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Kapitel 1

Kryptologie

1.1 Einfiihrung

Alice mochte Bob eine wichtige Nachricht zukommen lassen, beispielsweise zu einem gesundheitli-
chen Problem oder um ihre Bankkontoverbindung mit Bob zu teilen. Da das Internet jedoch eine
offene und somit (grundsétzlich) unsichere Technologie ist, kann jedermann jede Nachricht mitlesen.
Somit kénnte eine bosartige Person, wie beispielsweise Eve, die Nachricht abhéren, um sich Zugriff
auf die Gesundheitsdaten oder das Bankkonto von Alice zu verschaffen.

Damit dies nicht passieren kann, muss Alice ihre Nachricht so verschliisseln, dass nur Bob sie lesen
kann. Dieses Problem hat sich bereits in der Antike (und vermutlich noch vorher gestellt) und
entspricht einem grundsétzlichen, menschlichen Bediirfnis: Wie kann ein Feldherr seinen Soldaten
Anweisungen geben, ohne dass der Gegner mithért? Oder, um eine andere Situation aufzugreifen:
Wie kénnen Sie sich mit IThren Geschwistern austauschen, ohne dass Ihre Eltern verstehen, worum
es geht?

In der Informatik spricht man hier davon, dass Alice aus ihrem ,Klartext®, also dem fur alle Men-
schen verstédndlichen Text, einen , Kryptotext“ macht, also einen Text, den nur Bob entschliisseln
kann, d.h., nur Bob weiss, wie man aus diesem Text wieder einen verstdndlichen Text macht. Hierzu
muss man sich auf eine Verschliisselungsmethode einigen. In der Informatik spricht man hierbei von
einem Verschliisselungs-Algorithmus und Entschliisselungs-Algorithmus. Die Methode, um
eine Nachricht zu verschliisseln, so dass sie fiir Dritte unlesbar ist, wird héufig auch ,Schliissel“
genannt, und das Verfahren, um eine Nachricht unlesbar zu machen ,Verschliisselung“ oder ,,Chif-
frierung®. Im Allgemeinen wird der Bereich der Informatik, der sich mit Ver- und Entschliisselung
befasst, , Kryptografie* genannt und die verschiedenen Algorithmen und Ansitze werden haufig als
,2Kryptosysteme* bezeichnet.
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Ubermittlung

(Klartext, iiber unsicheren (Kryp-
Schliissel) Kanal e.g. In- tOt_‘?Xty
| (versehtissetung) ternet, Telefonie Schliissel)
Kryptotext Q Kryptotext l(Entschlﬁsselung)

\
Alice (Sender)

abhoren

:; ' Klartext

Bob (Empfinger)

Eve (Gegner / Abhorer)
Abbildung 1.1: Dieses Schema zeigt die Kommunikation zwischen Alice (Sender) und Bob (Emp-
fanger) unter Verwendung eines Kryptosystems.

Im Folgenden setzen wir uns zuerst mit einigen grundlegenden Verschliisselungs-Methoden ausein-
ander, um zu verstehen, was ein sicheres Kryptosystem auszeichnet. Der niederlédndische Kryptologe
und Linguist Auguste Kerckhoffs stellte im Jahr 1883 sechs Grundsétze fiir sichere Verschliisselungs-
verfahren auf:

Abbildung 1.2: Auguste Kerckhoffs (1835-1903)

1. Das System muss unentzifferbar sein.

2. Das System darf keiner Geheimhaltung bediirfen.

3. Das System muss leicht iibermittelbar sein und man muss sich die Schliissel ohne schrift-
liche Aufzeichnung merken kénnen.

4. Das System sollte mit telegraphischer Kommunikation kompatibel sein.

5. Das System muss transportabel sein und die Bedienung darf nicht mehr als eine Person
erfordern.

6. Das System muss einfach anwendbar sein.

Ein System, das diese Anforderungen erfiillt, gab es damals nicht. Von besonderer Wichtigkeit war
seine Forderung nach Offentlichkeit des Kryptosystems:
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LI faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber entre les
mains de 'ennemi — Auguste Kerckhoffs, La cryptographie militaire (1883)

Demgegentiber steht die Auffassung, dass Kryptosysteme geheimgehalten werden sollten (Security
through Obscurity), eine Haltung, die hdufiger von militdrischen Institutionen sowie kommerziellen
Anbietern von Verschliisselungsmethoden verfechtet wird.

Folgende Sicherheits-bezogenen Anforderungen kénnen zusitzlich an moderne Kryptosysteme ge-
stellt werden:

1. Vertraulichkeit: Es soll sichergestellt sein, dass wirklich nur diejenige Person eine Nachricht
lesen kann, fiir die diese bestimmt ist.

2. Integritat: Der Empfanger soll feststellen kénnen, ob die Nachricht nach ihrer Erzeugung
verdndert wurde (wir wollen ja die originale Nachricht!).

3. Authentizitat: Die Verfasserin einer Nachricht soll identifizierbar sein, bzw. der Empfanger
soll nachpriifen kénnen, wer die Verfasserin ist.

4. Verbindlichkeit: Die Verfasserin soll nicht abstreiten kénnen, dass sie die Verfasserin der
Nachricht ist.



Kapitel 2

Symmetrische Kryptosysteme

2.1 Verschliisselung per Transposition

In einem mit Transposition (oder Permutation) verschliisselten Text bleiben die Buchstaben des
Klartexts im Kryptotext erhalten, &ndern aber die Reihenfolge.

@ Aufgabe 2.1

Entziffern Sie den folgenden Kryptotext durch ausprobieren:

1. RKPYOTOLIGEEMREOLGCITHEGEHMIINSSE
2. HCSFIRILTAHCZFUEBUHAWNERDNUKUZMMOINUEIZNER

2.1.1 Skytale

Das Kyrptosystem Skytale wurde bereits von den Griechen fiir militdrische Zwecke verwendet. Der
Verschliisselungsalgorithmus kann wie folgt beschrieben werden:

o Schreibe den Klartext zeilenweise in eine Tabelle (Matrix) von links nach rechts.

o Allfdllige leere Felder in der letzten Zeile der Tabelle werden mit beliebigen Buchstaben gefiillt.

e Den Kryptotext erhalten wir, indem wir die Buchstaben Spalte fiir Spalte von links nach
rechts und von oben nach unten lesen.

Praktisch umgesetzt werden kann dieser Algorithmus mit einem Stab und einem Band, siehe Ab-
bildung 2.2. Die Anzahl Zeichen, die auf eine Windung des Bandes um den Stab passen, entspricht
der Anzahl Zeilen in der Tabelle. Diese Anzahl, also die Anzahl Zeilen, entspricht dem Schliissel des
Skytale-Verschliisselungsverfahrens.
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Abbildung 2.2: Praktische Umsetzung der Skytale-Verschliisselung mit einem Stab und einem Band
Quelle

@ Aufgabe 2.2

Der Kryptotext
WNGIAEIEMATSMKRTTEAGIEINANINTUGNDOJEEENL

wurde mit einer Tabelle mit 5 Zeilen und 8 Spalten erzeugt. Wie lautet der Klartext?

@ Aufgabe 2.3

Der folgende Kryptotext der Lange 75 wurde mit SKYTALE verschliisselt:

ETIFIITNUTNFGENKURRELEODIERSILIMSEANIE
MRECREMRHSNSSAPSTCBRCRHEUHORRNHNIEGEG

Dabei konnten mit dem Klartext alle Zeilen der Tabelle vollstandig aufgefiillt werden.

1. Welches ist hier der Schliissel, d.h. die Anzahl Zeichen auf einer Windung (bzw. Anzahl
Zeilen der Tabelle)? Tipp: Probieren Sie die Schliissel 3 und 5 aus. Sie kénnen diesen
Link, Entschliisselungswerkzeug ,, Tabelle“ dazu verwenden.

2. Wie lautet der Klartext?

3. Wie viele Schliissel miissen im schlimmsten Fall ausprobiert werden, bis der korrekte
Schliissel gefunden wurde? Das heisst, wie viele potentielle Schliissel gibt es? Es gilt
immer noch, dass alle Zeilen der Tabelle vollstandig befiillt waren.

7~

W Aufgabe (Challenge) 2.4

Sie mochten einen Klartext der Lange 87 mit Hilfe einer Tabelle mit 10 Zeilen chiffrieren.
Wie viele Spalten benétigt diese Tabelle?

2.2 Caesar

Eines der bekanntesten Verschliisselungssysteme der Antike ist die Caesar-Verschliisselung, die von
Julius Caesar verwendet wurde. Dieses Verschliisselungssystem besteht essentiell aus einer Ver-
schiebung aller Buchstaben um eine vordefinierte Anzahl Positionen im Alphabet. Der Schliissel
bezeichnet dabei die Anzahl Positionen, um die jeder Buchstabe verschoben wird. Ausgedriickt wird
der Schlissel auch als Buchstabe, der dem Buchstaben A entsprechen wiirde.


https://commons.wikimedia.org/wiki/File:Skytale.png
https://cryptbreaker.marcwidmer.xyz/solve
https://cryptbreaker.marcwidmer.xyz/solve
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Beispiel 2.1:
Mit dem Schlissel ,,D“ (3 Positionen) wiirde das Wort ,HALLO* als ,KDOOR* geschrieben:

Der Schliissel ,,B“ bedeutet also eine Verschiebung um 1 Position, ,,C“ um 2 Positionen, ,,D“ um

drei Positionen usw. Im Allgemeinen lésst sich die Verschiebung folgendermassen schreiben:

Verschiebung = Ord(0J), wobei Ord(A) = 0.

Beispiel 2.2:
Folgender Text wurde mit dem Schliissel ,,G“ (6 Positionen) verschliisselt:

Klartext: JEMANDMUSSTEJOSEFKVERLEUMDETHA...
Schliissel: GGGGGGGGGGGGGGGGGGGGGGGGGGGGGG. . .
Kryptotext: PKSGTJSAYYZKPUYKLQBKXRKASJKZNG. ..

= Aufgabe 2.5

Der Kryptotext
XGTYGPFGUEJNWGUUGNBYGEK

wurde mit CAESAR verschliisselt, der Schliissel ist aber unbekannt. Entschliisseln Sie den
Kryptotext, ohne alle Schliissel auszuprobieren, wenn Sie wissen, dass der hdufigste Buchstabe
im Klartext E ist.

