryptbreaker.marcwidmer.xyz/problems/vigenere
https://books.google.de/books?id=fB5dAAAAcAAJ

Kryptologie « Informatik, 2026

Die Grundidee hinter dem Kasiski-Test ist: Wenn ein Wort oder ein Wortteil im Klartext mehr-
mals vorkommen, so wird dieser möglicherweise auch im Kryptotext mehrmals vorkommen. Wenn
beispielsweise die Buchstaben „DIE“ mehrmals mit dem Schlüssel „KEY“ verschlüsselt werden, dann
wird der Text „LIV“ mehrmals im Geheimtext auftauchen. Wenn das Wort „DIE“ also zweimal im
Klartext vorkommt und auf denselben Schlüsselteil („KEY“, „EYK“ oder „YKE“) fällt, wird z.B. „LIV“
auch zweimal im Kryptotext gleich verschlüsselt sein.

Wenn wir also im Kryptotext nach wiederholten Sequenzen suchen, können wir daraus die Schlüs-
sellänge ableiten.

Beispiel 2.6:
In folgendem Beispiel ist der Klartext auf der ersten Zeile. Der Schlüssel “CODE” wird
verwendet, um den Gemeimtext (auf der dritten Zeile) zu erzeugen:

MEINKLEINERREIMSCHEINTKEINERZUSEIN

CODECODECODECODECODECODECODECODECO

OS
2
LRMZH

7
MPSUVGWPWEVH

19
MPHNI

24
KBHVBIVI

32
KB

Der Kasiski-Test erlaubt uns, Hinweise auf die Schlüssellänge zu erhalten, ohne den Schlüssel
zu kennen:

• Die Sequenzen „HMP“ und „IKB“ erscheinen jeweils zweimal im Geheimtext.
• Die Sequenz HMP befindet sich an den Positionen 7 und 19. Die Differenz zwischen diesen

Positionen beträgt 12, was sich als 2 × 2 × 3 in Primfaktoren zerlegen lässt.

7
Position 1 HMP

+ 4
Codewort-Länge!

× 3
Anzahl Codewörter

= 19
Position 2 HMP

• Die Sequenz IKB befindet sich an den Positionen 24 und 32. Die Differenz zwischen
diesen Positionen beträgt 8, was sich als 2 × 2 × 2 faktorisieren lässt.

24
Position 1 IKB

+ 4
Codewort-Länge!

× 2
Anzahl Codewörter

= 32
Position 2 IKB

• Die Schlüssellänge könnte, sofern man nur den Abstand zwischen den beiden HMP be-
trachtet, theoretisch auch 12 sein. Dann würden allerdings die beiden IKB nicht auf
denselben Schlüsselteil fallen. Daher ist dies nicht möglich.

• Den Primfaktoren 2 × 2 × 3 und 2 × 2 × 2 ist der Teil 2 × 2 gemeinsam, was darauf
hindeutet, dass die Schlüssellänge 4 sein könnte.

20

Kryptologie « Informatik, 2026

EDIT Aufgabe 2.17 Vigenère knacken bei bekannter Schlüssellänge (zu dritt)

Finden Sie den Klartext für folgende Nachricht heraus, wenn Sie wissen, dass der Text mit
Vigenère verschlüsselt worden ist. Wenden Sie den Kasiski-Test an!

UEUIOOCEUD
10
IWIOOWRRCL

20
WVUQURRCLW

30
VNDTHXETHE

40
RRCFKRTWVS

50
FYOQRNJJTG

60

RSVUAVIOOC
70
EQEIHRUIYO

80
HITQLNJZNJ

90
VSEVRJRUIL

100
NGUEUIOOCE

110
UDIWIOOWHR

120

VRWVAXWZXI
130
OOCEQIOOWA

140
WDEWVAXWUQ

150
UWRCLWVDLV

160
NDVCKJTHET

170
DXEYFMUFLO

180

VRQZCKKSPV
190
HUYOHIEQ

Anleitung:

• Die Position an allen 10, 20, 30 etc. Buchstaben sind oben bereits markiert, ebenso wie
Vorkommnisse des Trigramms IOO.

• Auf separatem Blatt:
1. Notieren Sie sich die Anfangspositionen aller Trigramme IOO.
2. Berechnen Sie die Abstände zwischen den Anfangspositionen. Es reicht, wenn Sie

nur die Abstände aller Anfangspositionen von IOO zum ersten Trigramm IOO an
Position 4 berechnen.

3. Zerlegen Sie die Abstände zwischen den Trigrammen in Primfaktoren.
4. Finden Sie den grössten gemeinsamen Teiler dieser Primfaktoren, um die

Schlüssellänge zu erraten.
• Wenn Sie die Schlüssellänge haben, färben Sie den Text abwechslungsweise ein, wie

in Aufgabe 2.15. Teilen Sie sich zu dritt auf, so dass jede Person eine Gruppe von
Buchstaben entschlüsselt (gleich wie in Aufgabe 2.15).

• Tipp: Der letzte Teil des Schlüssels ist “D”. Der Schlüssel ergibt ein Wort. Entschlüsseln
Sie den Text nun mit der Caesar-Drehscheibe! Entschlüsseln Sie zuerst nur die erste
Zeile, um zu überprüfen, ob ihr Schlüssel stimmt und zu einem sinnvollen Text führt.

21

https://inventwithpython.com/cipherwheel/

Kryptologie « Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 2.17

Positionen der Anfangs-Trigramme: 4, 13, 67, 106, 115, 130, 136. Abstände und Prim-
faktoren sind beispielsweise:

13 − 4 = 9 = 3 × 3
67 − 4 = 63 = 3 × 3 × 7

106 − 4 = 102 = 2 × 3 × 17
115 − 4 = 111 = 3 × 37
130 − 4 = 126 = 2 × 3 × 3 × 7
136 − 4 = 132 = 2 × 2 × 3 × 11

Man erkennt, dass die Primzahl 3 bei jeder Differenz vorkommt, also ist der Schlüssel
vermutlich 3. Wir können nun wie in Aufgabe 2.15 verfahren, um den Text zu kna-
cken. Mittels Häufigkeitsanalyse (und etwas Ausprobieren mit dem häufigsten, zweit-
häufigsten Buchstaben etc.) finden wir folgenden Schlüssel heraus: RAD. Somit kann
der Klartext nun entziffert werden:

DER ROL LER MIT ROL FRO LLT EUN DRO LLT ENA CHU NTE NRO LFH ATT ESC HON ANG STD ASS
DAS ROL LEN NIE AUF HOE RTN UNG ING ESB ERG AUF UND DER ROL LER MIT ROL FHO ERT EAU
FZU ROL LEN ROL FAT MET EAU FUN DWO LLT EDI ENA ECH STE NTA GEV OMR OLL ERN ICH TSM
EHR HOE REN

EDIT Aufgabe 2.18

Finden Sie die Schlüssellänge für folgenden Vigenère-Text heraus, indem Sie den Kasiski-Test
anwenden:

C M F B A M X P E S R G I L L D M N C E D M T K E H R P V F E I O K L H G I V S J Y S Q Z D M U X Y L
R B J I T Q N Z T D M O V M U M F C S D M U Z G D R T T H V I S G U M O U R N F I C F T R M F S E Q I
J K E S J B V H H K F L N C P F I N V M M C I F I K L G D R E C I B L F R U E I J E E F C N E A R M B
C E L E U L R T R E U A L M U R U E H J V A M J P I D D V V E G D R F Z N D W I F C G W D Y U K W U L
D H Y N J V N V O V B D R E V R E S F I D D V V E G H R U V L K I L K U D P M V R E E F Y I F O F Z T
D R V E D E I S K I F O F Z T D R X V R C I O U I D N V X E M H M Z C G I O R U B L J E I G V F I P D
V T F E M P J T H D R F E T V M D B L T R H L N S I S J T T I U Q T H Q W F R K M F X E M H F E L D M
U S I K H T Z N C D J V L D Y O U W D V U V F D W U X E G E M K E M R B T H C I O V N R M D Y D H I T
T H T P B E G D L P V R H K F E I M M I I E Q X B V G K M D Y E M E S S E H X S Z C G X F E E R F J C
D D X A L D D Q E Z E F V V E D K E H V F T I S U I D F F I P Q Y F W U M K V E S D V F J T T R T L N
C J V V R C M

Verwenden Sie dazu folgendes Online-Tool: https://cryptbreaker.marcwidmer.xyz/solve

1. Verwenden Sie das Analyse-Werkzeug „Kasiski-Analyse“, um die Abstände der sich
wiederholenden Sequenzen der Länge 4 zu bestimmen.

• Notieren Sie sich die Positionen und Abstände der sich wiederholenden Sequenzen
der Länge 4.

• Zerlegen Sie die Abstände in Primfaktoren.

22

https://cryptbreaker.marcwidmer.xyz/solve

Kryptologie « Informatik, 2026

• Finden Sie den grössten gemeinsamen Teiler der Abstände, um die Schlüssellänge
zu erraten.

2. Überprüfen Sie Ihre Vermutung, indem Sie im Analyse-Werkzeug die Häufigkeitsanalyse
mit der Schrittweite (stride) gleich der vermuteten Schlüssellänge durchführen.

3. Entschlüsseln Sie den Text mit dem „Vigenère“-Entschlüsslungswerkzeug.

Check Lösungsvorschlag zu Aufgabe 2.18

1. Wir beobachten folgende Positionen und Abstände bei den Zeichenfolgen der
Länge 4:

• XEMH: 283, 348 (Abstand 65) → 5 × 13
• IDDV: 223, 178 (Abstand 45) → 3 × 3 × 5

Bereits aus diesen beiden Zeichenfolgen erkennen wir einen gemeinsamen Teiler
von 5 und somit eine mögliche Schlüssellänge von 5.

2. Die Häufigkeitsanalyse mit Schrittweite 5 bestätigt unsere Vermutung, da die
Häufigkeitsverteilung pro Gruppe stark von der Gleichverteilung abweicht.

3. Mit dem Schlüssel ZEBRA können wir den Text entschlüsseln und enthalten einen
Ausschnitt des Leitbilds der Kantonsschule im Lee.

EDIT Aufgabe 2.19

1. Erklären Sie kurz: Dopplungen im Klartext (z.B. „EIN“) führen nicht unbedingt zu
Dopplungen im Geheimtext.

2. Erklären Sie kurz: Dopplungen im Geheimtext müssen nicht in jedem Fall aus Dopp-
lungen im Klartext stammen; sie können auch zufällig entstehen.

Check Lösungsvorschlag zu Aufgabe 2.19

Kurzbegründungen:

• Bei polyalphabetischer Verschlüsselung werden gleiche Trigramme an verschiede-
nen Textpositionen oft mit verschiedenen Schlüsselzeichen verschlüsselt, sodass
Wiederholungen im Klartext nicht zwangsläufig gleiche Geheimtrigramme erge-
ben (s. z.B. Beispiel 2.6).

• Geheimtext-Dopplungen können aber auch zufällig entstehen (z.B. “OML”), wenn
verschiedene Klartextfolgen unter unterschiedlichen Schlüsselteilen zufällig iden-
tische Geheimfolgen produzieren. Beispiel:

– Klartext: EIN mit Schlüsselteil KEY → Geheimtext: OML
– Klartext: KOB mit Schlüsselteil EYK → Geheimtext: OML

Trophy Aufgabe (Challenge) 2.20

Lösen Sie den Kasiski-Test online:

23

https://www.ksimlee.ch/schule/leitbild/
https://www.dominikus-gymnasium.de/kasiski-test-spiel.html

Kryptologie « Informatik, 2026

2.4.1.2 Bestimmung der Schlüssellänge: Friedman’sche Charakteristik

Eine weitere Möglichkeit, die Schlüssellänge zu erraten, besteht in der Verwendung der sogenannten
Friedman’schen Charakteristik.

William Friedman (1891-1969) war ein russisch-amerikanischer Kryptologe und Pionier auf dem
Gebiet der Kryptoanalyse (siehe Abbildung 2.9). Kurz vor dem Ausbruch des zweiten Weltkriegs
gründete er den Signals Intelligence Service (SIS), eine Geheimabteilung des US-Militärs zur Ent-
zifferung feindlicher Codes und Geheimschriften.