\

2.2.1 Knacken von Caesar

o FEinerseits reicht es, alle 25 méglichen Verschiebungen auszuprobieren. Ein moderner Computer

hat dies in einigen Milisekunden erledigt.

e Andererseits kann, wenn der Text geniigend lange ist, anhand der Haufigkeit der verschliissel-
ten Buchstaben mittels Haufigeitsanalyse in kiirzester Zeit bestimmt werden, was der Schliissel
war. Abbildung 2.3 zeigt die Haufigkeiten der Buchstaben eines langen, mit Caesar verschliis-

selten Texts im Kryptotext.
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Abbildung 2.3: Buchstabenh&ufigkeit in einem nach Caesar verschliisselten Text

Die durchschnittlichen Haufigkeiten von Buchstaben, Bi- und Tri-Grammen in deutschen Texten ist
in Tabelle 2.1 angegeben.

Buchstabe | Relative Bigramm | Relative Trigramm | Relative

Héaufigkeit Héufigkeit Héaufigkeit

(%) (%) (%)

E | 17.40 ER | 3.94 DER | 1.44

N | 9.78 EN  |3.07 SCH | 1.21

I | 7.55 CH |273 ICH | 1.08

S | 7.27 DE | 241 DIE | 0.98

R | 7.00 EI | 229 UND | 0.95

A | 6.51 ND | 207 DEN | 0.78

T | 6.15 IE | 1.97 CHE | 0.77

D | 5.08 GE | 188 EIN | 0.75

H | 4.76 TE | 188 NDE | 0.74

U | 4.35 IN | 1.82 GEN | 0.72
(a) Buchstabenh&ufigkeit (b) Bigrammhéufigkeit (¢c) Trigrammhéufigkeit

Tabelle 2.1: Relative Héufigkeiten der Buchstaben, Bigramme und Trigramme im Deutschen
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@ Aufgabe 2.6

Koénnen Sie aus Tabelle 2.1 entschliisseln, was der Klartext ist?
Kryptotext:
WMILEFIRIWKIWGLEJJXHMIWIRXIBXDYOREGOIR

r
\.

W Aufgabe (Challenge) 2.7

Kann man immer wie in Aufgabe 2.6 vorgehen? In welchen Féllen funktioniert dieses Vorgehen
eventuell nicht?

~

W Aufgabe (Challenge) 2.8

Um zu verschliisseln, liest man die Caesar-Scheibe von innen (Klartext) nach aussen (Krypto-
text). Um zu entschliisseln, liest man von aussen (Kryptotext) nach innen (Klartext). Gibt es
Schliissel bei Caesar, bei denen es sowohl fiir die Ver- wie Entschliisselung keine Rolle spielt,
in welche Richtung man die Scheiben liest?

2.3 Monoalphabetische Substitution

Eine Weiterentwicklung der Caesar-Veschliisselung besteht darin, nicht jeden Buchstaben im Klar-
text um dieselbe Anzahl Positionen zu verschieben, sondern fiir jeden Klartext-Buchstaben By
einen Kryptotext-Buchstaben Bg zu definieren, durch den der Buchstabe ersetzt wird (siehe Ab-
bildung 2.4).

Abbildung 2.4: Monoalphabetische Substitution

Diese Verschliisselungsmethode kann nicht geknackt werden, indem alle Buchstaben um gleich viele
Positionen verschoben werden. Man kann also nicht lediglich alle 25 moglichen Verschiebungen
ausprobieren.

Obschon es nun eine Vielzahl méglicher Schliissel gibt, kann diese Verschliisselungsmethode ebenfalls
sehr einfach geknackt werden per Haufigkeitsanalyse, die wir bereits in Abschnitt 2.2 gesehen und
in Aufgabe 2.6 mittels Tabelle 2.1 durchgefiihrt haben.

Beispiel 2.3:
Folgender Kryptotext wurde abgefangen:

MUMMUXJUQYMHQOUSUTUQNGWT JQVHUMXQUXQJSUVYPPUM

Wir wissen, dass er per monoalphabetische Verschliisselung erstellt wurde, wie beispielsweise
in Abbildung 2.4, kennen jedoch den Schliissel nicht. Wir verwenden Tabelle 2.1, um den
Schliissel zu erraten und den Text zu entschliisseln. Dabei gehen wir wie folgt vor:
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Wir beginnen damit, die h&ufigsten Buchstaben zu zéhlen: U kommt 10-mal vor, M
kommt 6-mal vor, Q kommt 6-mal vor. Aufgrund von Tabelle 2.1 versuchen wir, folgen-
des einzusetzen: U=E, M=N, Q=I. Wir erhalten folgenden Teil-Klartext:

KRYPTOTEXT: MUMMUXJUQYMHQOUSUTUQNGWTJQVHUMXQUXQJSUVYPPUM

KLARTEXT: NENNE--EI-N-I-E-E-EI--——- I--EN-IE-I--E--—-EN

Nun kénnten wir weiterfahren, indem wir die hdufigsten Trigramme anschauen. Dabei
suchen wir im bisherigen Klartext nach Klartext-Teilen, wo wir Trigramme einsetzen
konnten. Laut Tabelle 2.1 ist ein héufiges Trigramm in deutschen Texten ~*DIE''.
Dieses probieren wir einzusetzen (D=X):

KRYPTOTEXT: MUMMUXJUQYMHQOUSUTUQNGWTJQVHUMXQUXQJSUVYPPUM

KLARTEXT: NENNED-EI-N-I-E-E-EI----- I--ENDIEDI--E----EN

Der Klartext nimmt langsam Form an und wir kénnen nun damit beginnen, verbleibende
Worte zu erraten. Kénnte es sich beim ersten Wort um das Wort “DREI” handeln? Wir
setzen ein:

KRYPTOTEXT: MUMMUXJUQYMHQOUSUTUQNGWTJQVHUMXQUXQJSUVYPPUM

KLARTEXT: NENNEDREI-N-I-E-E-EI----RI--ENDIEDIR-E----EN

Sobald einzelne Worter erkannt werden, kénnen wir sie mit Trennlinien voneinander
abgrenzen:

KRYPTOTEXT: MUMMU|XJUQ|YMHQOUSUTUQNGWTJQVHUM | XQU|XQJ|SUVYPPUM

KLARTEXT: NENNE |DREI | -N-I-E-E-EI----RI--EN|DIE|DIR|-E----EN

Wir fahren durch Ausprobieren und Erraten weiter, bis das Losungswort gefunden ist:
KRYPTOTEXT: MUMMU|XJUQ|YMHQOU|SUTUQNGWTJQVHUM | XQU|XQJ | SUVYPPUM

KLARTEXT: NENNE | DREI | ANTIKE | GEHEIMSCHRIFTEN |DIE|DIR|GEFALLEN

Je langer ein Text ist, desto zuverldssiger funktioniert das Erraten der Buchstaben per Hau-

O Informatik, 2026

figkeitsanalyse.

[# Aufgabe 2.9

Entschlisseln Sie den Text “ECRRCKZVRAZCRZK” mit dem Schliissel aus Abbildung 2.4.

~

W Aufgabe (Challenge) 2.10

Lésen Sie eine Knobelaufgabe aus dem Kapitel “Substitution”.

-

W Aufgabe (Challenge) 2.11

Wie viele Verschliisselungs-Moglichkeiten gibt es in der Verschliisselungsmethode aus Abbil-

dung 2.47

2.4 Vigenere

Wie wir in Aufgabe 2.6 gesehen haben, ist es extrem einfach, Texte, die mit Caesar verschliisselt wor-
den sind, anzugreifen, entweder mittels Buchstabenhéufigkeitsanalyse oder indem man einfach alle
25 moglichen Verschiebungen ausprobiert. Auch weitere monoalphabetische Substitutions-Verfahren

10
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wie Abbildung 2.4 kénnen durch etwas Knobeln relativ einfach geknackt werden.

Vigenere hatte eine andere Idee: Statt den ganzen Text mit einem einzigen Schliissel zu verschliisseln,
verwendete er ein Wort, mit welchem er den Text “zyklisch”, also gruppenweise verschliisselte.

Beispiel 2.4:
Wenn der Schliissel beispielsweise “KEY” war, wurden die Buchstaben folgendermassen ver-
schliisselt (siehe Beispiel unterhalb):

e Buchstaben 1, 4, 7, 10 etc. mit “K”
e Buchstaben 2, 5, 8, 11 etc. mit “E”
e Buchstaben 3, 6, 9, 12 etc. mit “Y”

Klartext: JEM|AND|MUS|STE|JOS|EFK|VER|LE. ..
Schlissel: KEY|KEY|KEY|KEY|KEY|KEY|KEY|KE. ..
Kryptotext: TIK|KRB|WYQ|CXC|TSQIOJI|FIP|VI...

Im Vergleich dazu wird bei Caesar jeder Buchstabe durch denselben Schliissel verschliisselt,
beispielsweise:

Klartext: JEMANDMUSSTEJOSEFKVERLEUMDETHA...
Schliissel: GGGGGGGGGGGGGGGGGGGGGGGGGGGGGG. . .
Kryptotext: PKSGTJSAYYZKPUYKLQBKXRKASJKZNG. ..

Wie Sie wissen, ist der Buchstabe “E” der haufigste Buchstabe in deutschen Texten. Diese Eigen-
schaft haben wir uns in Aufgabe 2.6 zunutze gemacht, um den Text zu knacken. Da bei Vigenere
jedoch der Buchstaben nun nicht mehr immer mit demselben Schliissel verschliisselt ist, sondern
je nach Position mit dem Schliissel “K”, “E”, oder “Y”, wird der Buchstabe “E” im Kryptotext
nun breiter auf andere Buchstaben verteilt (sieche Abbildung 2.5). Anders gesagt, ein Buchstabe
im Kryptotext reprasentiert nun nicht mehr immer den gleichen Buchstaben im Klartext, sondern
kann einen von drei Buchstaben représentieren.

E
(0]
K E
E K 0]
E > 1
Y
Q
C
Klartext Kryptotext Klartext Kryptotext

Abbildung 2.5: Verschliisselungs-Moglichkeiten mit Vigeneére, mit dem Schliissel “KEY” aus Bei-
spiel 2.4

Diese Verschliisslungsmethode galt wéhrend mehreren Jahrehunderten als sicher und war der Gold-
Standard in vielen militdrischen Verschliisslungs-Anwendungen. Um einen Text zu verschliisseln,
wurde jeder Buchstabe im Klartext einzeln verschliisselt, und je nach Schliissel (z.B. “K”, “E”
oder “Y” in Beispiel 2.4) wurde der entsprechende Buchstabe des Kryptotexts aus einer Tabelle
herausgelesen (siehe Tabelle 2.2)

11
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Abbildung 2.6 zeigt die Buchstabenhéufigkeit im Kryptotext fiir einen langen Text, welcher einmal
mit Caesar und einmal mit Vigenére verschliisselt wurde.
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ABCDEFGHI JKLMNOPQRSTUVWXYZ ABCDEFGHI JKLMNOPQRSTUVWXYZ

(a) Caesar (b) Vigenére

Abbildung 2.6: Buchstabenhaufigkeit in einem langen Text, welcher mit unterschiedlichen Verfahren
verschliisselt wurde

Abbildung 2.6 zeigt, dass Vigenere zu einer insgesamt homogeneren Verteilung aller Buchstaben
im Kryptotext fithrt. Dies kommt daher, dass bei Vigenere jeder Klartext-Buchstaben auf mehrere
Kryptotext-Buchstaben verteilt wird, wihrenddem bei Caesar jeder Klartext-Buchstaben durch
genau einen Buchstaben im Kryptotext kodiert wird. Tabelle 2.2 zeigt die Vigeneére-Tabelle, mithilfe
welcher man einen Text mit der Vigenere-Methode ver- sowie entschliisseln kann, sofern der Schliissel
bekannt ist. Folgende zwei Beispiele zeigen auf, wie diese Tabelle genutzt werden kann:

1.

Verschliisselung: Soll beispielsweise der Klartext-Buchstabe ,,E“ mit dem Schliisselteil , K*
verschliisselt werden, so findet man in der Tabelle den entsprechenden Kryptotext-Buchstaben
”O“‘

Entschliisselung: Soll beispielsweise der Kryptotext-Buchstabe ,,0“ mit dem Schliisselteil
»K* entschliisselt werden, so sucht man in der Tabelle nach dem Klartext-Buchstaben, der
mit ,,0“ und ,, K“ korrespondiert. Dies ist in diesem Fall der Buchstabe ,,E*.

12
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Kryptologie

Schliisselbuchstabe
ABCDEFGHI JKLMNOPQRSTUVWIXY Z
A/A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|VIWIX|Y|Z
BIB|C|D|IE|F|IGIH|IT|J|K|LIM|N|O|P|Q|R|S|T|U|VIWIX|Y|Z|A
CICID|IE|F|G|H|I|J|K|LIM|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|A|B
DIDIE|FIGH|I|J|K|LIM|N|O|P|Q|R|S|T|U|VIW|X|Y|Z|A|B|C
E|E|F|G|H|I|J|K|LIMIN|O|P|Q|R|S|T|U|VIW|X|Y|Z|A|B|C|D
FIFIGIHI|J|IKILIM|N|O|P|Q|R|S|T|U|VIW|X|Y|Z|A|B|C|D|E
G|G|H|T|J|K|ILIM|N|OIP|Q|R|S|T|U|VIW|X|Y|Z|A|B|C|D|E|F
HH|I|J|K|ILIMNIO|P|IQ|R|S|T|U|V|WIX|Y|Z|A|B|C|D|E|F|G

LIMIN|O|P|IQ|R|S|T|U|VIW|X|Y|Z|AB|C|D|E|F|G|H|I|J|K
MIN|OIP|Q|R|S|T|UVIWIX|Y|Z|A|B|C|D|E|F|G|H|I|J|K|L

PIQIR|S|T|U|IVIWIX|Y|Z|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O

NIO|P|Q|R|S|T|U|VIW|X|Y|Z|A|B|C|DIE|F|GH|T|J|K|LM
OIP|QIR|S|T|UIVIWIX|Y|Z|A|B|C|D|E|F|GH|T|J|K|L|M|N

KILIM|NIO|P|Q[R|S|T|U|VIW|X|Y|Z|A|B|C|DIE|F|GH|I|J

INT|J|K|ILIM|N|O|P|Q|R|S|T|U|IVIW|X|Y|Z|A|B|C|D|E|F|G|H
JIJIK|ILIMIN|OIP|Q|R|S|T|U|IVIWIX|Y|Z|A|B|C|DIE|F|G|H|I

QIQIR|S|T|U|VIW|X|Y|Z|A|B|C|D|E|F|GH|I|J|K|LM|N|O|P

K
L
M
N
O
P

9qR)STONIXIVIR] I

RIR|S|T|U|VIWIX|Y|Z|A|B|C|D|E|F|G|H|I|J|KILIM|N|O|P|Q

SIS|TIUVIWIX|Y|Z|A|B|C|ID|E|F|G|H|IT|J|K|LM|N|O|P|Q|R
TITIUVWIX|Y|Z|A|B|C|IDIE|FIGIH|IT|J|K|LM|[N|OIP|Q|R|S

UIUIVIWIX|Y|Z|A|B|C|DIE|F|IGIH|T|J|K|L|M|N|O|P|Q|R|S|T
VIVIWIX|Y|ZIAIB|IC|ID|E|F|G|H|I|J|KILIM|N|O|P|Q|R|S|T|U

WW|X|Y|Z|A|B|C|DIE|F|GIH|T|J|K|LIM|N|OIP|Q|R|S|T|U|V

X|IX|Y|Z|A|B|IC|D|IE|F|G|H|T|J|K|LIM|N|O|P|Q|R|S|T|U|VW
Y| Y ZIAB|C|IDIE|F|G|H|TI|J|K|LIM|N|O|P|Q|R|S|T|U|VW|X

Z|Z|A|B|C|D|E|F|GH|T|J|K|LIM|N|O|P|Q|R|S|T|UIVIWIX|Y

Tabelle 2.2: Vigenere-Tabelle

@ Aufgabe 2.12

Entschliisseln Sie folgenden Text von Hand, wenn Sie wissen, dass er mit dem Schliissel

,TOP*“ und mit der Methode von Vigenere verschliisselt worden ist:

UFPOCVNHVXAPVVI

[# Aufgabe 2.13

Verschliisseln Sie folgenden Text von Hand, mit dem Schliissel ,,YES“ und mit der Methode

von Vigenere:

NIEMANDKANNDASLESEN

2.4.1 Knacken von Vigenere

Wenn die Schliisselléinge eines mit Vigenere verschliisselten Texts bekannt ist, ist dieser relative

einfach zu knacken: Man unterteilt den Text in diesem Fall einfach in Gruppen und geht fiir jede

13
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Gruppe gleich vor wie bei Caesar, um den Schliissel zu finden.

Beispiel 2.5:
Angenommen, wir wiissten, dass folgender Text mit einem Schliissel verschliisselt worden ist,
der drei Zeichen lang ist:

MKU MYB VFL ZDH ZGO MKA MTR MKA PCA UGP VGN IPG MUL MNL MKU OGU WOT MPN TGP KJK MPZ CGZ
AGU NTB MJS QPN AQV ZIL VFP MKJ POP BIH VBL UJL ZBL VIL VKL AUL QEO JKU INS MKU CPK NTL
CGT QEO UGP VGZ TGI MPZ QPK QGZ MTN MIL VFK QGM CGY AQS KJL AGL TGU 0GZ KJH NHL VKZ BYP
MFP MOL QPL QEO JKU AQN TWL KMS QEO UGP VDL AVL ZUV 0OCU HKU LGT OGM CGO TGC WPY CJP OGT
LCZ MKU DGY AWU SGU LCZ AOL QPL SWU AVK ITB VVL ZNL QFL BKJ PMV MPU BGQ MVG BPP KJA HGP
KJU MPU QEO BGP VGU AVY QEQO CPK JKU VKL MKU OTV MUZ MTL ZOH TGY OGD MUL VCS AKU LKL AGU
IWN MPI TKJ SGU EGU VFH ANP MDL

Den Schliissel selbst kennen wir nicht, wir wissen jedoch, dass jeder der griin markierten
Buchstaben beispielsweise mit demselben Buchstaben verschliisselt worden ist. Wir konnen
also fiir jede der Gruppen (griin, blau, rot) die Haufigkeit der Buchstaben betrachten (siehe
Abbildung 2.7).

FCr:5.04% FCr:4.07% FCr:7.03%

N 6% -
% - 4% -
5% -
”’||I I|| Il .l ‘ |I IRl |||| Lt 11
SO 1 | Y111 11T {1 PP e 11 1101 L 10 I 1 N ] | Y1 Y1 (O |

ABCDEFGHI JKLMNOPQRSTUVWXYZ ABCDEFGHI]JKLMNOPQRSTUVWXYZ ABCDEFGHI JKLMNOPQRSTUVWXYZ

(a) Untergruppe 1 (b) Untergruppe 2 (¢) Untergruppe 3

Abbildung 2.7: Buchstabenhéufigkeit in einem mit Vigeneére verschliisselten Text, pro Unter-
gruppe

Dabei erkennen wir, dass die haufigsten Buchstaben pro Gruppe M, G, bzw. L sind. Wir
haben es also mit folgenden Verschiebungen zu tun:

Der Schliissel muss demnach “ICH” sein und wir konnen den Text somit entschliisseln.

14
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[#' Aufgabe 2.14 .

Kopieren Sie den folgenden Kryptotext und versuchen Sie, ihn mit dem Analysetool zu entzif-
fern, wenn Sie wissen, dass die Schliissellange drei ist. Schauen Sie sich die Buchstabenhaufig-
keiten fiir jede der 3 Gruppen an, indem Sie unter ,, Analysewerkzeug“ die Haufigkeitsanalyse
auswéahlen und stride (Schrittgrosse) 3. Unterhalb der Grafiken kann man zwischen jeder der
drei Gruppen hin- und herwechseln. Probieren Sie den wahrscheinlichsten Schliissel aus, in-
dem Sie beim , Entschliisselungswerkzeug® ,Vigenere* auswéhlen und den Schliissel eingeben.

WORBHHHLUQOWWLDSYSQOWOUKSUDSNEGAAZAEBKISMRILHGPCVLI
BZTRLMHYUSIEBILWJKULZSPGHCEFZUQOIQOWCOLSBCVKISZMOSF
SZTNBHOSTSUFILHZPCVTEWUHSYZBVCVQEBLMKHHBNEBLIUAIVYD
FHEBNTSBCVGUBBNUBTGVMCLGHPHFDAZAEBDISPHFHUGKUBZTIUD
BLBSSUATIQOSHLIUAMSPNPBS

[#" Aufgabe 2.15 Vigenere knacken bei bekannter Schliissellinge (zu dritt)

Finden Sie fiir folgenden Vigeneére-Text den Klartext heraus, wenn Sie wissen, dass der Schliis-
sel Linge 3 hat:
WKJ LMU AKJ WZJ WQV WVV KBG ZBG JAV OMP FRG VMT WZM WVP LEK WMN WUG FBC JMK FMX WZN
SMU KTK UPG NMT KKJ DCG KAG DCP YNW WZW FAG JMH JMK ZMK LQU L
1. Finden Sie zuerst die haufigsten Buchstaben pro Gruppe heraus (Gruppe 3 ist bereits
gemacht, s. unten). Seien Sie genau, ansonsten miissen Sie spater wieder von vorne
beginnen!