Abbildung 2.9: William Friedman (Quelle)

Die Friedman’sche Charakteristik macht sich zunutze, dass Buchstaben im Klartext ungleich ver-
teilt sind. Falls jeder Buchstabe gleich häufig vorkommen würde, wäre die erwartete Häufigkeit jedes
Buchstabens genau 1/26. In keiner natürlichen Sprache besitzen alle Buchstaben dieselbe relative
Häufigkeit. Die Häufigkeitsverteilung der Buchstaben in deutschen Texten haben wir bereits in Ta-
belle 2.1 gesehen. Die relative Häufigkeit des Buchstabens „E“ in deutschen Texten ist beispielsweise
ca. 17.4%. Die relative Häufigkeit eines Buchstabens � in einem Text T bezeichnen wir mit h�(T).

Die Friedman’sche Charakteristik berechnet, wie ungleich alle Buchstaben in einem Text verteilt
sind, indem sie die quadrierte Differenz der relativen Häufigkeit jedes Buchstabens zu 1/26 berech-
net. Diese quadrierten Abweichungen werden danach alle aufsummiert (siehe. Gleichung (2.1)).

Bemerkung 2.1:
Das Quadrieren der Abweichungen (Differenzen) hat zwei Effekte:

• Quadrate von reellen Zahlen sind sicherlich nicht negativ.
• Grosse Abweichungen von 1/26 tragen aufgrund des Quadrierens überproportional zur

Summe (zur Friedmansch’schen Charakteristik) bei.

FC(T) =
(

hA(T) − 1
26

)2
+

(
hB(T) − 1

26

)2
+ . . . +

(
hZ(T) − 1

26

)2
(2.1)

=
∑

∆∈Alphabet

(
h∆(T) − 1

26

)
(2.2)

Eine stark ungleiche Verteilung von Buchstaben in einem Text T führt also zu einer hohen Fried-
man’schen Charakteristik FC(T), währenddem gleichmässig verteiltere Buchstaben im Text T zu

24

https://de.wikipedia.org/wiki/William_Friedman#/media/Datei:William-Friedman.jpg

Kryptologie « Informatik, 2026

einer tieferen FC(T) führen. Deutschsprachige (Klar-)Texte haben durchschnittlich etwa einen Wert
von 3.8% (0.038) (siehe Abbildung 2.10).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0%

5%

10%

15%

20%
+2

.3
%

-0
.7

%
+0

.5
%

-3
.6

%
-1

.8
%

-3
.8

%
-3

.8
%

-2
.5

%
+0

.5
%

-2
.3

%
+1

.0
%

+1
.5

%
+1

6.
1%

-2
.3

%
+0

.3
%

-0
.2

%
+3

.5
%

-3
.8

%
-2

.9
%

+0
.2

%
-1

.3
%

+9
.3

%
-2

.7
%

-3
.4

%
-3

.8
%

+3
.7

%

1/26 (3.85%)

Abbildung 2.10: Buchstabenhäufigkeit in einem mit Caesar verschlüsselten Text, im Vergleich zur
Gleichverteilung von Buchstaben

Je grösser die blauen Pfeile in Abbildung 2.10, desto höher die Friedman’sche Charakteristik.

Wir können nun folgenden Brute-Force-Ansatz verwenden, um die Schlüssellänge mit der Fried-
man’schen Charakteristik zu bestimmen:

• Alle möglichen Schlüsselwortlängen von 1 bis zu einer beliebig gewählten Zahl n ausprobieren,
wobei n praktisch nie über 10 gewählt wird.

• Buchstaben jeweils in Gruppen unterteilen:
– 2 Gruppen: MU ZK JL QP AW JU MH YI IL LC ZA UP MR LZ HL SV CM TZ BC UL GU PC IM PD QG

TI PC QI LV GY MG UB UJ PN BM UZ MN AP GY HN PK JL OT HB WS IV PW PK IH B

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0%

2%

4%

6%

8%

10%

FCT : 1.54%

(a) Gruppe 1
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0%

2%

4%

6%

8%

10%

FCT : 1.55%

(b) Gruppe 2

Abbildung 2.11: Buchstaben-Häufigkeiten und FCT für Schlüsssellänge=2

– 3 Gruppen: MUZ KJL QPA WJU MHY IIL LCZ AUP MRL ZHL SVC MTZ BCU LGU PCI MPD QGT IPC
QIL VGY MGU BUJ PNB MUZ MNA PGY HNP KJL OTH BWS IVP WPK IHB

25

Kryptologie « Informatik, 2026

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0%

2%

5%

8%

10%

12%

15%

18%

20%

FCT : 5.04%

(a) Gruppe 1
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0%

2%

4%

6%

8%

10%

12%

14%

16%

FCT : 4.07%

(b) Gruppe 2
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0%

5%

10%

15%

20%

25%

FCT : 7.03%

(c) Gruppe 3

Abbildung 2.12: Buchstaben-Häufigkeiten und FCT für Schlüsssellänge=3

– 4 Gruppen: MUZK JLQP AWJU MHYI ILLC ZAUP MRLZ HLSV CMTZ BCUL GUPC IMPD QGTI PCQI
LVGY MGUB UJPN BMUZ MNAP GYHN PKJL OTHB WSIV PWPK IHB

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0%

2%

4%

6%

8%

10%
FCT : 1.54%

(a) Gruppe 1
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0%

2%

4%

6%

8%

10%

FCT : 1.47%

(b) Gruppe 2
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0%

2%

4%

6%

8%

10%

FCT : 1.54%

(c) Gruppe 3
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0%

2%

4%

6%

8%

10%

FCT : 1.64%

(d) Gruppe 4

Abbildung 2.13: Buchstaben-Häufigkeiten und FCT für Schlüsssellänge=4

– etc, bis zu Schlüssellänge = n
• Für jede der Schlüssellängen: Durchschnittliche FC(T) für alle Gruppen berechnen.
• Wenn die richtige Schlüssellänge (oder ein Vielfaches davon) gewählt wurde, sollte FC(T)

höher sein.

Die durschschnittliche Friedman’sche Charakteristik für jede der getesteten Schlüssellängen ist ge-
zeigt in Abbildung 2.14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
2%

2%

2%

3%

4%

4%

5%

5%

6%

Abbildung 2.14: Durchschnittliche Friedman’sche Charakteristik für jede Schlüssellänge

Aus Abbildung 2.14 lässt sich ablesen, dass die Schlüssellänge vermutlich 3 sein muss, da bei jedem

26

Kryptologie « Informatik, 2026

Vielfachen der Schlüssellänge 3 die durchschnittliche Friedman’sche Charakteristik höher ist als
für die restlichen Schlüssellängen. Ab nun lässt sich gleich vorgehen wie in Unterabschnitt 2.4.1
beschrieben, um den Text zu entschlüsseln.

EDIT Aufgabe 2.21

Berechnen Sie die Friedman’sche Charakteristik für folgende beide Texte von Hand:

P A P P E R L A P A P P

B A C K S T E I N

Wie interpretieren Sie die beiden Zahlen?

Check Lösungsvorschlag zu Aufgabe 2.21

Die Friedman’sche Charakteristik beträgt 29.5% und 7.3%, respektive. Wie sie sehen,
ist die Friedmansch’e Charakteristik höher für Texte, bei denen jeder Buchstabe relativ
häufiger vorkommt.

EDIT Aufgabe 2.22

Für welche Buchstabenverteilung sollte die Friedman’sche Charakteristik höher sein: Abbil-
dung 2.6, (a) oder (b)?

Check Lösungsvorschlag zu Aufgabe 2.22

FC(T) sollte für Abbildung 2.6 (a) höher sein, da die durchschnittliche relative Häu-
figkeit der Buchstaben im Kryptotext ungleicher ist.

EDIT Aufgabe 2.23

Kopieren Sie den folgenden Kryptotext und versuchen Sie, ihn mit dem Analysetool zu ent-
ziffern, indem Sie zuerst das Tool “Friedman” und danach das Tool “Frequency” verwenden.
Wie lautet der Schlüssel?

F Z N Z K V E D Z F C R R Z V F Z T Z F L V I O V B K M Z W O V G V B A V S Z S M V E D B H V N J A N
V N B Z F Z C C R F E S P S T J E I T S L E C Z J E G N A P I G Z B E Z E D Q I D I O U B E Z Z A I V
R U S O X E I W F J S Z W D Y B D B B C L Z W O L N Y T S V U Z A J T H H S J E E N Z F S E I G J E D
D S T V R B S H V N Y R J V F P S S J O G Q I V S Z S M V N B S T T H V T G V N D G U N I Z R J V M Z
W O V I X V C Z N N C H C U Z Q L C I X V N V I I P F J T Z F T F G V B A Z N Y S N X E A I F Y L Z J
P E R P V J X E H R B J E D B W V R N I O B E I R B J S H S J E E F I O J T Y O S L N O S S C E D R F
K I X V L F E I B U V J Z H A K N D Q I K Z Z W D Y N Z B O Z C C H F Z N Z B T K R D Q I L N Y P J E
N D S F Z N B F P V S N S S V R H O M V R B S X V S Z B B C S D B E Z E N S O R U B S O S L D Q L V N
R S O E D V G M Z E W S U R L P A N Z C C R B D P A H V E D Y W F Y O C S T F N I S B E D Z F P S E M
T M R E X V F U E M I O U U M Q I U R D B H C I X V F E F D B T K E M B J J M Z W O V S R O M U E N F
V Y T P B E E U M S J E Z Z Z O V S O F B Y L Z B T Z C C W O U A N W O E E M S I V I G W H K U H G U
V H G S O Z C C R B E N D A I F H Z B H I A N S B D F V Z M V N Y S O S A X V F C I Z U F L N Y B B V
H Z F B E D Z F F I D Z H B L S Z B E D A I B J X F V Z U Z G Z U S R E N Q I V N H W S D E M Y X L E
M R J X W Z F E V N R S O E I X V E R S R W N D E G B E V R F Z F Z N Z B X V L O N X Z S X V F E H V
Z N V N Y W F L N U O F Y L D U F E U I S S X R P S O U L D Q I V N B S T K A G H F E D Z F X L E M A

27

https://cryptbreaker.marcwidmer.xyz

Kryptologie « Informatik, 2026

D Y E I R F I M P S D B C C S O E A Z V F I A I A F Z N Z A I V R U S O W U Z V M V U I R G L E C Z F
U I Z U F X E I K B I T Y S T R L G A B V C C H J X E I R F I U I G O R C C G F Z N Z A C Z L Y S T T
H P T E R S R S I V N Y S T R L G W F S E I R F E D Z F V E S D B F N I B S S N O I B F J C C K F S E
I R U I A Z U U L N Y S S Y A Z Z U D E D B G I E P B E N E I B T U A I B V D M Z W O V A P U F E D V
S N D E M H V E D Y W F N E G H V D M D Q I Y E M I O U D Z F I Z M H S M X A I N J E M Z W O V R N S
F C E M I I E W D S E Z E B S T K A G H F Z N Z F H V L D S C K E I R B E N N S I E E D Q I D I X V P
W T P B E U E I Y F R C C Y P V N I H F J T Y I E R S R W F U E M O V J D M I F T K Z B L F E I B U V
S O R V U E H D B G I Z F F U A N S J E H V I D Y E I K B J S J J P C L N C X R R H W O U I M Z F S T
Y O T J E N K V V R Y S E V R N D J V G Z Z E V I I S S J E Z Z F N I Z R F Z N Z G F V L Z W T K D Z
F T G I Z U F C D Z G V E E I R M Z C C S O X O O H F J M Z W O W R Z I O U A W S S Z C C U F Y E Y O
S L E W S S Q U B F V E D Z W D Y E M Z J V G Z I O K E M R F I G Z K B C T Y S S Y E M F M Z C C Y F
Z T Y W F J E M S S J C C S J E U I U F E E D B F N U I R F I B V F F Y E D H F I K Z W U Y A O A F Z
N Z U B E Z Z G F V L Z S J E G Z B P D M Z B H C E D Q I U E I G V V S N S O W R P S I C I I U T D O
M U F E D D S J T H H W U X A I N F D H Z F A V N B S O Z E N G F Z C C P J E A G Z F Z N P B E W R Z
I F D I X V N V I I S T C E W S O J I I R J V S Z F H V G Z B E U I Z T V V R N C M T H Z G F V L Z B
H V S X V B W F Z B J J T R W F U I Z A F Z N Z W D Y B D B T F G G I F T K G W D Y M Z W O S E N H F
I S J U

Check Lösungsvorschlag zu Aufgabe 2.23

Der Schlüssel lautet “BRAVO”.

Trophy Aufgabe (Challenge) 2.24

Berechnen Sie die Friedman’sche Charakteristik für folgenden Kryptotext:

W O R B H H H L U Q O W W L D S Y S Q O W O U K S U D S N E G A A Z A E B K I S M R I L H G P C V L I
B Z T R L M H Y U S I E B I L W J K U L Z S P G H C E F Z U Q O I Q O W C O L S B C V K I S Z M O S F
S Z T N B H O S T S U F I L H Z P C V T E W U H S Y Z B V C V Q E B L M K H H B N E B L I U A I V Y D
F H E B N T S B C V G U B B N U B T G V M C L G H P H F D A Z A E B D I S P H F H U G K U B Z T I U D
B L B S S U A T I Q O S H L I U A M S P N P B S

Verwenden Sie dazu das Python-Skript auf Moodle, mit der Funktion def calculate_fc(
text). Was entnehmen Sie der ihrer Antwort? Wurde der Text mit Caesar oder mit Vigenère
verschlüsselt?

Check Lösungsvorschlag zu Aufgabe 2.24

Der tiefe Wert von 1.4% deutet darauf hin, dass der Text vermutlich mit Vigenère
verschlüsselt wurde.

28

Kryptologie « Informatik, 2026

Trophy Aufgabe (Challenge) 2.25 Ver- und Entschlüsslung mit Python (zu zweit)

Laden Sie zuerst die Vigenère-Python-Dateien von Moodle herunter. Erstellen Sie danach
einen Text in deutscher Sprache mit mindestens 1000 Zeichen, beispielsweise mittels folgen-
der Webseite: https://www.blindtextgenerator.de/. Diesen werden Sie nun mit Python
verschlüsseln.

Teil 1: Verschlüsselung

• Verschlüsseln Sie Ihren Text, indem Sie die Funktion def vigenere(text, key, encrypt
=True) verwenden.

• Senden Sie Ihren verschlüsselten Text an Ihre(n) Partner(in), nicht aber den Schlüssel.

Teil 2: Entschlüsselung

• Sie erhalten den Kryptotext und müssen nun zuerst den Schlüssel herausfinden. Be-
stimmen Sie diese mithilfe der Friedman’schen Charakteristik, indem Sie die Funktion
def get_friedman_vals(text, maxkeylen) verwenden.

• Nachdem Sie die Schlüssellänge bestimmt haben, finden Sie innerhalb jeder Gruppe
dem häufigsten Buchstaben. Dies können Sie mit der Funktion def show_letter_freq
(text) einfach umsetzen. Somit sollten Sie das Schlüsselwort herausfinden können.

• Entschlüsseln Sie nun den Kryptotext, indem Sie die Funktion def vigenere(text,
key, encrypt=False) verwenden.

Trophy Aufgabe (Challenge) 2.26

Lösen Sie drei “beliebige Probleme” auf der Analyse-Webseite.

2.5 One-Time-Pad
Der Fortschritt in der Mathematik und das neu dazugekommene Wissen machten Vigenère zu einem
unsicheren Kryptosystem.

Vigenère und dessen Kryptoanalyse haben wir bereits besprochen. Wir haben gesehen, dass eine
Kryptoanalyse vor allem dann leicht ist, wenn der verwendete Schlüssel zu kurz gewählt wird, denn
die wesentliche Schwäche von Vigenère ist die Wiederholung der Muster im Kryptotext bei zu kurz
gewähltem Schlüssel. Betrachten wir als Beispiel einen Kryptotext aus 1000 Buchstaben, der mit
einem Schlüssel der Länge fünf verschlüsselt ist. Das bedeutet, dass jeder fünfte Buchstabe und
somit insgesamt je 200 Buchstaben anhand der gleichen Zeile der Vigenère-Tabelle verschlüsselt
sind. Das heisst, dass je 200 Buchstaben mit dem gleichen Schlüsselbuchstaben verschlüsselt sind.
Durch eine Häufigkeitsanalyse von 200 Buchstaben kann ein Kryptoanalytiker bereits den entspre-
chenden Buchstaben des Schlüssels bestimmen. Was wäre aber, wenn der verwendete Schlüssel aus
50 Buchstaben bestehen würde? Dann muss eine Häufigkeitsanalyse von 50 Teilen zu je 20 Buchsta-
ben gemacht werden. Es ist nicht garantiert, dass man aus nur 20 Buchstaben eine repräsentative
Häufigkeitsverteilung erhält. Gehen wir noch einen Schritt weiter und wählen einen Schlüssel, der
genau gleich lang ist wie der Klartext. Nun ist eine Häufigkeitsanalyse völlig unmöglich, da wir es
mit 1000 Teilen zu je nur einem Buchstaben zu tun haben.

Die One-Time-Pad-Verschlüsselungsmethode (OTP, deutsch “Einmalschlüssel-Verfahren”) funktio-
niert im Prinzip identisch wie die Vigenère-Methode, mit folgenden drei Unterschieden:

1. Der Schlüssel besteht auf einer zufälligen Folge von Buchstaben

29

https://www.blindtextgenerator.de/
https://cryptbreaker.marcwidmer.xyz

Kryptologie « Informatik, 2026

2. Der Schlüssel ist genau gleich lang wie der Klartext/Kryptotext
3. Der Schlüssel wird nur für genau eine Botschaft verwendet

Beispiel 2.7:
Folgendes Beispiel verwendet einen OTP-Schlüssel:

Klartext: OERLIKON
Schlüssel: IGBQPWXD
Kryptotext: WKSBXGLQ

Essentiell handelt es sich beim OTP um dasselbe Verschlüsselungsverfahren wie bei Vigenère, wo-
bei der Schlüssel gleich lang wie die zu verschlüsselnde Nachricht sein muss. Diese Methode gilt als
sicher, da die gruppenweise Häufigkeitsanalyse (z.B. mit der Friedman’schen Charakteristik) nicht
funktioniert. Allerdings ist die OTP-Methode aufgrund der längeren Schlüssellänge mit höheren
Übertragungskosten verbunden. Zudem darf jeder Schlüssel zur Sicherheit nur einmal verwendet
werden, was für regelmässige Datenaustausch-Anwendungen wie E-Mail, Online-Banking etc. un-
praktisch ist.

Vorgehen 2.1 (Kryptosystem OTP):

Klartextalphabet: Alphabet der lateinischen Grossbuchstaben.
Kryptotextalphabet: Alphabet der lateinischen Grossbuchstaben.
Schlüsselmenge: Alle denkbaren Texte bestehend aus lateinischen Grossbuchstaben, welche

dieselbe Länge haben wir der Klartext. Es ist wichtig, dass für jeden Klartext ein
Schlüssel zufällig generiert wird.

Verschlüsselung: Gegeben ist ein zufällig gewählter Schlüssel s aus der Schlüsselmenge.
Der gegebene Klartext wird nun (wie gewohnt) mit Hilfe der Vigenère-Tabelle mit dem
Schlüssel s verschlüsselt. Der Schlüssel darf danach nicht mehr verwendet werden.

Entschlüsselung: Gegeben ist ein zufällig gewählter Schlüssel s aus der Schlüsselmenge.
Der gegebene Kryptotext wird (wie gewohnt) durch Vigenère mit dem Schlüssel s ent-
schlüsselt.

Warum erscheint uns das OTP als ein sicheres Kryptosystem? Die Intuition ist wie folgt. Weil der
Schlüssel zufällig gewählt wird und genauso lang ist wie der Klartext, wird jeder Buchstabe des
Klartextes um zufällig viele Positionen im Alphabet verschoben. Damit kann man den Kryptotext
als eine zufällige Folge von Buchstaben betrachten. Und aus einer zufälligen Folge von Buchstaben
kann man keine Informationen herauslesen.

Alice und Bob haben sich in einem geheimen treffen schon vor einigen Tagen auf den geheimen
Schlüssel der Länge 5 für das OTP geeinigt. Alice verwendet nun den mit Bob vereinbarten Schlüssel,
um eine geheime Nachricht (Kryptotext) an ihn zu senden. Der gesendete Kryptotext lautet GVRCL.

Eve hat den Nachrichtenaustausch belauscht und somit den Kryptotext in Erfahrung gebracht. Sie
möchte nun den Klartext herausfinden um zu erfahren, was Alice und Bob unternehmen werden. Eve
vermutet, dass der Kryptotext mit dem sicheren OTP verschlüsselt ist. Da der verwendete Schlüssel
gleich lang ist wie der Klartext, ist eine Kryptoanalyse mit der Häufigkeitsanalyse unmöglich.

30

Kryptologie « Informatik, 2026

EDIT Aufgabe 2.27

(a) Wie viele mögliche Schlüssel der Länge 5 gibt es?
(b) Kann Eve den Kryptotext GVRCL entschlüsseln, falls sie (im schlimmsten Fall) alle Mög-

lichkeiten durchprobiert?

Check Lösungsvorschlag zu Aufgabe 2.27

(a) Es gibt 265 = 11′881′376 verschiedene Möglichkeiten.
(b) Selbst wenn sie alle Schlüssel ausprobieren würde, gäbe es viele Klartexte die

denkbar wären. Eve könnte nicht wissen, welches der tatsächliche Klartext ist.

Dennoch hat Eve das Gefühl, dass sie die geheime Nachricht erraten kann. Die Anzahl aller Klar-
texte, die aus fünf Buchstaben einen sinnvollen Text ergeben, wird vermutlich nicht so gross sein.
Ausserdem weiss Eve, dass sich Alice und Bob verabreden wollen. Eve listet deshalb einige sinnvolle
Texte zu je fünf Buchstaben auf. Für jeden dieser möglichen Klartexte bestimmt sie den Schlüssel
(mit Hilfe der Vigenère-Tabelle), der den entsprechenden Text zu dem gegebenen Kryptotext GVRCL
verschlüsseln würde.

möglicher Klartext entsprechender Schlüssel

BADEN FVOYY

ESSEN CDZYY

LESEN VRZYY

SPORT OGDLS

VIDEO LNOYX

Tabelle 2.3: Entsprechende Schlüssel bei geratenen möglichen Klartexten (BADEN, ESSEN, LE-
SEN, SPORT, VIDEO) für abgehörten Kryptotext GVRCL.

Jeder dieser Texte kann also durch den angegebenen Schlüssel zum Kryptotext GVRCL verschlüsselt
werden. Welcher Text entspricht nun der richtigen Nachricht? Alice und Bob haben ihren geheimen
Schlüssel zufällig bestimmt, das heisst, jeder mögliche Schlüssel kann mit der gleichen Wahrschein-
lichkeit ausgewählt werden. Eve hat daher keine Möglichkeit herauszufinden, welche dieser vier
möglichen Klartexte der geheimen Nachricht entspricht. Es ist auch möglich, dass der richtige Klar-
text nicht in der Liste steht. Somit hat Eve keine Chance irgendeinen Teil des Klartextes oder des
Schlüssels zu erfahren.

Ein Hauptproblem aller symmetrischen Verschlüsselungsverfahren besteht jedoch darin, dass der
Schlüssel erst einmal über einen sicheren Kanal ausgetauscht werden muss. Vor dem Internet erfolgte
dies durch einen Postboten, heute ist dies allerdings nicht mehr praktikabel. Dies werden wir im
nächsten Kapitel besprechen.

31

Kryptologie « Informatik, 2026

EDIT Aufgabe 2.28

Wie viele mögliche Schlüssel hat der OTP für eine Nachricht der Länge n?

Check Lösungsvorschlag zu Aufgabe 2.28

26n.

2.5.1 Kryptoanalyse bei mehrfacher Verwendung des Schlüssels

Nun wollen wir wissen, weshalb ein Schlüssel beim OTP nur einmal verwendet werden darf. Dazu
schauen wir uns einen erneuten Nachrichtenaustausch zwischen Alice und Bob an. Alice möchte Bob
nämlich eine weitere geheime Nachricht schicken. Da die zwei jedoch zuvor keinen zweiten Schlüssel
vereinbart haben, verwendet Alice den gleichen Schlüssel ein zweites Mal. Diesmal erhält Bob von
Alice den folgenden Kryptotext: ADRCM.

Eve hat ihr Vorhaben, die beiden zu belauschen, noch nicht aufgegeben und versucht erneut die
verschlüsselte Mitteilung zu lesen. Wenn Alice und Bob für die zweite Nachricht einen neuen zufäl-
ligen Schlüssel ausgemacht hätten, dann könnte Eve erneut nichts mit dem Kryptotext anfangen.
Alice war jedoch nachlässig und verwendete den gleichen Schlüssel ein zweites Mal, um sich mit
Bob zu verabreden. Eve ergänzt ihre Tabelle mit einer dritten Spalte. In dieser Spalte notiert sie
den Klartext, der entsteht, wenn sie den zweiten Kryptotext mit dem entsprechenden Schlüssel aus
der zweiten Spalte entschlüsselt.

möglicher Klartext entsprechender Schlüssel möglicher Klartext für die zweite Nachricht

BADEN FVOYY VIDEO
ESSEN CDZYY YASEO
LESEN VRZYY FMSEO
SPORT OGDLS FMSEO
VIDEO LNOYX PQDEP

Tabelle 2.4: Entschlüsslung eines weiteren abgehörten Kryptotextes (ADRCM) durch die vorher
bestimmten denkbaren Schlüsselkandiaten. Der Schlüsselkandidat FVOYY erzeugt aus beiden ab-
gehörten Kryptotexten einen sinnvollen Klartext.