,© Notizen .

\. J

2. Finden Sie danach den Schliissel heraus, indem Sie annehmen, dass der haufigste Buch-
stabe im Geheimtext den Buchstaben ,E“ im Klartext reprasentiert. Fiir Gruppe 3 ist
die Losung bereits vorgegeben.

|| Haufigster Buchstabe | Schliissel
Gruppe 1 || |
Gruppe 2 || |
Gruppe 3 || (E =) G | (A —) C (=2 Verschiebungen)

3. Enschliisseln Sie nun den Geheimtext, indem Sie die Caesar-Drehscheibe verwenden
(Tipp: Machen Sie jeweils eine Farbgruppe pro Mal).
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W Aufgabe (Challenge) 2.16

Versuchen Sie, auf diesem Link eine weitere Challenge-Aufgabe zu 16sen, indem Sie die Werk-
zeuge ,Frequency* (Haufigkeit) und ,Vigenére“ verwenden:

2.4.1.1 Bestimmung der Schliissellinge mit dem Kasiski-Test

Wie Sie gesehen haben, kann man Vigenere gruppenweise mit denselben Methoden knacken, die wir
benutzt haben, um Caesar zu knacken. Falls die Schliissellinge unbekannt ist, konnen sowohl der
Kasiski-Test wie auch die Friedman’sche Charakteristik verwendet werden, um diese zu erraten. In
diesem Unterabschnitt schauen wir uns zunéchst den Kasiski-Test an.

Friedrich Kasiski war ein preussischer Infanteriemajor (1805 - 1868), welcher mit seinem Kasiski-
Test massgeblich zum Knacken der Vigenere-Verschliisselung beigetragen hat. Den Kasiski-Test
veroffentlichte er 1863 in seinem Buch ,,Die Geheimschriften und die Dechiffrir-Kunst* (siehe Ab-
bildung 2.8).

Die Geheimldyriften
Die Dedbiffrir- Kunit,

Mit bejonderer Beriidfidtigung
ber deutfden und der franzdfijhen Sprace

von

F. W. Rafiski,

Major 3. D,

7l

Berlin, 1863,

Drud und Berlag vou G & Mittler und Sohu.
(Bimmerftrae 84, 85.)

L —

Abbildung 2.8: Umschlag des Buches ,,Die Geheimschriften und die Dechiffrir-Kunst* von Friedrich
Kasiski (1863, Quelle)
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Die Grundidee hinter dem Kasiski-Test ist: Wenn ein Wort oder ein Wortteil im Klartext mehr-
mals vorkommen, so wird dieser moglicherweise auch im Kryptotext mehrmals vorkommen. Wenn
beispielsweise die Buchstaben ,DIE“ mehrmals mit dem Schliissel ,KEY* verschliisselt werden, dann
wird der Text ,LIV“ mehrmals im Geheimtext auftauchen. Wenn das Wort ,DIE“ also zweimal im
Klartext vorkommt und auf denselben Schliisselteil (,KEY*, ,EYK“ oder ,YKE“) fallt, wird z.B. ,LIV¢

auch zweimal im Kryptotext gleich verschliisselt sein.

Wenn wir also im Kryptotext nach wiederholten Sequenzen suchen, kénnen wir daraus die Schliis-

sellange ableiten.

Beispiel 2.6:
In folgendem Beispiel ist der Klartext auf der ersten Zeile. Der Schliissel “CODE” wird
verwendet, um den Gemeimtext (auf der dritten Zeile) zu erzeugen:

M
C
0

KLEINERREIMSCHEINTKEINERZUSEIN

CODECODECODECODECODECODECODECO

MZHMPSUVGWPWEVHMPHNIKBHVBIVIKB
7 19 24 32

Der Kasiski-Test erlaubt uns, Hinweise auf die Schliissellinge zu erhalten, ohne den Schliissel
zu kennen:

Die Sequenzen ,,HMP“ und ,,IKB“ erscheinen jeweils zweimal im Geheimtext.
Die Sequenz HMP befindet sich an den Positionen 7 und 19. Die Differenz zwischen diesen
Positionen betragt 12, was sich als 2 x 2 x 3 in Primfaktoren zerlegen lésst.

7 o 4 X 3 = 19
Position 1 HMP ~ Codewort-Lénge!  Anzahl Codeworter Position 2 HMP

Die Sequenz IKB befindet sich an den Positionen 24 und 32. Die Differenz zwischen
diesen Positionen betragt 8, was sich als 2 x 2 x 2 faktorisieren lasst.

24 + 4 X 2 = 32
Position 1 IKB  Codewort-Lange!  Anzahl Codewérter Position 2 IKB

Die Schliisselléinge koénnte, sofern man nur den Abstand zwischen den beiden HMP be-
trachtet, theoretisch auch 12 sein. Dann wiirden allerdings die beiden IKB nicht auf
denselben Schliisselteil fallen. Daher ist dies nicht méglich.

Den Primfaktoren 2 x 2 x 3 und 2 x 2 x 2 ist der Teil 2 x 2 gemeinsam, was darauf
hindeutet, dass die Schliissellange 4 sein kénnte.

17
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[ Aufgabe 2.17 Vigenere knacken bei bekannter Schliissellinge (zu dritt)

Finden Sie den Klartext fiir folgende Nachricht heraus, wenn Sie wissen, dass der Text mit
Vigenere verschliisselt worden ist. Wenden Sie den Kasiski-Test an!

UEUIOOCEUDIWIOOWRRCLWVUQURRCLWVNDTHXETHERRCFKRTWVSFYOQRNJJTG
10 20 30 40 50 60

RSVUAVIOOCEQEIHRUIYOHITQLNJZNJVSEVRJRUILNGUEUIOOCEUDIWIOOWHR
~ 70 80 90 100 110 120

VRWVAXWZXIOOCEQIOOWAWDEWVAXWUQUWRCLWVDLVNDVCKJTHETDXEYFMUFLO
130 140 150 160 170 180

VRQZCKKS%X?UYOHIEQ

Anleitung:

e Die Position an allen 10, 20, 30 etc. Buchstaben sind oben bereits markiert, ebenso wie
Vorkommnisse des Trigramms I00.

e Auf separatem Blatt:

1. Notieren Sie sich die Anfangspositionen aller Trigramme I00.

2. Berechnen Sie die Abstidnde zwischen den Anfangspositionen. Es reicht, wenn Sie
nur die Absténde aller Anfangspositionen von IOO zum ersten Trigramm IOO an
Position 4 berechnen.

3. Zerlegen Sie die Absténde zwischen den Trigrammen in Primfaktoren.

4. Finden Sie den grossten gemeinsamen Teiler dieser Primfaktoren, um die
Schliissellange zu erraten.

e Wenn Sie die Schliissellinge haben, farben Sie den Text abwechslungsweise ein, wie
in Aufgabe 2.15. Teilen Sie sich zu dritt auf, so dass jede Person eine Gruppe von
Buchstaben entschliisselt (gleich wie in Aufgabe 2.15).

e Tipp: Der letzte Teil des Schliissels ist “D”. Der Schliissel ergibt ein Wort. Entschliisseln
Sie den Text nun mit der Caesar-Drehscheibe! Entschliisseln Sie zuerst nur die erste
Zeile, um zu iiberpriifen, ob ihr Schliissel stimmt und zu einem sinnvollen Text fiihrt.

\. J

= Aufgabe 2.18 .

Finden Sie die Schliissellénge fiir folgenden Vigenere-Text heraus, indem Sie den Kasiski-Test
anwenden:

CMFBAMXPESRGILLDMNCEDMTKEHRPVFEIOKLHGIVSJYSQZDMUXYL
RBIJITQNZTDMOVMUMFCSDMUZGDRTTHVISGUMOURNFICFTRMFSEQI
JKESJBVHHKFLNCPFINVMMCIFIKLGDRECIBLFRUEIJEEFCNEARMB
CELEULRTREUALMURUEHJVAMJPIDDVVEGDRFZNDWIFCGWDYUKWUL
DHYNJVNVOVBDREVRESFIDDVVEGHRUVLKILKUDPMVREEFYIFOFZT
DRVEDEISKIFOFZTDRXVRCIOUIDNVXEMHMZCGIORUBLJEIGVFIPD
VIFEMPJTHDRFETVMDBLTRHLNSISJTTIUQTHQWFRKMFXEMHFELDM
USIKHTZNCDJVLDYOUWDVUVFDWUXEGEMKEMRBTHCIOVNRMDYDHIT
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THTPBEGDLPVRHKFEIMMIIEQXBVGKMDYEMESSEHXSZCGXFEERFJC
DDXALDDQEZEFVVEDKEHVFTISUIDFFIPQYFWUMKVESDVFJTTRTLN
CJVVRCM

Verwenden Sie dazu folgendes Online-Tool: https://cryptbreaker .marcwidmer.xyz/solve

1. Verwenden Sie das Analyse-Werkzeug ,Kasiski-Analyse®, um die Abstdnde der sich
wiederholenden Sequenzen der Lénge 4 zu bestimmen.
o Notieren Sie sich die Positionen und Abstédnde der sich wiederholenden Sequenzen
der Lénge 4.
e Zerlegen Sie die Absténde in Primfaktoren.
o Finden Sie den grossten gemeinsamen Teiler der Absténde, um die Schliisselldnge
zu erraten.
2. Uberpriifen Sie Ihre Vermutung, indem Sie im Analyse-Werkzeug die Hiufigkeitsanalyse
mit der Schrittweite (stride) gleich der vermuteten Schliissellinge durchfiihren.
3. Entschliisseln Sie den Text mit dem ,Vigenere“-Entschliisslungswerkzeug.

g Aufgabe 2.19 -

1. Erklaren Sie kurz: Dopplungen im Klartext (z.B. ,EIN“) fithren nicht unbedingt zu
Dopplungen im Geheimtext.

2. Erklaren Sie kurz: Dopplungen im Geheimtext miissen nicht in jedem Fall aus Dopp-
lungen im Klartext stammen; sie konnen auch zuféllig entstehen.

W Aufgabe (Challenge) 2.20 .

2.4.1.2 Bestimmung der Schliissellainge: Friedman’sche Charakteristik

Eine weitere Moglichkeit, die Schliissellange zu erraten, besteht in der Verwendung der sogenannten
Friedman’schen Charakteristik.

William Friedman (1891-1969) war ein russisch-amerikanischer Kryptologe und Pionier auf dem
Gebiet der Kryptoanalyse (sieche Abbildung 2.9). Kurz vor dem Ausbruch des zweiten Weltkriegs
griindete er den Signals Intelligence Service (SIS), eine Geheimabteilung des US-Militéars zur Ent-
zifferung feindlicher Codes und Geheimschriften.
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Abbildung 2.9: William Friedman (Quelle)

Die Friedman’sche Charakteristik macht sich zunutze, dass Buchstaben im Klartext ungleich ver-
teilt sind. Falls jeder Buchstabe gleich hdufig vorkommen wiirde, wére die erwartete Haufigkeit jedes
Buchstabens genau 1/26. In keiner naturlichen Sprache besitzen alle Buchstaben dieselbe relative
Héaufigkeit. Die Haufigkeitsverteilung der Buchstaben in deutschen Texten haben wir bereits in Ta-
belle 2.1 gesehen. Die relative Haufigkeit des Buchstabens ,,E“ in deutschen Texten ist beispielsweise
ca. 17.4%. Die relative Hiufigkeit eines Buchstabens [ in einem Text T bezeichnen wir mit hg(T).

Die Friedman’sche Charakteristik berechnet, wie ungleich alle Buchstaben in einem Text verteilt
sind, indem sie die quadrierte Differenz der relativen Héaufigkeit jedes Buchstabens zu 1/26 berech-
net. Diese quadrierten Abweichungen werden danach alle aufsummiert (siche. Gleichung (2.1)).

Bemerkung 2.1:
Das Quadrieren der Abweichungen (Differenzen) hat zwei Effekte:

¢ Quadrate von reellen Zahlen sind sicherlich nicht negativ.
o Grosse Abweichungen von 1/26 tragen aufgrund des Quadrierens iiberproportional zur
Summe (zur Friedmansch’schen Charakteristik) bei.

FO(T) = (hA(T) _ 216>2 + (hB(T) - 216>2 T (hZ(T) _ 216)2 (2.1)
- ¥ (hA(T) - 216> (2:2)
A€Alphabet

Eine stark ungleiche Verteilung von Buchstaben in einem Text T fithrt also zu einer hohen Fried-
man’schen Charakteristik F'C(T'), wihrenddem gleichméssig verteiltere Buchstaben im Text 7' zu
einer tieferen F'C/(T') fithren. Deutschsprachige (Klar-)Texte haben durchschnittlich etwa einen Wert
von 3.8% (0.038) (siche Abbildung 2.10).
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Abbildung 2.10: Buchstabenhiufigkeit in einem mit Caesar verschliisselten Text, im Vergleich zur
Gleichverteilung von Buchstaben

Je grosser die blauen Pfeile in Abbildung 2.10, desto hoher die Friedman’sche Charakteristik.

Wir koénnen nun folgenden Brute-Force-Ansatz verwenden, um die Schliissellinge mit der Fried-
man’schen Charakteristik zu bestimmen:

o Alle moglichen Schliisselwortléngen von 1 bis zu einer beliebig gewéhlten Zahl n ausprobieren,
wobei n praktisch nie iiber 10 gewéhlt wird.
¢ Buchstaben jeweils in Gruppen unterteilen:
— 2 Gruppen: MU ZK JL QP AW JUMH YI IL LC ZA UP MR LZ HL SV CM TZ BC UL GU PC IM PD QG
TI PC QI LV GY MG UB UJ PN BM UZ MN AP GY HN PK JL OT HB WS IV PW PK IH B

FCr:1.54% FCr:1.55%

ABCDEFGHI JKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ

(a) Gruppe 1 (b) Gruppe 2

.

Abbildung 2.11: Buchstaben-H&ufigkeiten und FCrp fiir Schliisssellainge=2

— 3 Gruppen: MUZ KJL QPA WJU MHY IIL LCZ AUP MRL ZHL SVC MTZ BCU LGU PCI MPD QGT IPC
QIL VGY MGU BUJ PNB MUZ MNA PGY HNP KJL OTH BWS IVP WPK IHB

FCr:5.04% FCr:4.07% FCr:7.03%

|| |||| I % I.I -|l|| III

-

O - E—
-
—

w

(a) Gruppe 1 (b) Gruppe 2 (c) Gruppe 3

Abbildung 2.12: Buchstaben-Héufigkeiten und F'Cyp fiir Schliisssellinge=3
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— 4 Gruppen: MUZK JLQP AWJU MHYI ILLC ZAUP MRLZ HLSV CMTZ BCUL GUPC IMPD QGTI PCQI

LVGY MGUB UJPN BMUZ MNAP GYHN PKJL OTHB WSIV PWPK IHB
I‘HI I‘ 2|||.|| II| ”‘I HI I‘ |||.||‘II| “| || ||I.|| II|‘ ‘Idl HI |‘

“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““

10%-

(a) Gruppe 1 (b) Gruppe 2 (c¢) Gruppe 3 Gruppe 4

Abbildung 2.13: Buchstaben-Héufigkeiten und F'Cyp fiir Schliisssellinge=4

— etc, bis zu Schliissellinge = n
o Fiir jede der Schliisselldngen: Durchschnittliche FC(T) fiir alle Gruppen berechnen.
o Wenn die richtige Schliissellinge (oder ein Vielfaches davon) gewéhlt wurde, sollte F'C(T)
hoher sein.

Die durschschnittliche Friedman’sche Charakteristik fiir jede der getesteten Schliissellangen ist ge-
zeigt in Abbildung 2.14.

6% -
5% -
5% -
4% -
4% -
3% -
2% -
2% -

e ©
20- @ @ o o e o SN

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Abbildung 2.14: Durchschnittliche Friedman’sche Charakteristik fiir jede Schliissellinge
Aus Abbildung 2.14 lasst sich ablesen, dass die Schliissellinge vermutlich 3 sein muss, da bei jedem
Vielfachen der Schliissellinge 3 die durchschnittliche Friedman’sche Charakteristik hoher ist als

fiir die restlichen Schliissellingen. Ab nun ldsst sich gleich vorgehen wie in Unterabschnitt 2.4.1
beschrieben, um den Text zu entschliisseln.
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[#' Aufgabe 2.21

Berechnen Sie die Friedman’sche Charakteristik fiir folgende beide Texte von Hand:
PAPPERLAPAPP
BACKSTEIN

Wie interpretieren Sie die beiden Zahlen?

I r

@ Aufgabe 2.22

Fiir welche Buchstabenverteilung sollte die Friedman’sche Charakteristik hoher sein: Abbil-
dung 2.6, (a) oder (b)?

I r

[# Aufgabe 2.23

Kopieren Sie den folgenden Kryptotext und versuchen Sie, ihn mit dem Analysetool zu ent-
ziffern, indem Sie zuerst das Tool “Friedman” und danach das Tool “Frequency” verwenden.
Wie lautet der Schliissel?

FZNZKVEDZFCRRZVFZTZFLVIOVBKMZWOVGVBAVSZSMVEDBHVNJAN
VNBZFZCCRFESPSTJEITSLECZJEGNAPIGZBEZEDQIDIOUBEZZAIV
RUSOXEIWFJSZWDYBDBBCLZWOLNYTSVUZAJTHHSJEENZFSEIGJED
DSTVRBSHVNYRJVFPSSJOGQIVSZSMVNBSTTHVTGVNDGUNIZRJIJVMZ
WOVIXVCZNNCHCUZQLCIXVNVIIPFIJTZFTFGVBAZNYSNXEAIFYLZJ
PERPVJXEHRBJEDBWVRNIOBEIRBJSHSJEEFIOJTYOSLNOSSCEDRF
KIXVLFEIBUVJZHAKNDQIKZZWDYNZBOZCCHFZNZBTKRDQILNYPJE
NDSFZNBFPVSNSSVRHOMVRBSXVSZBBCSDBEZENSORUBSOSLDQLVN
RSOEDVGMZEWSURLPANZCCRBDPAHVEDYWFYOCSTFNISBEDZFPSEM
TMREXVFUEMIOUUMQIURDBHCIXVFEFDBTKEMBJIJMZWOVSROMUENF
VYTPBEEUMSJEZZZOVSOFBYLZBTZCCWOUANWOEEMSIVIGWHKUHGU
VHEGSOZCCRBENDAIFHZBHIANSBDFVZMVNYSOSAXVFCIZUFLNYBBYV
HZFBEDZFFIDZHBLSZBEDAIBJXFVZUZGZUSRENQIVNHWSDEMYXLE
MRIJIXWZFEVNRSOEIXVERSRWNDEGBEVRFZFZNZBXVLONXZSXVFEHV
ZNVNYWFLNUOFYLDUFEUISSXRPSOULDQIVNBSTKAGHFEDZFXLEMA
DYEIRFIMPSDBCCSOEAZVFIATAFZNZAIVRUSOWUZVMVUIRGLECZF
UIZUFXEIKBITYSTRLGABVCCHJIJXEIRFIUIGORCCGFZNZACZLYSTT
HPTERSRSIVNYSTRLGWFSEIRFEDZFVESDBFNIBSSNOIBFJCCKFSE
IRUIAZUULNYSSYAZZUDEDBGIEPBENEIBTUAIBVDMZWOVAPUFEDYV
SNDEMHVEDYWFNEGHVDMDQIYEMIOUDZFIZMHSMXAINJEMZWOVRNS
FCEMIIEWDSEZEBSTKAGHFZNZFHVLDSCKEIRBENNSIEEDQIDIXVP
WTPBEUEIYFRCCYPVNIHFJTYIERSRWFUEMOVJDMIFTKZBLFEIBUV
SORVUEHDBGIZFFUANSJEHVIDYEIKBJSJJPCLNCXRRHWOUIMZFST
YOTJENKVVRYSEVRNDIJVGZZEVIISSJEZZFNIZRFZNZGFVLZWTKD?Z
FTGIZUFCDZGVEEIRMZCCSOXOOHFJMZWOWRZIOUAWSSZCCUFYEYO
SLEWSSQUBFVEDZWDYEMZJVGZIOKEMRFIGZKBCTYSSYEMFMZCCYF
ZTYWFJEMSSJCCSJEUIUFEEDBFNUIRFIBVFFYEDHFIKZWUYAQOAFZ
NZUBEZZGFVLZSJEGZBPDMZBHCEDQIUEIGVVSNSOWRPSICIIUTDO
MUFEDDSJTHHWUXAINFDHZFAVNBSOZENGFZCCPJEAGZFZNPBEWRZ
IFDIXVNVIISTCEWSOJIIRJVSZFHVGZBEUIZTVVRNCMTHZGFVLZB
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HVSXVBWFZBJJTRWFUIZAFZNZWDYBDBTFGGIFTKGWDYMZWOSENHF
ISJU

W Aufgabe (Challenge) 2.24

Berechnen Sie die Friedman’sche Charakteristik fiir folgenden Kryptotext:

WORBHHHLUQOWWLDSYSQOWOUKSUDSNEGAAZAEBKISMRILHGPCVLI
BZTRLMHYUSIEBILWJKULZSPGHCEFZUQOIQOWCOLSBCVKISZMOSF
SZTNBHOSTSUFILHZPCVTEWUHSYZBVCVQEBLMKHHBNEBLIUAIVYD
FHEBNTSBCVGUBBNUBTGVMCLGHPHFDAZAEBDISPHFHUGKUBZTIUD
BLBSSUATIQOSHLIUAMSPNPBS

Verwenden Sie dazu das Python-Skript auf Moodle, mit der Funktion def calculate_fc(
text). Was entnehmen Sie der ihrer Antwort? Wurde der Text mit Caesar oder mit Vigenere
verschliisselt?