Und siehe da, fast alle Texte in der dritten Spalte ergeben keinen Sinn, ausser dem Text in der ersten
Zeile. Eve erkennt, dass mit dem Schlüssel FVOYY sowohl der erste wie auch der zweite Kryptotext
zu einem sinnvollen Text entschlüsselt werden können. Durch den Vergleich der Entschlüsselun-
gen des ersten und des zweiten Kryptotextes bei gleichem Schlüssel konnte Eve die tatsächlichen
Klartexte und den Schlüssel herausfinden.

32

Kryptologie « Informatik, 2026

2.5.2 Bin-OTP

Das Kryptosystem Bin-OTP funktioniert fast gleich wie das OTP, nur dass wir nicht mit dem
lateinischen Alphabet der Grossbuchstaben arbeiten wollen, sondern lediglich mit dem binären
Alphabet {0, 1}. Aus der grossen Vigenère-Tabelle in Tabelle 2.2 wird im binären Alphabet die
übersichtliche (binäre) Vigenère-Tabelle:

0
0
0
11

1
1
0

Schlüsselbuchstabe

K
la

rt
ex

tb
uc

hs
ta

b
e

Abbildung 2.15: Vigenère-Tabelle für das binäre Alphabet.

Der Tabelle entnehmen wir, dass der Klartextbuchstabe 0 durch den Schlüssel 0 zum Kryptotext-
buchstaben 0 wird. Man verwendet für die Verschlüsslung mit der binären Vigenère-Tabelle eine
besondere Schreibweise. Für die Verschlüsslung des Klartextbuchstaben 0 durch den Schlüssel 0
schreiben wir

0 ⊕ 0 = 0.

Wird 0 durch 1 verschlüsselt erhalten wir den Kryptotextbuchstaben 1 (siehe Tabelle) und schreiben

0 ⊕ 1 = 1.

Bitte beachten Sie, dass auch

1 ⊕ 0 = 1

sowie

1 ⊕ 1 = 0

gilt. Die Verschlüsslung mit dem binären OTP erfolgt nun, indem Bit für Bit die Operation ⊕ (ge-
mäss binärer Vigenère-Tabelle) durchgeführt wird. Analog haben wir mit den lateinischen Buchsta-
ben auch die Verschlüsselung Buchstabe für Buchstabe mithilfe der Vigenère-Tabelle durchgeführt.

Beispiel 2.8:
Folgendes Beispiel illustriert, wie die Verschlüsselung mit dem Bin-OTP funktioniert:

• Der Klartext ist gegeben durch 101 und der Schlüssel durch 111. Dann ist der Krypto-
text gegeben durch 101 ⊕ 111 = 010:

1 0 1
⊕ 1 1 1

0 1 0
• Der Klartext ist gegeben durch 011101 und der Schlüssel durch 110001. Dann ist der

Kryptotext gegeben durch

011101 ⊕ 110001 = 101100.

33

Kryptologie « Informatik, 2026

EDIT Aufgabe 2.29

Berechnen Sie den Kryptotext zu dem gegebenen Klartext

110010100

und zum Schlüssel

101110001.

Check Lösungsvorschlag zu Aufgabe 2.29

Der Kryptotext lautet
110010100

⊕ 101110001
011100101

.

EDIT Aufgabe 2.30

(a) Berechnen Sie sowohl

100110 ⊕ 001011

als auch

001011 ⊕ 100110.

Was stellen Sie fest?
(b) Seien a und b zwei beliebige Bits. Begründen Sie, warum stets die Gleichheit

a ⊕ b = b ⊕ a

gilt. Wie heisst diese Eigenschaft?

34

Kryptologie « Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 2.30

(a) Wir berechnen

100110 ⊕ 001011 = 101101

sowie

001011 ⊕ 100110 = 101101.

In beiden Fällen erhalten wir dasselbe Resultat.
(b) Es gibt lediglich die 4 Fälle, welche wir der binären Vigenère-Tabelle entnehmen

können. In den beiden Fällen a = b = 0 sowie a = b = 1 ist die Reihenfolge von
a und b offensichtlich jeweils irrelevant, da sie identisch sind. In den beiden Fälle
a = 1 und b = 0 sowie a = 0 und b = 1 gilt

a ⊕ b = 1 ⊕ 0 = 1 = 0 ⊕ 1 = b ⊕ a.

Damit sagt man, dass die Operation ⊕ kommutativ ist. Die Reihenfolge der
Operanden spielt bei der Operation ⊕ keine Rolle.

EDIT Aufgabe 2.31

Sei a eine beliebige binäre Folge (denken Sie sich z.B. a = 1100101).

(a) Was macht die Verschlüsslung a ⊕ a von a mit sich selbst?
(b) Mit 0 bezeichnen wir im Folgenden eine Folge aus lauter Nullen derselben Länge wie a.

Was macht die Operation a ⊕ 0?

Check Lösungsvorschlag zu Aufgabe 2.31

Mit Hilfe der binären Vigenère-Tabelle begründen wir:

(a) a ⊕ a = 0
(b) a ⊕ 0 = a

Es lässt sich beweisen, dass die Operation ⊕ auch assoziativ ist. Die Klammerung der Terme spielt
also keine Rolle. Für beliebige binäre Folgen a, b und c derselben Länge gilt also

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).

Dies gilt auch für mehr als drei Operanden.

35

Kryptologie « Informatik, 2026

EDIT Aufgabe 2.32

Es sei t ein gegebener (binärer) Klartext. Alice wählt zufällig einen binären Schlüssel sA

derselben Länge wie t und berechnet

kA := t ⊕ sA.

Was erhält Alice, wenn sie nun

kA ⊕ sA

berechnet, also ihren Schlüssel erneut anwendet?

Check Lösungsvorschlag zu Aufgabe 2.32

Sie erhält den Klartext t zurück, denn

kA ⊕ sA =
(t ⊕ sA) ⊕ sA =
t ⊕ (sA ⊕ sA) =
t ⊕ sA ⊕ sA︸ ︷︷ ︸

=0

=

t ⊕ 0 =
t.

36

Kapitel 3

Schlüsseltausch-Verfahren

Abbildung 3.1: Schlüsseltausch

37

Kryptologie « Informatik, 2026

3.1 Drei-Wege-Schlüsseltausch

Vorgehen 3.1 (Kommunikationsprotokoll Three-Pass Protocol):
Das Kommunikationsprotokoll Three-Pass Protocol (auch Schlüsseltausch mit drei Durch-
gängen genannt) ermöglicht es Alice, einen geheimen Schlüssel t an Bob zu senden, ohne dass
sie zuvor einen gemeinsamen geheimen Schlüssel vereinbart haben. Dazu verwenden sowohl
Alice als auch Bob jeweils einen eigenen zufälligen Schlüssel (sA bzw. sB).
Ausgangssituation: Alice besitzt einen zufälligen binären Schlüssel sA der Länge n. Bob

besitzt ebenfalls einen zufälligen binären Schlüssel derselben Länge n.
Ziel: Alice hat zuvor einen geheimen binären Schlüssel t der Länge n gewählt. Diesen Schlüs-

sel (das ist hier der Klartext) möchte sie über einen unsicheren Kanal an Bob senden,
ohne dass Unbefugte den Schlüssel erfahren.

1. Alice verschlüsselt den zu verschickenden Schlüssel t (Klartext) mit ihrem Schlüssel sA

kA := t ⊕ sA

und sendet den entstandenen Kryptotext kA an Bob.
2. Bob verschlüsselt die empfangene Nachricht kA nun auch mit seinem Schlüssel sB:

kAB := kA ⊕ sB

und sendet den Kryptotext kAB zurück an Alice.
3. Alice entschlüsselt den Kryptotext kAB mit ihrem Schlüssel sA:

kB = kAB ⊕ sA

und sendet kB an Bob.
4. Schliesslich entschlüsselt Bob den Kryptotext kB mit seinem Schlüssel kB:

t = kB ⊕ sB

und erhält dadurch den Klartext t, welchen ihn Alice wissen lassen möchte.

Warum funktioniert das? Der Kern der Geschichte liegt darin, dass eine zweite Anwendung eines
Schlüssels die erste Anwendung desselben Schlüssels löscht (rückgängig macht) und zwar, auch wenn
zwischen diesen zwei Anwendungen andere Schlüssel angewendet worden sind. Betrachten Sie die
folgende Berechnung

t ⊕ sA ⊕ sB ⊕ sA ⊕ sB =
t ⊕ (sA ⊕ sA) ⊕ (sB ⊕ sB) =
t ⊕ 0 ⊕ 0 = t.

38

Kryptologie « Informatik, 2026

EDIT Aufgabe 3.1

Spielen Sie den Schlüsseltausch mit einer weiteren Person aus der Klasse durch.

Check Lösungsvorschlag zu Aufgabe 3.1

• Alice wählt den Schlüssel sA = 1011 und den zu übermittelnden Schlüssel t =
1100.

• Bob wählt den Schlüssel sB = 0110.
• Alice berechnet kA und sendet kA an Bob:

1100
⊕ 1011

0111

Also kA = 0111.
• Bob berechnet kAB und sendet kAB an Alice:

0111
⊕ 0110

0001

Also kAB = 0001.
• Alice berechnet kB und sendet kB an Bob:

0001
⊕ 1011

1010

Also kB = 1010.
• Bob berechnet den Klartext-Schlüssel t:

1010
⊕ 0110

1100

Also t = 1100.

Sicherheit des Drei-Wege-Schlüsseltauschs

Ist das Drei-Wege-Kommunikationsprotokoll sicher? Bietet es dieselbe Sicherheitsgarantie wie die
Verwendung einer Truhe mit zwei Schlössern?

Wenn ein Kryptoanalyst nur einzelne Kryptotexte des Protokolls erhält und das Verfahren nicht
kennt, wirkt die Kommunikation als eine Folge von Zufallsbits und in diesem Sinne ist unsere
Implementierung dieses Verfahrens sicher. Wir müssen aber damit rechnen, dass die Gegnerin das
Kommunikationsprotokoll kennt (oder erratet) und die zwei zufällig generierten Schlüssel das Einzige
sind, was ihm unbekannt ist.

Wenn die Gegnerin (Eve) alle drei Kryptotexte (kA, kAB, kB) gewinnen kann, kann er durch die

39

Kryptologie « Informatik, 2026

folgenden Berechnungen den Klartext t herausfinden:

kA ⊕ kAB ⊕ kB =
(t ⊕ sA) ⊕ (kA ⊕ sB) ⊕ (kAB ⊕ sA) =
(t ⊕ sA) ⊕ (kA ⊕ sB) ⊕ ((kA ⊕ sB) ⊕ sA) =
t ⊕ (sA ⊕ sA) ⊕ (sB ⊕ sB) ⊕ (kA ⊕ kA) =
t ⊕ 0 ⊕ 0 ⊕ 0 =
t.

40

Kryptologie « Informatik, 2026

3.2 Diffie-Hellman-Merkle-Schlüsseltausch

Vorgehen 3.2 (Protokoll Diffie-Hellman-Merkle (DHM))):
Das Kommunikationsprotokoll DHM ermöglicht es Alice und Bob, gemeinsam über einen öf-
fentlichen Kanal einen geheimen Schlüssel zu vereinbaren, ohne dass sie zuvor einen gemein-
samen geheimen Schlüssel ausgemacht haben. Im Gegensatz zum Drei-Wege-Schlüsseltausch
basiert das DHM-Protokoll auf der Schwierigkeit, das diskrete Logarithmusproblem zu lösen,
ein mathematisches Problem, zu dem es (bisher) keinen effizienten Lösungsalgorithmus gibt.
Ausgangssituation: Alice und Bob haben sich zuvor öffentlich auf eine grosse Primzahl p

und eine positive natürliche Zahl g geeinigt. Dabei ist g kleiner als p.
Ziel: Alice und Bob möchten gemeinsam mit einer öffentlichen Kommunikation einen Schlüs-

sel sAB vereinbaren. Diesen Schlüssel darf keine Drittperson in Erfahrung bringen.
1. Alice wählt zufällig eine positive ganze Zahl a mit a < p und hält diese geheim. Dann

berechnet sie mit dieser geheimen Zahl:

x := ga mod p

und sendet x an Bob.
2. Bob wählt zufällig eine positive ganze Zahl b mit b < p und hält diese geheim. Dann

berechnet er die Zahl

y := gb mod p

und sendet y an Alice.
3. Alice erhält y von Bob und berechnet mit ihrer geheimen Zahl a die Zahl

sAB := ya mod p.

4. Bob berechnet mit dem erhaltenen x und seiner geheimen Zahl b die Zahl

sBA := xb mod p.

Mithilfe der Rechengesetze der Modulo-Operation kann bewiesen werden, dass tatsächlich

sAB = sBA

gilt und somit Alice und Bob dieselbe Zahl berechnet haben. Diese Zahl sAB ist der gemein-
same Schlüssel.

EDIT Aufgabe 3.2

Führen Sie das DHM-Protokoll mit einer weiteren Person aus der Klasse durch. Verwenden
Sie

p := 13 und g := 2

(Sie können auch eigene Werte wählen) als öffentlich bekannte Schlüssel.

41

Kryptologie « Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 3.2

• Alice wählt a = 9 und berechnet x = 29 mod 13 = 5. Sie sendet x = 5 an Bob.
• Bob wählt b = 10 und berechnet y = 210 mod 13 = 10. Er sendet y = 10 an

Alice.
• Alice berechnet den gemeinsamen Schlüssel: sAB = ya mod p = 109 mod 13 =

12.
• Bob berechnet den gemeinsamen Schlüssel: sBA = xb mod p = 510 mod 13 =

12.

Alice und Bob haben somit denselben Schlüssel sAB = sBA = 12 vereinbart.

EDIT Aufgabe 3.3

Versuchen Sie das Kommunikationsprotokoll DHM zu knacken, indem Sie für die gegebenen
Werte p, g, x und y jeweils die geheimen Zahlen a und b berechnen und daraus dann den
vereinbarten Schlüssel sAB.

(a) g = 3, p = 5, x = 4, y = 2
(b) g = 2, p = 13, x = 6, y = 11

Check Lösungsvorschlag zu Aufgabe 3.3

(a) a = 2, b = 3 und sAB = 22 mod 5 = sBA = 43 mod 5 = 4
(b) a = 5, b = 7 und sAB = 115 mod 13 = sBA = 67 mod 13 = 7

Sicherheit des DHM-Protokolls

Das DHM-Protokoll ist sicher, weil es (bisher) keinen effizienten Algorithmus gibt, um das diskrete
Logarithmusproblem zu lösen. Ein Kryptoanalyst (Eve) kann zwar die öffentlichen Werte p, g, x und
y in Erfahrung bringen, aber um daraus den gemeinsamen Schlüssel sAB zu berechnen, müsste sie
entweder die geheime Zahl a von Alice oder die geheime Zahl b von Bob bestimmen. Dies entspricht
dem Lösen des diskreten Logarithmusproblems, was (bisher) als schwierig gilt.

Allerdings ist das DHM-Protokoll nicht gegen einen Man-in-the-Middle-Angriff geschützt. Ein An-
greifer (Eve) könnte sich zwischen Alice und Bob schalten und so tun, als ob sie Alice wäre, wenn
sie mit Bob kommuniziert, und umgekehrt. Dadurch könnte Eve sowohl mit Alice als auch mit
Bob jeweils einen eigenen gemeinsamen Schlüssel vereinbaren und so die Kommunikation zwischen
den beiden belauschen. Diese Schwäche kann durch die Verwendung von digitalen Signaturen beho-
ben werden, welche die Authentizität der Kommunikationspartner sicherstellen. Ein Beispiel eines
solchen Signaturverfahrens ist das Rivest–Shamir–Adleman (RSA)-Kryptosystem (s. Kapitel Ab-
schnitt 4.1).

42

Kapitel 4

Asymmetrische Kryptosysteme

In den bisher angeschauten Verschlüsslungsverfahren haben wir festgestellt, dass derselbe Schlüs-
sel zur Ver- und Entschlüsselung verwendet wird. Daher spricht man bei diesen Verfahren von
symmetrischen Verschlüsselungsmethoden. Zudem haben wir gesehen, dass diese entweder unsicher
(Caesar, Vigenère) sind, wenn der Schlüssel einfach geknackt werden kann, oder un-praktikabel
(OTP), wenn der Schlüssel zuerst übertragen werden muss. Diffie & Hellman kamen daher 1975
auf die Idee, asymmetrische Verschlüsselungsverfahren zu erschaffen, welche nach einem anderen
Prinzip funktionieren. Im Gegensatz zu symmetrischen Verfahren kann man bei asymmetrischen
Verfahren nicht von der verschlüsselten Nachricht auf den Schlüssel schliessen, da unterschiedliche
Schlüssel zum Ver- und Entschlüsseln verwendet werden.

Die Grundidee hinter asymmetrischen Verschlüsselungsmethoden ist folgende:

Alice () und Bob () möchten auf verschlüsselte Weise Nachrichten austauschen, die den An-
forderungen an sichere Kryptosysteme genügen (siehe Abschnitt 1.1). Bei der asymmetrischen Ver-
schlüsselung generieren sowohl Alice wie Bob jeweils ein Schlüsselpaar, einen sogenannten öffent-
lichen Schlüssel (), der von allen Personen gesehen und verwendet werden kann, sowie einen
privaten Schlüssel (), der nur im Besitz von Alice bzw. Bob ist. Wenn Alice eine Nachricht
an Bob senden will, verwendet sie Bobs öffentlichen Schlüssel, um die Nachricht zu verschlüsseln.
Die Nachricht kann jedoch mit dem öffentlichen Schlüssel nicht entschlüsselt werden, es handelt
sich hier sozusagen um eine “Einweg”-Funktion. Stattdessen muss Bob seinen privaten Schlüssel zur
Entschlüsselung verwenden, also den Schlüssel, auf den nur Bob Zugriff hat (siehe Abbildung 4.1).
Dies funktioniert in den meisten Fällen auch in die andere Richtung: eine Nachricht, die mit Bobs
privatem Schlüssel verschlüsselt worden ist, kann nur mit Bobs öffentlichem Schlüssel entschlüs-
selt werden. Die Schlüssel sind mathematisch so konstruiert, dass es beinahe unmöglich ist, vom
öffentlichen Schlüssel auf den privaten Schlüssel zu schliessen.

Durch den Aufbau asymmetrischer Verschlüsselungsverfahren entfällt die Problematik der Über-
mittlung des Schlüssels: jede Person generiert ihr eigenes Schlüsselpaar und stellt einen öffentlichen
Schlüssel zur Verfügung. Ein Nachteil hierbei ist, dass die Verschlüsselung häufig mathematisch und
bezüglich Rechenleistung anspruchsvoller ist, was insbesondere problematisch sein kann bei längeren
Nachrichten oder wenn die Antwortzeit minimal sein soll.

43

Kryptologie « Informatik, 2026

Alice Verschlüsselter
Text

Öffentlicher
Schlüssel
von Bob

Verschlüsselter
Text

Privater
Schlüssel
von Bob

Bob

Klartext

Verschlüsselung

Übertragung

Entschlüsselung

Klartext

Abbildung 4.1: Prinzip der Public-Key-Verschlüsselung

4.1 RSA-Verfahren
Das Rivest–Shamir–Adleman (RSA)-Verfahren ist ein asymmetrisches Kryptosystem, das sowohl
für die Verschlüsselung als auch für digitale Signaturen verwendet werden kann. Es basiert auf der
Schwierigkeit, grosse Zahlen in ihre Primfaktoren zu zerlegen. Im Folgenden werden die Grundlagen
des Verfahrens und ein einfaches Beispiel vorgestellt.

Abbildung 4.2: Ron Rivest, Adi Shamir und Leonard Adleman, die Erfinder des RSA-Verfahrens

Vorgehen 4.1 (RSA-Verschlüsselungsverfahren):
Das RSA-Verfahren besteht aus folgenden Schritten:

1. Schlüsselerzeugung:

44

Kryptologie « Informatik, 2026

• Wählen Sie zwei (möglichst grosse) Primzahlen p und q.
• Berechnen Sie das RSA-Modul n = p · q.
• Berechnen Sie die Eulersche Funktion ϕ(n) = (p − 1)(q − 1).
• Wählen Sie den Verschlüsslungsexponenten e, so dass dieser teilerfremd zu ϕ(n)

und kleiner als ϕ(n) ist. Dies bedeutet, dass der Grösster Gemeinsamer Teiler
(GGT) von e und ϕ(n) 1 ist (ggT(e, ϕ(n)) = 1).

• Berechnen Sie den Entschlüsslungexponenten d, so dass (e · d) mod ϕ(n) = 1
(privater Schlüssel). Dies bedeutet, dass, wenn man d mit e multipliziert und
dieses Produkt Modulo ϕ(n) rechnet, man die Zahl 1 erhält.

• Die Zahlen p, q und ϕ(n) werden nun nicht mehr benötigt und können gelöscht
werden.

2. Verschlüsselung:
• Der Absender verschlüsselt eine Klartext-Nachricht m (als Zahl) mit dem öf-

fentlichen Schlüssel (e, n):

c = me mod n

• Das Ergebnis c ist der Kryptotext.
3. Entschlüsselung:

• Der Empfänger entschlüsselt die verschlüsselte Nachricht c mit dem privaten
Schlüssel (d, n):

m = cd mod n

• Das Ergebnis m ist die ursprüngliche Nachricht.

Beispiel 4.1:
Um RSA besser zu verstehen, rechnen wir ein einfaches Beispiel mit kleinen Zahlen durch:

1. Wir wählen zwei (für diese Übung kleine) Primzahlen aus, p = 3 und q = 11. Daraus
folgt:

n = p · q

= 3 · 11
= 33

ϕ(n) = (p − 1)(q − 1)
= 2 · 10
= 20

2. Wir wählen e = 3, da ggT(3, 20) = 1.
3. Wir berechnen d, so dass (e · d) mod ϕ(n) = 1 ergibt:

(d · 3) mod 20 = 1 → d = 7.

4. Der öffentliche Schlüssel ist (e, n) = (3, 33), der private Schlüssel (d, n) = (7, 33).

Verschlüsselung: Die Nachricht sei das Wort “Code”, welches wir darstellen durch die
Position der Buchstaben im Alphabet m = 3, 15, 4, 5. Berechne für jeden Buchstaben (hier

45

Kryptologie « Informatik, 2026

nur für “C”, also 3, gezeigt):

c = me mod n

= 33 mod 33
= 27 mod 33
= 27.

Der erste Buchstabe des Kryptotext wird also verschlüsselt als c = 27.

Entschlüsselung:

m = cd mod n

= 277 mod 33
= 3

Daraus ergibt sich m = 3, also die ursprüngliche Nachricht.

EDIT Aufgabe 4.1

Alice möchte eine Nachricht an Bob mit RSA verschlüsseln. Bob wählt die Hilfs-Primzahlen
p = 5 und q = 7. Generieren Sie den öffentlichen Schlüssel (e, n) und den privaten Schlüssel
(d, n) von Bob, indem Sie folgende Schritte ausführen:

1. Berechnen Sie n und ϕ(n).
2. Sie wählen e und d aus.

Verschlüsseln Sie nun die Nachricht m = 9 mit dem öffentlichen Schlüssel (e, n).

Entschlüsseln Sie danach die verschlüsselte Nachricht c wieder mit dem privaten Schlüssel
(d, n).

Check Lösungsvorschlag zu Aufgabe 4.1

1. n = p · q = 5 · 7 = 35, ϕ(n) = (p − 1)(q − 1) = 4 · 6 = 24.
2. Für e können wir beispielsweise 5 wählen, da 5 teilerfremd mit 24 ist.
3. (5 · d) mod 24 = 1. Dies finden wir beispielsweise mit d = 5.
4. Verschlüsselung:

c = me mod n

= 95 mod 35
= 4

.
5. Entschlüsselung:

m = cd mod n

= 45 mod 35
= 9

46

Kryptologie « Informatik, 2026

EDIT Aufgabe 4.2

Ist die Wahl von p und q im obigen Beispiel sinnvoll? Begründen Sie Ihre Antwort.