W Aufgabe (Challenge) 2.25 Ver- und Entschliisslung mit Python (zu zweit)

Laden Sie zuerst die Vigenere-Python-Dateien von Moodle herunter. Erstellen Sie danach
einen Text in deutscher Sprache mit mindestens 1000 Zeichen, beispielsweise mittels folgen-
der Webseite: https://www.blindtextgenerator.de/. Diesen werden Sie nun mit Python
verschliisseln.

Teil 1: Verschliisselung

o Verschliisseln Sie Ihren Text, indem Sie die Funktion def vigenere(text, key, encrypt
=True) verwenden.
o Senden Sie Ihren verschliisselten Text an Ihre(n) Partner(in), nicht aber den Schliissel.

Teil 2: Entschliisselung

e Sie erhalten den Kryptotext und miissen nun zuerst den Schliissel herausfinden. Be-
stimmen Sie diese mithilfe der Friedman’schen Charakteristik, indem Sie die Funktion
def get_friedman_vals(text, maxkeylen) verwenden.

e Nachdem Sie die Schliissellinge bestimmt haben, finden Sie innerhalb jeder Gruppe
dem héufigsten Buchstaben. Dies konnen Sie mit der Funktion def show_letter_freq
(text) einfach umsetzen. Somit sollten Sie das Schliisselwort herausfinden kénnen.

o Entschliisseln Sie nun den Kryptotext, indem Sie die Funktion def vigenere(text,
key, encrypt=False) verwenden.

W Aufgabe (Challenge) 2.26

Losen Sie drei “beliebige Probleme” auf der Analyse-Webseite.

2.5 One-Time-Pad

Der Fortschritt in der Mathematik und das neu dazugekommene Wissen machten Vigenere zu einem
unsicheren Kryptosystem.

Vigenere und dessen Kryptoanalyse haben wir bereits besprochen. Wir haben gesehen, dass eine
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Kryptoanalyse vor allem dann leicht ist, wenn der verwendete Schliissel zu kurz gewéhlt wird, denn
die wesentliche Schwéche von Vigenere ist die Wiederholung der Muster im Kryptotext bei zu kurz
gewahltem Schliissel. Betrachten wir als Beispiel einen Kryptotext aus 1000 Buchstaben, der mit
einem Schliissel der Lange finf verschliisselt ist. Das bedeutet, dass jeder fiinfte Buchstabe und
somit insgesamt je 200 Buchstaben anhand der gleichen Zeile der Vigenere-Tabelle verschliisselt
sind. Das heisst, dass je 200 Buchstaben mit dem gleichen Schliisselbuchstaben verschliisselt sind.
Durch eine Haufigkeitsanalyse von 200 Buchstaben kann ein Kryptoanalytiker bereits den entspre-
chenden Buchstaben des Schliissels bestimmen. Was wére aber, wenn der verwendete Schliissel aus
50 Buchstaben bestehen wiirde? Dann muss eine Haufigkeitsanalyse von 50 Teilen zu je 20 Buchsta-
ben gemacht werden. Es ist nicht garantiert, dass man aus nur 20 Buchstaben eine représentative
Héaufigkeitsverteilung erhéalt. Gehen wir noch einen Schritt weiter und wéhlen einen Schliissel, der
genau gleich lang ist wie der Klartext. Nun ist eine Haufigkeitsanalyse vollig unmoglich, da wir es
mit 1000 Teilen zu je nur einem Buchstaben zu tun haben.

Die One-Time-Pad-Verschliisselungsmethode (OTP, deutsch “Einmalschliissel-Verfahren”) funktio-
niert im Prinzip identisch wie die Vigenere-Methode, mit folgenden drei Unterschieden:

1. Der Schliissel besteht auf einer zufdilligen Folge von Buchstaben
2. Der Schliissel ist genau gleich lang wie der Klartext/Kryptotext
3. Der Schliissel wird nur fiir genau eine Botschaft verwendet

Beispiel 2.7:
Folgendes Beispiel verwendet einen OTP-Schliissel:

Klartext: OERLIKON
Schliissel: IGBQPWXD
Kryptotext: WKSBXGLQ

Essentiell handelt es sich beim OTP um dasselbe Verschliisselungsverfahren wie bei Vigeneére, wo-
bei der Schliissel gleich lang wie die zu verschliisselnde Nachricht sein muss. Diese Methode gilt als
sicher, da die gruppenweise Haufigkeitsanalyse (z.B. mit der Friedman’schen Charakteristik) nicht
funktioniert. Allerdings ist die OTP-Methode aufgrund der ldngeren Schlissellinge mit hoheren
Ubertragungskosten verbunden. Zudem darf jeder Schliissel zur Sicherheit nur einmal verwendet
werden, was fiir regelméssige Datenaustausch-Anwendungen wie E-Mail, Online-Banking etc. un-
praktisch ist.

Vorgehen 2.1 (Kryptosystem OTP):

Klartextalphabet: Alphabet der lateinischen Grossbuchstaben.

Kryptotextalphabet: Alphabet der lateinischen Grossbuchstaben.

Schliisselmenge: Alle denkbaren Texte bestehend aus lateinischen Grossbuchstaben, welche
dieselbe Lange haben wir der Klartext. Es ist wichtig, dass fiir jeden Klartext ein
Schliissel zuféllig generiert wird.

Verschliisselung: Gegeben ist ein zufillig gewédhlter Schliissel s aus der Schliisselmenge.
Der gegebene Klartext wird nun (wie gewohnt) mit Hilfe der Vigenére-Tabelle mit dem
Schliissel s verschliisselt. Der Schliissel darf danach nicht mehr verwendet werden.

Entschliisselung: Gegeben ist ein zufillig gewédhlter Schliissel s aus der Schliisselmenge.
Der gegebene Kryptotext wird (wie gewohnt) durch Vigenére mit dem Schliissel s ent-
schliisselt.

Warum erscheint uns das O'TP als ein sicheres Kryptosystem? Die Intuition ist wie folgt. Weil der
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Schliissel zufillig gewdhlt wird und genauso lang ist wie der Klartext, wird jeder Buchstabe des
Klartextes um zuféllig viele Positionen im Alphabet verschoben. Damit kann man den Kryptotext
als eine zuféllige Folge von Buchstaben betrachten. Und aus einer zufélligen Folge von Buchstaben
kann man keine Informationen herauslesen.

Alice und Bob haben sich in einem geheimen treffen schon vor einigen Tagen auf den geheimen
Schlissel der Lange 5 fiir das OTP geeinigt. Alice verwendet nun den mit Bob vereinbarten Schliissel,
um eine geheime Nachricht (Kryptotext) an ihn zu senden. Der gesendete Kryptotext lautet GVRCL.

Eve hat den Nachrichtenaustausch belauscht und somit den Kryptotext in Erfahrung gebracht. Sie
mochte nun den Klartext herausfinden um zu erfahren, was Alice und Bob unternehmen werden. Eve
vermutet, dass der Kryptotext mit dem sicheren OTP verschliisselt ist. Da der verwendete Schliissel
gleich lang ist wie der Klartext, ist eine Kryptoanalyse mit der Haufigkeitsanalyse unmoglich.

[#' Aufgabe 2.27

(a) Wie viele mogliche Schliissel der Lange 5 gibt es?
(b) Kann Eve den Kryptotext GVRCL entschliisseln, falls sie (im schlimmsten Fall) alle M6g-
lichkeiten durchprobiert?

Dennoch hat Eve das Gefiihl, dass sie die geheime Nachricht erraten kann. Die Anzahl aller Klar-
texte, die aus fiinf Buchstaben einen sinnvollen Text ergeben, wird vermutlich nicht so gross sein.
Ausserdem weiss Eve, dass sich Alice und Bob verabreden wollen. Eve listet deshalb einige sinnvolle
Texte zu je fiinf Buchstaben auf. Fiir jeden dieser moglichen Klartexte bestimmt sie den Schliissel
(mit Hilfe der Vigenére-Tabelle), der den entsprechenden Text zu dem gegebenen Kryptotext GVRCL
verschliisseln wiirde.

moglicher Klartext ‘ entsprechender Schliissel

BADEN | FVOYY
ESSEN | CDZYY
LESEN | VRZYY
SPORT | OGDLS
VIDEO | LNOYX

Tabelle 2.3: Entsprechende Schliissel bei geratenen moglichen Klartexten (BADEN, ESSEN, LE-
SEN, SPORT, VIDEO) fir abgehorten Kryptotext GVRCL.

Jeder dieser Texte kann also durch den angegebenen Schliissel zum Kryptotext GVRCL verschliisselt
werden. Welcher Text entspricht nun der richtigen Nachricht? Alice und Bob haben ihren geheimen
Schliissel zuféllig bestimmt, das heisst, jeder mogliche Schliissel kann mit der gleichen Wahrschein-
lichkeit ausgewéhlt werden. Eve hat daher keine Moglichkeit herauszufinden, welche dieser vier
moglichen Klartexte der geheimen Nachricht entspricht. Es ist auch moglich, dass der richtige Klar-
text nicht in der Liste steht. Somit hat Eve keine Chance irgendeinen Teil des Klartextes oder des
Schliissels zu erfahren.

Ein Hauptproblem aller symmetrischen Verschliisselungsverfahren besteht jedoch darin, dass der
Schliissel erst einmal iiber einen sicheren Kanal ausgetauscht werden muss. Vor dem Internet erfolgte
dies durch einen Postboten, heute ist dies allerdings nicht mehr praktikabel. Dies werden wir im
néachsten Kapitel besprechen.
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[#' Aufgabe 2.28

Wie viele mogliche Schliissel hat der OTP fiir eine Nachricht der Lénge n?

2.5.1 Kryptoanalyse bei mehrfacher Verwendung des Schliissels

Nun wollen wir wissen, weshalb ein Schliissel beim OTP nur einmal verwendet werden darf. Dazu
schauen wir uns einen erneuten Nachrichtenaustausch zwischen Alice und Bob an. Alice méchte Bob
namlich eine weitere geheime Nachricht schicken. Da die zwei jedoch zuvor keinen zweiten Schliissel
vereinbart haben, verwendet Alice den gleichen Schliissel ein zweites Mal. Diesmal erhalt Bob von
Alice den folgenden Kryptotext: ADRCM.

Eve hat ihr Vorhaben, die beiden zu belauschen, noch nicht aufgegeben und versucht erneut die
verschliisselte Mitteilung zu lesen. Wenn Alice und Bob fiir die zweite Nachricht einen neuen zufal-
ligen Schliissel ausgemacht hitten, dann kénnte Eve erneut nichts mit dem Kryptotext anfangen.
Alice war jedoch nachldssig und verwendete den gleichen Schliissel ein zweites Mal, um sich mit
Bob zu verabreden. Eve ergénzt ihre Tabelle mit einer dritten Spalte. In dieser Spalte notiert sie
den Klartext, der entsteht, wenn sie den zweiten Kryptotext mit dem entsprechenden Schliissel aus
der zweiten Spalte entschliisselt.

moglicher Klartext | entsprechender Schliissel | méglicher Klartext fiir die zweite Nachricht

BADEN FVOYY VIDEO
ESSEN CDZYY YASEO
LESEN VRZYY FMSEO
SPORT OGDLS FMSEO
VIDEO LNOYX PQDEP

Tabelle 2.4: Entschliisslung eines weiteren abgehorten Kryptotextes (ADRCM) durch die vorher
bestimmten denkbaren Schliisselkandiaten. Der Schliisselkandidat FVOYY erzeugt aus beiden ab-
gehorten Kryptotexten einen sinnvollen Klartext.

Und siehe da, fast alle Texte in der dritten Spalte ergeben keinen Sinn, ausser dem Text in der ersten
Zeile. Eve erkennt, dass mit dem Schliissel FVOY'Y sowohl der erste wie auch der zweite Kryptotext
zu einem sinnvollen Text entschliisselt werden koénnen. Durch den Vergleich der Entschliisselun-
gen des ersten und des zweiten Kryptotextes bei gleichem Schliissel konnte Eve die tatséchlichen
Klartexte und den Schliissel herausfinden.
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2.5.2 Bin-OTP

Das Kryptosystem Bin-OTP funktioniert fast gleich wie das OTP, nur dass wir nicht mit dem
lateinischen Alphabet der Grossbuchstaben arbeiten wollen, sondern lediglich mit dem bindren
Alphabet {0,1}. Aus der grossen Vigenere-Tabelle in Tabelle 2.2 wird im bindren Alphabet die
tibersichtliche (binédre) Vigenere-Tabelle:

Schliisselbuchstabe

01

Klartextbuchstabe
—_
—_

Abbildung 2.15: Vigenere-Tabelle fiir das binédre Alphabet.

Der Tabelle entnehmen wir, dass der Klartextbuchstabe 0 durch den Schliissel 0 zum Kryptotext-
buchstaben 0 wird. Man verwendet fiir die Verschliisslung mit der bindren Vigenere-Tabelle eine
besondere Schreibweise. Fiir die Verschliisslung des Klartextbuchstaben 0 durch den Schliissel 0
schreiben wir

0@ 0=0.

Wird 0 durch 1 verschliisselt erhalten wir den Kryptotextbuchstaben 1 (siehe Tabelle) und schreiben

0gl=1.
Bitte beachten Sie, dass auch

le0=1
sowie

1®#1=0

gilt. Die Verschliisslung mit dem bindren OTP erfolgt nun, indem Bit fiir Bit die Operation @ (ge-
maéss bindrer Vigenére-Tabelle) durchgefiihrt wird. Analog haben wir mit den lateinischen Buchsta-
ben auch die Verschliisselung Buchstabe fiir Buchstabe mithilfe der Vigenere-Tabelle durchgefiihrt.

Beispiel 2.8:
Folgendes Beispiel illustriert, wie die Verschliisselung mit dem Bin-OTP funktioniert:

o Der Klartext ist gegeben durch 101 und der Schliissel durch 111. Dann ist der Krypto-
text gegeben durch 101 ¢ 111 = 010:

1 0 1
e 1 1 1
0 1 0
e Der Klartext ist gegeben durch 011101 und der Schliissel durch 110001. Dann ist der

Kryptotext gegeben durch

011101 @ 110001 = 101100.
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[#' Aufgabe 2.29

Berechnen Sie den Kryptotext zu dem gegebenen Klartext

110010100
und zum Schliissel
101110001.
(a) Berechnen Sie sowohl
100110 & 001011

als auch
001011 & 100110.

Was stellen Sie fest?
(b) Seien a und b zwei beliebige Bits. Begriinden Sie, warum stets die Gleichheit

adb=bDa

gilt. Wie heisst diese Eigenschaft?

\

[#' Aufgabe 2.31

Sei a eine beliebige binére Folge (denken Sie sich z.B. a = 1100101).

(a) Was macht die Verschliisslung a @ a von a mit sich selbst?
(b) Mit 0 bezeichnen wir im Folgenden eine Folge aus lauter Nullen derselben Lénge wie a.
Was macht die Operation a & 07

\

Es léasst sich beweisen, dass die Operation @ auch assoziativ ist. Die Klammerung der Terme spielt
also keine Rolle. Fiir beliebige binére Folgen a, b und ¢ derselben Lénge gilt also

(adb)dc=a® (bdc).

Dies gilt auch fiir mehr als drei Operanden.
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[#' Aufgabe 2.32

Es sei ¢ ein gegebener (bindrer) Klartext. Alice wéhlt zuféllig einen bindren Schliissel s4
derselben Lange wie ¢t und berechnet

ka:=1t® sy.
Was erhélt Alice, wenn sie nun

ka®sa

berechnet, also ihren Schliissel erneut anwendet?
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Kapitel 3

Schlisseltausch-Verfahren

% On Klartext 101011
! @ @ Absender-Schlissel 011011

[ Erster Krypto-Text 110000
Absender schliefit

% Erster Krypto-Text 110000
Empfanger-Schliissel 101010

@

| Zweiter Krypto-Text 011010
Empfanger schliefit

O % Zweiter Krypto-Text 011010

@ @ Absender-Schliisssel 011011

t Dritter Krypto-Text 000001
Absender offnet

o O Dritter Krypto-Text 000001

ﬂ |zﬁj &  Empfanger-Schliissel 101010

| Klartext 101011

Empfinger 6ffnet

Abbildung 3.1: Schliisseltausch
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3.1 Drei-Wege-Schliisseltausch

Vorgehen 3.1 (Kommunikationsprotokoll Three-Pass Protocol):

Das Kommunikationsprotokoll Three-Pass Protocol (auch Schliisseltausch mit drei Durch-

gangen genannt) ermoglicht es Alice, einen geheimen Schliissel ¢ an Bob zu senden, ohne dass

sie zuvor einen gemeinsamen geheimen Schliissel vereinbart haben. Dazu verwenden sowohl

Alice als auch Bob jeweils einen eigenen zufélligen Schliissel (s4 bzw. sp).

Ausgangssituation: Alice besitzt einen zufélligen bindren Schliissel s4 der Lénge n. Bob
besitzt ebenfalls einen zufilligen bindren Schliissel derselben Lénge n.

Ziel: Alice hat zuvor einen geheimen bindren Schliissel ¢ der Linge n gewéhlt. Diesen Schliis-
sel (das ist hier der Klartext) mochte sie iber einen unsicheren Kanal an Bob senden,
ohne dass Unbefugte den Schliissel erfahren.

1. Alice verschliisselt den zu verschickenden Schliissel ¢ (Klartext) mit ihrem Schliissel s 4

ka:=t®sap

und sendet den entstandenen Kryptotext k4 an Bob.
2. Bob verschliisselt die empfangene Nachricht k4 nun auch mit seinem Schliissel sp:

kap :=ka® sp

und sendet den Kryptotext k4p zurick an Alice.
3. Alice entschliisselt den Kryptotext k4p mit ihrem Schliissel s 4:

kp =kap @ sa

und sendet kg an Bob.
4. Schliesslich entschliisselt Bob den Kryptotext kg mit seinem Schliissel kp:

t=kp®sp

und erhéalt dadurch den Klartext ¢, welchen ihn Alice wissen lassen mochte.

Warum funktioniert das? Der Kern der Geschichte liegt darin, dass eine zweite Anwendung eines
Schliissels die erste Anwendung desselben Schliissels 16scht (riickgingig macht) und zwar, auch wenn
zwischen diesen zwei Anwendungen andere Schliissel angewendet worden sind. Betrachten Sie die
folgende Berechnung

t®saDspDsaDsp=
t®(saDsa)®(spPsp) =
te0p0=t.

= Aufgabe 3.1

Spielen Sie den Schliisseltausch mit einer weiteren Person aus der Klasse durch.

Sicherheit des Drei-Wege-Schliisseltauschs

Ist das Drei-Wege-Kommunikationsprotokoll sicher? Bietet es dieselbe Sicherheitsgarantie wie die
Verwendung einer Truhe mit zwei Schléssern?
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Wenn ein Kryptoanalyst nur einzelne Kryptotexte des Protokolls erhélt und das Verfahren nicht
kennt, wirkt die Kommunikation als eine Folge von Zufallsbits und in diesem Sinne ist unsere
Implementierung dieses Verfahrens sicher. Wir miissen aber damit rechnen, dass die Gegnerin das
Kommunikationsprotokoll kennt (oder erratet) und die zwei zuféllig generierten Schliissel das Einzige
sind, was ihm unbekannt ist.