Check Lösungsvorschlag zu Aufgabe 4.2

Nein, die Wahl von p und q ist nicht sinnvoll, da beide Primzahlen zu klein sind. In
der Praxis sollten p und q jeweils mindestens 2048 Bit lang sein, um eine ausreichende
Sicherheit zu gewährleisten. Ansonsten kann es, wie im vorliegenden Beispiel, vorkom-
men, dass der private Schlüssel leicht durch Faktorisierung von n berechnet werden
kann, oder dass der private Schlüssel sogar gleich dem öffentlichen Schlüssel ist (wie
in diesem Beispiel, wo d = e = 5).

Trophy Aufgabe (Challenge) 4.3

Erstellen Sie nun zu zweit jeweils ein Schlüsselpaar mit dem RSA-Verfahren. Verwenden
Sie dazu Primzahlen p und q mit jeweils mindestens 2 Ziffern. Tauschen Sie danach Ihre
öffentlichen Schlüssel aus und verschlüsseln Sie eine Nachricht (eine Zahl) an Ihren Partner.
Entschlüsseln Sie danach die Nachricht wieder.

Eine Liste der ersten 1000 Primzahlen finden Sie hier: https://en.wikipedia.org/wiki/
List_of_prime_numbers.

Trophy Aufgabe (Challenge) 4.4

Verwenden Sie Ihre RSA-Schlüssel aus 4.3, um eine echte Nachricht als Zahl auszutauschen
(ein Wort). Um ein Wort in Zahlen umzuwandeln (Buchstabe für Buchstabe) können Sie
folgendes Python-Skript verwenden:

def text_to_numbers(text):
numbers = []
for char in text.upper():

if char.isalpha(): # Nur Buchstaben berücksichtigen
numbers.append(ord(char) - ord('A') + 1) # A=1, B=2, ..., Z=26

return numbers

print(text_to_numbers("ABC")) # Ausgabe: [1, 2, 3]

Trophy Aufgabe (Challenge) 4.5

Wählen Sie zwei Primzahlen p und q mit jeweils mindestens 3 Ziffern. Generieren Sie den
öffentlichen und privaten Schlüssel. Verschlüsseln Sie eine Nachricht Ihrer Wahl und ent-
schlüsseln Sie diese wieder. Verwenden Sie Python, um die Berechnungen durchzuführen.

Die Zahl d kann in Python folgendermassen berechnet werden:

Eine Liste der ersten 1000 Primzahlen finden Sie hier: https://en.wikipedia.org/wiki/
List_of_prime_numbers

d = pow(e, -1, phi_n)

47

https://en.wikipedia.org/wiki/List_of_prime_numbers
https://en.wikipedia.org/wiki/List_of_prime_numbers
https://en.wikipedia.org/wiki/List_of_prime_numbers
https://en.wikipedia.org/wiki/List_of_prime_numbers

Kryptologie « Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 4.5

Beispiel mit p = 101 und q = 113:

Primzahlen
p = 3
q = 11
Berechnung n und phi(n)
n = p * q
phi_n = (p - 1) * (q - 1)
print("n:", n)
print("phi(n):", phi_n)
Wahl von e (muss teilerfremd zu phi(n) sein)
e = 3 # 5 ist teilerfremd zu phi(n)
Berechnung von d
d = pow(e, -1, phi_n)
Öffentlicher und privater Schlüssel
public_key = (e, n)
private_key = (d, n)
print("Öffentlicher Schlüssel:", public_key)
print("Privater Schlüssel:", private_key)
Nachricht verschlüsseln
m = 1234 # Beispielnachricht
c = pow(m, e, n)
print("Verschlüsselte Nachricht:", c)
Nachricht entschlüsseln
decrypted_m = pow(c, d, n)
print("Entschlüsselte Nachricht:", decrypted_m)

4.1.1 Digitale Signaturen mit RSA

Neben der Verschlüsselung von Nachrichten kann das RSA-Verfahren auch zur Erstellung digitaler
Signaturen verwendet werden. Digitale Signaturen dienen dazu, die Authentizität und Integrität
einer Nachricht zu gewährleisten. Hierbei wird die Nachricht mit dem privaten Schlüssel des Ab-
senders signiert, sodass der Empfänger die Signatur mit dem öffentlichen Schlüssel des Absenders
überprüfen kann.

Vorgehen 4.2 (Digitale Signaturen mit RSA):
Die Erstellung und Überprüfung digitaler Signaturen mit dem RSA-Verfahren erfolgt in fol-
genden Schritten:

1. Signaturerstellung:
• Der Absender erstellt eine Nachricht m.
• Er berechnet den Hashwert H(m) der Nachricht m mithilfe einer kryptographi-

schen Hashfunktion (z.B. SHA-256).
• Der Absender signiert den Hashwert mit seinem privaten Schlüssel (d, n):

s = H(m)d mod n

• Das Ergebnis s ist die digitale Signatur.

48

Kryptologie « Informatik, 2026

2. Signaturüberprüfung:
• Der Empfänger erhält die Nachricht m und die Signatur s.
• Er berechnet den Hashwert H(m) der empfangenen Nachricht m.
• Der Empfänger überprüft die Signatur mit dem öffentlichen Schlüssel (e, n) des

Absenders:
H ′(m) = se mod n

• Wenn H ′(m) = H(m), ist die Signatur gültig, andernfalls ist sie ungültig.

Beispiel 4.2:
Angenommen, Alice möchte eine Nachricht m = 42 signieren. Sie verwendet ihren privaten
Schlüssel (d, n) = (9677, 12317) und den öffentlichen Schlüssel (e, n) = (5, 12317).

Signaturerstellung:

s = H(m)d mod n

= 429677 mod 12317
= 161

Die digitale Signatur ist also s = 161.

Signaturüberprüfung:

H ′(m) = se mod n

= 1615 mod 12317
= 42

Da H ′(m) = H(m), ist die Signatur gültig.

EDIT Aufgabe 4.6

Alice möchte die Nachricht m = 15 signieren. Ihr privater Schlüssel ist (d, n) = (7, 33) und
ihr öffentlicher Schlüssel ist (e, n) = (3, 33).

Erstellen Sie die digitale Signatur s für die Nachricht m.

Überprüfen Sie danach die Signatur mit dem öffentlichen Schlüssel.

49

Kryptologie « Informatik, 2026

Check Lösungsvorschlag zu Aufgabe 4.6

Signaturerstellung:

s = H(m)d mod n

= 157 mod 33
= 27

Die digitale Signatur ist also s = 27.

Signaturüberprüfung:

H ′(m) = se mod n

= 273 mod 33
= 15

Da H ′(m) = H(m), ist die Signatur gültig.

50

Anhang A

Python-Übungen zu Kryptologie

A.1 Allgemeine Zeichenketten-Aufgaben
Zeichenketten können verkettet, also aneinandergehängt werden mit dem Befehl "Text1" + "Text2
" + "Text3" usw. Falls Sie eine Zeichenkette mehrfach drucken wollen, können Sie diesen mit einer
Zahl multiplizieren, die dann die Anzahl Wiederholungen der Zeichenkette bestimmt. So ist der
Ausdruck "a" * 3 beispielsweise gleichbedeutend mit einer Zeichenkette "aaa".

Im Nachfolgenden schauen wir uns einige Übungen an, mit denen wir die einzelnen Zeichen aus
Zeichenketten herauslesen können.

EDIT Aufgabe A.1

Führen Sie das nachfolgende Programm aus und erklären Sie, was das Programm tut.

text = "EASY"
for buchstabe in text:
print(buchstabe)

Check Lösungsvorschlag zu Aufgabe A.1

E
A
S
Y
for x in mystring ist eine Schleife über die Zeichenkette mystring. Dabei nimmt x
nacheinander jeden Buchstaben in dieser Zeichenkette genau einmal an.

51

Kryptologie « Informatik, 2026

EDIT Aufgabe A.2

Führen Sie das nachfolgende Programm aus und erklären Sie, was das Programm tut.

Klartext = "Schweiz"
print(Klartext[0])
print(Klartext[1])
print(Klartext[2])
print(Klartext[3])
print(Klartext[4])
print(Klartext[5])
print(Klartext[6])

Check Lösungsvorschlag zu Aufgabe A.2

S
c
h
w
e
i
z
mystring[0] ist der erste Buchstabe der Zeichenkette mystring, mystring[1] der
zweite und so weiter.

EDIT Aufgabe A.3

Führen Sie das nachfolgende Programm aus und erklären Sie, was das Programm tut.

Klartext = "Schweiz"
for i in range(len(Klartext)):
print(Klartext[i])

Check Lösungsvorschlag zu Aufgabe A.3

Dieses Programm ist äquivalent zum Programm in Aufgabe 1.2. Hier wird allerdings
eine for-Schleife über die Länge des Texts verwendet.

Der Befehl for i in range(len(Klartext)) erstellt eine Variable i innerhalb der for-Schleife,
welche jedes Zeichen von 0 bis zur Länge von Klartext minus 1 geht. Weshalb minus 1? Das erste
Zeichen von Klartext wird in Python mit Klartext[0] ausgelesen, das letzte mit Klartext[len(
Klartext)-1], da wir bei 0 zu zählen beginnen und nicht bei 1. Mit dem Ausdruck Klartext[i]
wird also das i-te Zeichen der Zeichenkette Klartext ausgelesen, wobei i von 0 bis zu (Länge des
Klartexts minus 1) geht.

Der Befehl for i in range(len(Klartext)) kann auch geschrieben werden also Befehl for i in
range(0, len(Klartext), 1), wobei dies meint:

• i beginnt bei 0
• i geht bis zu len(Klartext)-1
• i vergrössert sich in 1er-Schritten

52

Kryptologie « Informatik, 2026

Dieser Befehl könnte auch verwendet werden, um bei einer beliebigen Zahl zu starten (nicht notwen-
digerweise 0), und um i in Schritten grösser als 1 zu vergrössern. Die allgemeine Syntax des Befehls
lässt sich also wie folgt zusammenfassen: for i in range(start, ende, schrittgroesse).

Trophy Aufgabe (Challenge) A.4

Eine Person verrät uns lediglich die Vorwahl ihrer 10-stelligen Mobiltelefonnummer. Zudem
verrät Sie Ihnen auch, dass ihre Telefonnummer gerade ist (also auf 2, 4, 6, 8 oder 0 endet).
Damit gibt es nur noch 5 Millionen Kombinationen, die es (im schlimmsten Fall) auszuprobie-
ren gilt. Schreiben Sie ein Python-Programm, welches die 200 kleinsten, geraden Nummern
auflistet. Die erste Nummer sollte 0790000000 sein, die letzte 0790000198. Das Programm
soll die Nummern als Zeichenkette (eine Nummer pro Zeile) ausgeben.

Tipps:

• Mit str(num) wird aus der Zahl num eine Zeichenkette. Beispielsweise gibt uns str(15)
die Zeichenkette "15".

• Erinnern Sie sich, was die Operation + in dem Ausdruck "In" + "form" + "atik"
macht?

Check Lösungsvorschlag zu Aufgabe A.4

for num in range(790000000, 790000200,2):
print("0" + str(num)) # füge die Zeichenkette "0" vorne an

A.2 Verschlüsselung von Texten in Python
Während des Zweiten Weltkriegs arbeitete der brillante Mathematiker Alan Turing in Bletchley Park
im Vereinten Königreich und war mit der entscheidenden Aufgabe betraut, den Enigma-Code zu
knacken, den die Deutschen zur Verschlüsselung ihrer Nachrichten verwendeten. Um diesen komple-
xen Code zu entschlüsseln, musste Turing sein tiefes Verständnis von Sprache und Mustern nutzen.
In diesem Kapitel folgen wir in Turings Fussstapfen und entziffern einige Geheimnachrichten!

Abbildung A.1: Turing mit seiner berühmten Turing-Maschine

53

Kryptologie « Informatik, 2026

Im Nachfolgenden schauen wir uns einige Python-Befehle an, die dazu dienen, mit Zeichenketten (=
engl. strings) zu arbeiten. Dies werden wir insbesondere benötigen, um eigene Python-Programme
zu schreiben, mit denen wir Texte verschlüsseln und entschlüsseln können. Genauer gesagt bezeich-
nen wir Texte in Python als Zeichenketten. Zeichenketten werden in Python innerhalb von einfa-
chen oder doppelten Anführungszeichen geschrieben, also entweder '...' oder "...". Innerhalb
der Anführungszeichen können beliebige Zeichen stehen, beispielsweise Buchstaben, Leerzeichen,
Spezialzeichen oder Zahlen.

Tabelle A.1 und Tabelle A.2 enthalten eine Übersicht einiger nützlicher Befehle, die Sie in diesem
Kapitel verwenden werden.

Python Beschreibung Beispiel

len(s) Gibt die Länge des Textes s
zurück.

n = len("hallo") # 5

s[index] Greift auf das Zeichen an der
Index-Position index zu. Bei
negativen Indizes zählt man
von rechts.

s = "hallo"
s = "hallo"
c0 = s[0] # "h"
c1 = s[1] # "a"
c2 = s[-1] # "o"

s[start:end] Extrahiert den Teiltext vom
Index start bis und ohne end

s1 = "hallo"
s2 = s1[1:4] # "all"

ord(c) Gibt die Position des Zeichens
c in der Unicode-Tabelle zu-
rück

n1 = ord('A') # 65
n2 = ord('B') # 66
n3 = ord('Z') # 90

chr(n) Gibt die das Zeichen an der
n-ten Position er Unicode-
Tabelle zurück

c1 = chr(65) # "A"
c2 = chr(66) # "B"
c3 = chr(67) # "C"

s1.count(s2) Zählt, wie oft der Text s2 im
Text s1 vorkommt

s1 = "Das Haus ist gross und das
Dach ist grün."

s2 = "ist"
n = s1.count(s2) # 2

s1.find(s2) Gibt den niedrigsten Index
des Teiltexts s2 zurück, falls
dieser vorhanden ist, ansons-
ten -1

s = "Das Haus ist gross und das
Dach ist grün."

n = s.find("ist") # 9

s1.replace(old, new) Ersetzt alle Vorkommen des
Teil-Texts old durch new.

s1 = "hallo"
s2 = s1.replace("a", "e") # "

hello"

Tabelle A.1: Übersicht von Zeichenketten-Befehlen

54

https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters

Kryptologie « Informatik, 2026

EDIT Aufgabe A.5

Schreiben Sie ein Programm, um jeden Buchstaben „e / E“ des folgenden Texts durch den
Buchstaben durch „a / A“ zu ersetzen:

my_text = "Eines Tages entschied der Elefant, einen edlen Teppich zu weben."

Check Lösungsvorschlag zu Aufgabe A.5

my_text = "Eines Tages entschied der Elefant, einen edlen Teppich zu
weben."

my_text = my_text.replace("e", "a")
my_text = my_text.replace("E", "A")
print(my_text)

EDIT Aufgabe A.6

Schreiben Sie ein Programm, um zu zählen, wie häufig der Buchstabe „e / E“ im gesamten
folgenden Text vorkommt:

my_text = "Eines Tages entschied der Elefant, einen edlen Teppich zu weben."

Check Lösungsvorschlag zu Aufgabe A.6

my_text = "Eines Tages entschied der Elefant, einen edlen Teppich zu
weben."

n_e = my_text.count("e")
n_e += my_text.count("E")
print(n_e) # 15

Trophy Aufgabe (Challenge) A.7

Was könnte der Nutzen davon sein, dass es zwei Möglichkeiten gibt und nicht nur eine,
Zeichenketten zu schreiben ('...' oder "...")?

Check Lösungsvorschlag zu Aufgabe A.7

Eine Möglichkeit, die uns durch die unterschiedlichen Schreibweisen geboten wird, ist,
Anführungszeichen auszugeben. Beispielsweise könnten Sie so einen Text, der Anfüh-
rungszeichen beinhaltet, auf der Konsole drucken:

print('Meine Freunde nennen mich "Mr. X"')

Mit der Länge von Zeichenketten ist die Anzahl der Zeichen zwischen den Anführungszeichen
gemeint: Die Zeichenkette "Hello World" hat beispielsweise eine Länge von 11 Zeichen. Die Länge
einer Zeichenkette kann mit dem Ausdruck len(Klartext) bestimmt werden.

55

Kryptologie « Informatik, 2026

EDIT Aufgabe A.8

Bestimmen Sie die Länge Ihres vollen Namens mithilfe des Befehls len() in Python.

n = "Vorname Nachname"
print(len(n)) # 16

Die Lösung für Aufgabe 2.1 könnte in Python wie folgt implementiert werden:

def zweiertausch(klartext):
geheimtext = "" # leerer String
b = 0
while b < (len(klartext) - 1):

geheimtext += klartext[b + 1] + klartext[b]
b += 2

if len(klartext) % 2 != 0:
Klartexte ungerader Länge
geheimtext += klartext[len(klartext) - 1]

print(geheimtext)

Verwendung:
zweiertausch("KANTONSSCHULE")

EDIT Aufgabe A.9

Schreiben Sie eine Python-Funktion def dreiertausch(klartext), welche den „Dreier-
tausch“ aus der Einführungsaufgabe 2 implementiert.

56

Kryptologie « Informatik, 2026

Check Lösungsvorschlag zu Aufgabe A.9

def dreiertausch(klartext):
geheimtext = "" # leerer String
b = 0
while b < (len(klartext) - 2):

geheimtext += klartext[b + 2] + klartext[b + 1] + klartext[b]
b += 3

if len(klartext) % 3 == 1:
Falls ein einzelnes Zeichen übrig bleibt (Länge ist 1 modulo

3)
geheimtext += klartext[-1]

elif len(klartext) % 3 == 2:
Falls zwei Zeichen übrig bleiben (Länge ist 2 modulo 3)
geheimtext += klartext[-2] + klartext[-1]

print(geheimtext)

Verwendung:
dreiertausch("KANTONSSCHULE")

EDIT Aufgabe A.10

Schreiben Sie eine Python-Funktion def umkehren(klartext), welche alle Zeichen eines
Klartexts in umgekehrter Reihenfolge ausgibt.

Check Lösungsvorschlag zu Aufgabe A.10

def umkehren(klartext):
geheimtext = "" # leerer String
b = len(klartext) - 1
while b >= 0:

geheimtext += klartext[b]
b -= 1

print(geheimtext)

Verwendung:
umkehren("KANTONSSCHULE")

57

Kryptologie « Informatik, 2026

Python Beschreibung Beispiel

s1.split(sep) Zerlegt den Text an jedem sep
und gibt eine Liste der Teil-
texte zurück.

s = "a,b,c"
li = s.split(",")
["a", "b", "c"]

s.join(li) Verbindet die Elemente von
li zu einem Text, getrennt
durch den Text s.

txt = ":".join(["a", "b", "c"])
"a:b:c"

str(n) Zahl n in einen Text (engl.
string) umwandeln

n = 10
s = str(n) # "10"

int(s) Text s in eine ganze Zahl
(engl. integer) umwandeln

s = "10"
n = int(s) # 10

Tabelle A.2: Übersicht von Befehlen, um Zeichenketten zu verbinden, bzw. trennen

EDIT Aufgabe A.11

Der Schlüssel für einen Geheimtext ist in Blöcken organisiert:

geheime_zahl_als_text = "2_10_38"

Trennen Sie die Blöcke von geheime_zahl_als_text in eine Liste auf und addieren Sie die
Zahlen der Liste zusammen.

Als Resultat sollten Sie die Zahl 50 erhalten.

Check Lösungsvorschlag zu Aufgabe A.11

geheime_zahl_als_text = "2_10_38"
meine_liste = geheime_zahl_als_text.split("_")
summe = 0
for i in meine_liste:

summe += int(i)

print(summe)

EDIT Aufgabe A.12

Verbinden Sie die Wörter in der Liste liste = ["Der", "Code", "wurde", "geknackt"]
mit Leerzeichen zu einem vollständigen Satz.

Check Lösungsvorschlag zu Aufgabe A.12

liste = ["Der", "Code", "wurde", "geknackt"]
print(" ".join(liste))

58

Kryptologie « Informatik, 2026

A.3 Caesar-Verschlüsselung in Python

EDIT Aufgabe A.13

Entwickeln Sie eine Funktion, die zwei Parameter entgegennimmt: den Klartext (nur Gross-
buchstaben!) und den Schlüssel (0-25). Als erstes soll jeder Buchstaben des Klartexts auf
einer neuen Zeile ausgegeben werden.

Beispiel: Falls der Text HALLO eingegeben wird, soll folgendes ausgegeben werden:

H
A
L
L
O

Check Lösungsvorschlag zu Aufgabe A.13

def verschluessle(klartext, schluessel):
for buchstabe in klartext:

print(buchstabe)

verschluessle("HALLO", 3)

EDIT Aufgabe A.14

Passen Sie das Programm aus Aufgabe 1.13 so an, dass statt den Buchstaben die Position in
der Unicode-Tabelle ausgegeben wird. Verwenden Sie dafür die Funktion ord().

Beispiel: Falls der Text HALLO eingegeben wird, soll folgendes ausgegeben werden:

72
65
76
76
79

Check Lösungsvorschlag zu Aufgabe A.14

def verschluessle(klartext, schluessel):
for buchstabe in klartext:

print(ord(buchstabe))

verschluessle("HALLO", 3)

59

Kryptologie « Informatik, 2026

EDIT Aufgabe A.15

Passen Sie das Programm aus Aufgabe 1.14 so an, dass Sie zu den Unicode-Positionen auch
noch die Verschiebung hinzurechnen.

Beispiel: Falls der Text HALLO eingegeben wird und die Verschiebung 2, soll folgendes ausge-
geben werden:

74
67
78
78
81

Check Lösungsvorschlag zu Aufgabe A.15

def verschluessle(klartext, schluessel):
for buchstabe in klartext:

print(ord(buchstabe) + schluessel)

verschluessle("HALLO", 2)

EDIT Aufgabe A.16

Passen Sie das Programm aus Aufgabe 1.15 so an, dass Sie statt den verschobenen Unicode-
Positionen die Buchstaben ausgeben. Verwenden Sie dafür die Funktion chr().

Beispiel: Falls der Text HALLO eingegeben wird und die Verschiebung 2, soll folgendes ausge-
geben werden:

J
C
N
N
Q

Check Lösungsvorschlag zu Aufgabe A.16

def verschluessle(klartext, schluessel):
for buchstabe in klartext:

print(chr(ord(buchstabe) + schluessel))

verschluessle("HALLO", 2)

60

Kryptologie « Informatik, 2026

EDIT Aufgabe A.17

Wenn man den Klartext ZORRO mit dem Schlüssel 14 verschlüsselt, erhält man mit dem
Programm aus Aufgabe Aufgabe 1.16 den Geheimtext h]``]. Eigentlich sollte man aber den
Geheimtext NCFFC erhalten. Lösen Sie das Problem!

Tipp: Der grösste gültige Unicode-Wert ist 90 für den Buchstaben „Z“. Wenn man einen Wert
bekommt, der 91 oder grösser ist, muss man ihn verkleinern!

Check Lösungsvorschlag zu Aufgabe A.17

def caesar(klartext, schluessel):
for buchstabe in klartext:

n = ord(buchstabe) + schluessel
if n>90:

n-=26
print(chr(n))

caesar("ZORRO", 14)

EDIT Aufgabe A.18

Passen Sie das Programm aus Aufgabe 1.17 so an, dass die Geheimtextbuchstaben nicht
untereinander, sondern auf derselben Zeile in die Ausgabe geschrieben werden.

Tipp: Mit dem Operator + lassen sich in Python Texte miteinander verbinden.

text = ""
text += "Hello"
text += " Bob"
print(text) # Hello Bob

Die verschlüsselte Zeichenkette soll per return-Befehl zurückgegeben werden.

Check Lösungsvorschlag zu Aufgabe A.18

def caesar(klartext, schluessel):
kryptotext = ""
for buchstabe in klartext:

n = ord(buchstabe) + schluessel
if n>90:

n-=26
kryptotext += chr(n)

return kryptotext

res = caesar("ZORRO", 14)
print(res)

61

Kryptologie « Informatik, 2026

EDIT Aufgabe A.19

Entwickeln Sie ein Programm, das über einen Parameter den Geheimtext und den Schlüssel
entgegennimmt und dann mit Hilfe der Caesar-Chiffre den Klartext wiederherstellt. Testen
Sie es anschliessend, indem Sie eine verschlüsselte Nachricht von Ihrer Sitznachbarin oder
Ihrem Sitznachbar entschlüsseln!

Check Lösungsvorschlag zu Aufgabe A.19

def caesar_ent(kryptotext, schluessel):
klartext = ""
for buchstabe in kryptotext:

n = ord(buchstabe) - schluessel
if n<65:

n+=26
klartext += chr(n)

return klartext

res = caesar_ent("NCFFC", 14)
print(res)

A.4 Vigenère-Verschlüsselung in Python

EDIT Aufgabe A.20

Entwickeln Sie eine Funktion def vigenere(text, key), die über die zwei Parameter text
und key einen Klartext sowie einen Schlüssel entgegennimmt. Das Programm soll den Klar-
text mit der Vigenère-Chiffre und mit dem Schlüssel verschlüsseln.

62

Kryptologie « Informatik, 2026

Check Lösungsvorschlag zu Aufgabe A.20

def vigenere(text, key, encrypt=True):
text_encrypted = []
for i in range(len(text)):

if text[i] != " ":
k = key[i % len(key)]
shift = ord(k)-65
if encrypt:

new_letter = chr(((shift+ord(text[i])-65) % 26)+65)
else:

new_letter = chr(((ord(text[i])-65-shift) % 26)+65)
text_encrypted.append(new_letter)

else:
text_encrypted.append(" ")

text_encrypted = "".join(text_encrypted)
return text_encrypted

print(vigenere("TESTTEXT", "KEY", encrypt=True))

EDIT Aufgabe A.21

Entwickeln Sie eine Funktion def vigenere_ent(text, key), die über die zwei Parameter
text und key einen Geheimtext sowie einen Schlüssel entgegennimmt. Das Programm soll
den Geheimtext mit der Vigenère-Chiffre und mit dem Schlüssel entschlüsseln.

Check Lösungsvorschlag zu Aufgabe A.21

Gleicher Code wie in Aufgabe 1.20, aber mit Parameter encrypt=False beim Aufruf

Trophy Aufgabe (Challenge) A.22

Sie wollen all ihre Passwörter auf einer lokalen Textdatei abspeichern. Dies ist jedoch nicht
sicher, denn falls jemand ihren Computer knackt, kann die Person alle Passwörter einsehen.
Sie kommen auf folgende Idee: Statt die Passwörter aufzuschreiben, speichern Sie eine mit
Vigenère verschlüsselte Variante davon. So müssen Sie sich lediglich den Vigenère-Schlüssel
im Kopf merken, nicht aber ihre Passwörter. Verwenden Sie Ihr Programm aus Aufgabe 1.20,
um ein Programm zu schreiben, das sie zuerst mit input nach einem Schlüssel und einem
verschlüsselten Passwort fragt. Das Programm gibt Ihnen danach ihr Passwort im Klartext
zurück.

63

Kryptologie « Informatik, 2026

Check Lösungsvorschlag zu Aufgabe A.22

def vigenere(encrypt=False):
text = input("Wie lautet das verschlüsselte Passwort?")
key = input("Wie lautet der Schlüssel?")
text_encrypted = []
for i in range(len(text)):

if text[i] != " ":
k = key[i % len(key)]
shift = ord(k)-65
if encrypt:

new_letter = chr(((shift+ord(text[i])-65) % 26)+65)
else:

new_letter = chr(((ord(text[i])-65-shift) % 26)+65)
text_encrypted.append(new_letter)

else:
text_encrypted.append(" ")

text_encrypted = "".join(text_encrypted)
return text_encrypted

print(vigenere(encrypt=False))

EDIT Aufgabe A.23 Häufigkeitsanalyse und Caesar

Eine Nachricht wurde abgefangen: msg = "AZDIYDHRZNOZI".

• Die Nachricht wurde mit der Caesar-Chiffre verschlüsselt. Finden Sie zunächst einmal
den häufigsten Buchstaben in der verschlüsselten Nachricht. Tipp: „A“ und „Z“ haben
die Positionen 65 und 90 im Unicode. Um in einer Schleife alle Zahlen von x by y
durchzugehen, können Sie Folgendes schreiben: for num in range(x, y+1):.

• Bestimmen Sie den verwendeten Schlüssel, indem Sie die Funktion ord() zweimal ver-
wenden.

• Ermitteln Sie den Klartext mithilfe Ihres Programms aus Aufgabe 1.18. Tipp: Das
häufigste Zeichen in einem deutschen Text ist in der Regel „E“.

• Ersetzen Sie am Schluss im Klartext das Wort „WESTEN“ durch „OSTEN“.

Check Lösungsvorschlag zu Aufgabe A.23

txt = "AZDIYDHRZNOZI"
for num in range(65,91):

print(chr(num), txt.count(chr(num)))

x = caesar_ent(txt, ord("Z")-ord("E"))
res = x.replace("WESTEN","OSTEN")

64

Kryptologie « Informatik, 2026

EDIT Aufgabe A.24

Gegeben sei die durchschnittliche Buchstabenhäufigkeit für alle Buchstaben des deutschen
Alphabets. Diese lässt sich berechnen, indem man die Häufigkeiten für sehr lange deutsche
Texte aufsummiert.

german_letter_frequencies = [6.51, 1.89, 3.06, 5.08, 17.40, 1.66, 3.01,
4.76, 7.55, 0.27, 1.21, 3.44, 2.53, 9.78, 2.51, 0.79, 0.02, 7.00, 7.27,
6.15, 4.35, 0.67, 1.89, 0.03, 0.04, 1.13]

Berechnen Sie mithilfe folgenden Python-Programms die Friedman’sche Charakteristik für
diese Häufigkeiten.

import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import numpy as np
from helpers import count_letters

def calculate_fc(text):
Determine the Friedman Characteristic for a given text
summe = 0
freq = count_letters(text)
for letter_freq in freq:

summe += (letter_freq - (1 / 26)) ** 2
return summe

def friedman_slice(text, keylength):
Based on a text encrypted with Friedman and a given keylength,
determine the average Friedman characteristic for all subgroups of the
text.
i = 0
fc_avg = 0
for i in range(keylength):

text_slice = text[i::keylength]
fc = calculate_fc(text_slice)
fc_avg += fc
i += 1

fc_avg /= keylength

return fc_avg

def get_friedman_vals(text, maxkeylen):
"""
For a Text text, get the average Friedman Characteristics for key
lengths up to maxkeylen
"""
n = range(1, maxkeylen)

65

Kryptologie « Informatik, 2026

fc = []
for i in n:

fc.append(friedman_slice(text, i))
return fc

def draw_friedman(i, fc, turtle=False):
"""
Draw the friedman Characteristics for various possible key lengths
"""
if turtle:

xshift = 150
setPos(-xshift + 50, 150)
label("friedman'sche Charakteristik:")
setPos(-xshift, 0)
pd()
fd(200)
bk(200)
rt(90)
fd(400)
bk(400)

for i in n:
setPos(i * 40 - xshift, fc[i - 1] * 1000)
dot(10)
setPos(i * 40 - xshift, fc[i - 1] * 1000 + 40)
label(i)

else:
fig, ax = plt.subplots()
ax.plot(range(1, i), fc, "o")
plt.xticks(np.arange(1, i, 1.0))
ax.yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0, xmax

=1))
return fig, ax

if __name__ == "__main__":
print(calculate_fc("PAPPERLAPAPP"))
print(calculate_fc("BACKSTEIN"))

66

Anhang B

Lernziele Kryptologie

� Ich weiss wie die folgenden Kryptosysteme funktionieren (Verschlüsslung und Entschlüsslung
bei gegebenem Schlüssel):
� Skytale
� Caesar
� Vigenère
� One-Time-Pad
� RSA

� Ich kenne die Grundbegriffe: Klartext, Kryptotext, Verschlüsselung (Chiffrierung), Entschlüs-
selung (Dechiffrierung), Schlüssel, Kryptografie / Kryptologie, Kryptosystem.

� Ich kenne die grundlegenden Sicherheitsziele: Vertraulichkeit, Integrität, Authentizität und
Verbindlichkeit (Nichtabstreitbarkeit) und kann sie kurz erläutern.

� Ich kann das Kerckhoff’sche Prinzip erklären.
� Ich kann einen Caesar-Kryptotext durch Ausprobieren aller 25 Verschiebungen knacken (Brute-

Force) und erkenne den richtigen Klartext.
� Ich kann einen Kryptotext, der durch die Vigenère-Verschlüsslung entstanden ist, mit Hilfe

des Tools auf folgender Webseite entschlüsseln: Link zum Cryptbreaker
� Ich kann die Idee der Häufigkeitsanalyse erklären.
� Ich kann eine gruppenweise Häufigkeitsanalyse durchführen, um Vigenère bei bekannter Schlüs-

sellänge zu knacken.
� Ich kann erläutern, weshalb eine kurze Schlüssellänge Vigenère schwächt (Wiederholungsmus-

ter, Aufteilung in Gruppen) und warum lange bzw. OTP-lange Schlüssel nicht angreifbar
durch Häufigkeitsanalyse sind.

� Ich kann den Unterschied zwischen monoalphabetischer und polyalphabetischer Substitution
erklären.

� Ich kann einen monoalphabetisch substituierten Text mittels Häufigkeitsanalyse und schritt-
weisem Erraten entschlüsseln.

� Ich kann die Friedman’sche Charakteristik für einen kurzen Text von Hand berechnen
� Ich kann mit der Friedman’schen Charakteristik die Länge eines Vigenère-Schlüssels bestim-

men.
� Ich kann erklären, was mit der Friedman’sche Charakteristik berechnet wird.
� Ich kann beim One-Time-Pad begründen, warum es (bei perfekter Zufälligkeit, einmaliger

Verwendung und gleicher Länge wie der Klartext) perfekte Sicherheit bietet (Schlüsselraum
= Nachrichtenraum, Gleichverteilung der möglichen Klartexte).

� Ich kann die Anzahl möglicher OTP-Schlüssel einer gegebenen Länge berechnen (z.B. 26n für
Buchstaben, 2n für Bits).

� Ich kann erklären, warum die Wiederverwendung eines OTP-Schlüssels zu Informationsleckage

67

https://cryptbreaker.marcwidmer.xyz

Kryptologie « Informatik, 2026

führt und ein Beispiel analysieren.
� Ich kann die binäre Version des OTP (Bitweise XOR) anwenden und Kryptotexte berechnen.
� Ich kenne die Eigenschaften der XOR-Operation: Kommutativität, Assoziativität, neutrales

Element 0, Involution (selbstinverse: a ⊕ a = 0, a ⊕ 0 = a) und deren Bedeutung für Ver- und
Entschlüsselung.

� Ich kann erläutern, warum zweimalige Anwendung desselben Schlüssels (mit XOR) den Klar-
text zurückgibt.

� Ich kann das Three-Pass Protocol (Schlüsseltausch mit drei Durchgängen) Schritt für Schritt
durchführen und die beteiligten Nachrichten (kA, kAB, kB) bestimmen.

� Ich kann erklären, warum das Three-Pass Protocol unsicher ist, wenn ein Angreifer alle drei
Kryptotexte mitschneidet (Rekonstruktion von t durch XOR aller Nachrichten).

� Ich kann das Diffie-Hellman-Merkle-Schlüsseltauschverfahren mit kleinen Zahlen durchführen
und den gemeinsamen Schlüssel berechnen.

� Ich kann das zugrunde liegende Sicherheitsprinzip von Diffie-Hellman (Schwierigkeit des dis-
kreten Logarithmusproblems) erklären.

� Ich kann den Man-in-the-Middle-Angriff auf Diffie-Hellman beschreiben und erläutern, wie
digitale Signaturen (z.B. RSA) Authentizität sicherstellen.

� Ich kann eine Nachricht mit RSA asymmetrisch ver- und entschlüsseln, indem ich ein Beispiel
mit kleinen Zahlen durchführe.

� Ich kann den Unterschied zwischen symmetrischen und asymmetrischen Verfahren (z.B. Vi-
genère/OTP vs. RSA/Diffie-Hellman) erklären.

68

Glossar

DHM Diffie-Hellman-Merkle. 41, 42

GGT Grösster Gemeinsamer Teiler. 45

OTP One-Time-Pad. 29, 30, 32, 33, 43

RSA Rivest–Shamir–Adleman. 42, 44–48

69

	Kryptologie
	Einführung

	Symmetrische Kryptosysteme
	Verschlüsselung per Transposition
	Skytale

	Caesar
	Knacken von Caesar

	Monoalphabetische Substitution
	Vigenère
	Knacken von Vigenère
	Bestimmung der Schlüssellänge mit dem Kasiski-Test
	Bestimmung der Schlüssellänge: Friedman'sche Charakteristik

	OTP
	Kryptoanalyse bei mehrfacher Verwendung des Schlüssels
	Bin-OTP

	Schlüsseltausch-Verfahren
	Drei-Wege-Schlüsseltausch
	Diffie-Hellman-Merkle-Schlüsseltausch

	Asymmetrische Kryptosysteme
	RSA-Verfahren
	Digitale Signaturen mit RSA

	Python-Übungen zu Kryptologie
	Allgemeine Zeichenketten-Aufgaben
	Verschlüsselung von Texten in Python
	Caesar-Verschlüsselung in Python
	Vigenère-Verschlüsselung in Python

	Lernziele Kryptologie