Wenn die Gegnerin (Eve) alle drei Kryptotexte (ka,kap,kp) gewinnen kann, kann er durch die
folgenden Berechnungen den Klartext ¢ herausfinden:

ka® @ =

(tdsa)® (ka®sp)®( ®sa) =
(t®ss) D (ka®sp) D ((ka®sp)Dsa) =
tD(s4®54)D(spDsp) D (kaDka) =
te0p0p0=

t.
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3.2 Diffie-Hellman-Merkle-Schliisseltausch

Vorgehen 3.2 (Protokoll Diffie-Hellman-Merkle (DHM))):
Das Kommunikationsprotokoll DHM erméglicht es Alice und Bob, gemeinsam {iber einen 6f-
fentlichen Kanal einen geheimen Schliissel zu vereinbaren, ohne dass sie zuvor einen gemein-
samen geheimen Schliissel ausgemacht haben. Im Gegensatz zum Drei-Wege-Schliisseltausch
basiert das DHM-Protokoll auf der Schwierigkeit, das diskrete Logarithmusproblem zu lésen,
ein mathematisches Problem, zu dem es (bisher) keinen effizienten Losungsalgorithmus gibt.
Ausgangssituation: Alice und Bob haben sich zuvor 6ffentlich auf eine grosse Primzahl p
und eine positive natiirliche Zahl g geeinigt. Dabei ist g kleiner als p.
Ziel: Alice und Bob mo6chten gemeinsam mit einer 6ffentlichen Kommunikation einen Schliis-
sel s o4p vereinbaren. Diesen Schliissel darf keine Drittperson in Erfahrung bringen.
1. Alice wahlt zuféllig eine positive ganze Zahl a mit ¢ < p und hélt diese geheim. Dann
berechnet sie mit dieser geheimen Zahl:
a

z:=¢g° modp

und sendet x an Bob.
2. Bob wahlt zuféllig eine positive ganze Zahl b mit b < p und hélt diese geheim. Dann
berechnet er die Zahl

y:=g¢® modp

und sendet y an Alice.
3. Alice erhilt y von Bob und berechnet mit ihrer geheimen Zahl a die Zahl

sap :=y* mod p.
4. Bob berechnet mit dem erhaltenen z und seiner geheimen Zahl b die Zahl
SBA = ¥ mod p.
Mithilfe der Rechengesetze der Modulo-Operation kann bewiesen werden, dass tatséchlich
SAB = SBA

gilt und somit Alice und Bob dieselbe Zahl berechnet haben. Diese Zahl s, p ist der gemein-
same Schliissel.

[#' Aufgabe 3.2

Fihren Sie das DHM-Protokoll mit einer weiteren Person aus der Klasse durch. Verwenden
Sie

p:=13 und g:=2

(Sie konnen auch eigene Werte wéhlen) als 6ffentlich bekannte Schlissel.
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[#' Aufgabe 3.3

Versuchen Sie das Kommunikationsprotokoll DHM zu knacken, indem Sie fiir die gegebenen
Werte p, g,z und y jeweils die geheimen Zahlen a und b berechnen und daraus dann den

vereinbarten Schliissel s4p.

(a) g=3,p=5,x =4,y =2
(b) g=2,p=13,2 =6,y =11

\

Sicherheit des DHM-Protokolls

Das DHM-Protokoll ist sicher, weil es (bisher) keinen effizienten Algorithmus gibt, um das diskrete
Logarithmusproblem zu lésen. Ein Kryptoanalyst (Eve) kann zwar die 6ffentlichen Werte p, g, x und
y in Erfahrung bringen, aber um daraus den gemeinsamen Schliissel sqp zu berechnen, miisste sie
entweder die geheime Zahl a von Alice oder die geheime Zahl b von Bob bestimmen. Dies entspricht
dem Losen des diskreten Logarithmusproblems, was (bisher) als schwierig gilt.

Allerdings ist das DHM-Protokoll nicht gegen einen Man-in-the-Middle-Angriff geschiitzt. Ein An-
greifer (Eve) konnte sich zwischen Alice und Bob schalten und so tun, als ob sie Alice wére, wenn
sie mit Bob kommuniziert, und umgekehrt. Dadurch kénnte Eve sowohl mit Alice als auch mit
Bob jeweils einen eigenen gemeinsamen Schliissel vereinbaren und so die Kommunikation zwischen
den beiden belauschen. Diese Schwéiche kann durch die Verwendung von digitalen Signaturen beho-
ben werden, welche die Authentizitdt der Kommunikationspartner sicherstellen. Ein Beispiel eines
solchen Signaturverfahrens ist das Rivest—Shamir-Adleman (RSA)-Kryptosystem (s. Kapitel Ab-
schnitt 4.1).
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Kapitel 4

Asymmetrische Kryptosysteme

In den bisher angeschauten Verschlisslungsverfahren haben wir festgestellt, dass derselbe Schliis-
sel zur Ver- und Entschliisselung verwendet wird. Daher spricht man bei diesen Verfahren von
symmetrischen Verschliisselungsmethoden. Zudem haben wir gesehen, dass diese entweder unsicher
(Caesar, Vigenere) sind, wenn der Schliissel einfach geknackt werden kann, oder un-praktikabel
(OTP), wenn der Schlissel zuerst {ibertragen werden muss. Diffie & Hellman kamen daher 1975
auf die Idee, asymmetrische Verschlisselungsverfahren zu erschaffen, welche nach einem anderen
Prinzip funktionieren. Im Gegensatz zu symmetrischen Verfahren kann man bei asymmetrischen
Verfahren nicht von der verschliisselten Nachricht auf den Schliissel schliessen, da unterschiedliche
Schliissel zum Ver- und Entschliisseln verwendet werden.

Die Grundidee hinter asymmetrischen Verschliisselungsmethoden ist folgende:

Alice (£%) und Bob (F¥) méchten auf verschliisselte Weise Nachrichten austauschen, die den An-
forderungen an sichere Kryptosysteme geniigen (siche Abschnitt 1.1). Bei der asymmetrischen Ver-
schliisselung generieren sowohl Alice wie Bob jeweils ein Schliisselpaar, einen sogenannten 6ffent-
lichen Schliissel (), der von allen Personen gesehen und verwendet werden kann, sowie einen
privaten Schliissel (4 ), der nur im Besitz von Alice bzw. Bob ist. Wenn Alice eine Nachricht
an Bob senden will, verwendet sie Bobs dffentlichen Schliissel, um die Nachricht zu verschliisseln.
Die Nachricht kann jedoch mit dem o6ffentlichen Schliissel nicht entschliisselt werden, es handelt
sich hier sozusagen um eine “Einweg”-Funktion. Stattdessen muss Bob seinen privaten Schliissel zur
Entschliisselung verwenden, also den Schliissel, auf den nur Bob Zugriff hat (siehe Abbildung 4.1).
Dies funktioniert in den meisten Féllen auch in die andere Richtung: eine Nachricht, die mit Bobs
privatem Schliissel verschliisselt worden ist, kann nur mit Bobs offentlichem Schliissel entschliis-
selt werden. Die Schliissel sind mathematisch so konstruiert, dass es beinahe unmoglich ist, vom
Offentlichen Schliissel auf den privaten Schliissel zu schliessen.

Durch den Aufbau asymmetrischer Verschliisselungsverfahren entfillt die Problematik der Uber-
mittlung des Schliissels: jede Person generiert ihr eigenes Schliisselpaar und stellt einen 6ffentlichen
Schliissel zur Verfiigung. Ein Nachteil hierbei ist, dass die Verschliisselung hiufig mathematisch und
beziiglich Rechenleistung anspruchsvoller ist, was insbesondere problematisch sein kann bei langeren
Nachrichten oder wenn die Antwortzeit minimal sein soll.
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Abbildung 4.1: Prinzip der Public-Key-Verschliisselung

4.1 RSA-Verfahren

Das Rivest—Shamir-Adleman (RSA)-Verfahren ist ein asymmetrisches Kryptosystem, das sowohl
fiir die Verschliisselung als auch fiir digitale Signaturen verwendet werden kann. Es basiert auf der
Schwierigkeit, grosse Zahlen in ihre Primfaktoren zu zerlegen. Im Folgenden werden die Grundlagen
des Verfahrens und ein einfaches Beispiel vorgestellt.

Abbildung 4.2: Ron Rivest, Adi Shamir und Leonard Adleman, die Erfinder des RSA-Verfahrens

Vorgehen 4.1 (RSA-Verschliisselungsverfahren):
Das RSA-Verfahren besteht aus folgenden Schritten:
1. Schliisselerzeugung:
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o Wiéhlen Sie zwei (moglichst grosse) Primzahlen p und g.

e Berechnen Sie das RSA-Modul n =p - q.

o Berechnen Sie die Eulersche Funktion ¢(n) = (p — 1)(q — 1).

o Wiéhlen Sie den Verschliisslungsexponenten e, so dass dieser teilerfremd zu ¢(n)
und kleiner als ¢(n) ist. Dies bedeutet, dass der Grosster Gemeinsamer Teiler
(GGT) von e und ¢(n) 1 ist (ggT(e, p(n)) = 1).

o Berechnen Sie den Entschliisslungexponenten d, so dass (e - d) mod p(n) = 1
(privater Schliissel). Dies bedeutet, dass, wenn man d mit e multipliziert und
dieses Produkt Modulo ¢(n) rechnet, man die Zahl 1 erhélt.

e Die Zahlen p, ¢ und ¢(n) werden nun nicht mehr benétigt und konnen geloscht
werden.

2. Verschliisselung:

o Der Absender verschliisselt eine Klartext-Nachricht m (als Zahl) mit dem 6f-

fentlichen Schliissel (e, n):

c=m’ modn

e Das Ergebnis c¢ ist der Kryptotext.
3. Entschliisselung:
e Der Empfanger entschliisselt die verschliisselte Nachricht ¢ mit dem privaten
Schliissel (d,n):
m=c? modn

e Das Ergebnis m ist die urspriingliche Nachricht.

Beispiel 4.1:
Um RSA besser zu verstehen, rechnen wir ein einfaches Beispiel mit kleinen Zahlen durch:

1. Wir withlen zwei (fiir diese Ubung kleine) Primzahlen aus, p = 3 und ¢ = 11. Daraus

folgt:

n=p-q
=3-11
=33

o(n)=(@-1)(g—1)
=2-10
=20

2. Wir wihlen e = 3, da ggT(3,20) = 1.
3. Wir berechnen d, so dass (e-d) mod ¢(n) =1 ergibt:

(d-3) mod20=1 — d=T.

4. Der offentliche Schliissel ist (e,n) = (3,33), der private Schlissel (d,n) = (7, 33).

Verschliisselung: Die Nachricht sei das Wort “Code”, welches wir darstellen durch die
Position der Buchstaben im Alphabet m = 3,15,4,5. Berechne fiir jeden Buchstaben (hier
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nur fir “C”; also 3, gezeigt):

c=m° modn

=33 mod 33
=27 mod 33
= 27.

Der erste Buchstabe des Kryptotext wird also verschliisselt als ¢ = 27.

Entschliisselung:
m=c® modn
=277 mod 33
=3

Daraus ergibt sich m = 3, also die urspriingliche Nachricht.

7

[#' Aufgabe 4.1

Alice mochte eine Nachricht an Bob mit RSA verschliisseln. Bob wéhlt die Hilfs-Primzahlen
p =5 und g = 7. Generieren Sie den 6ffentlichen Schliissel (e,n) und den privaten Schliissel
(d,n) von Bob, indem Sie folgende Schritte ausfiihren:

1. Berechnen Sie n und ¢(n).
2. Sie wahlen e und d aus.

Verschliisseln Sie nun die Nachricht m = 9 mit dem 6ffentlichen Schliissel (e, n).

Entschliisseln Sie danach die verschliisselte Nachricht ¢ wieder mit dem privaten Schliissel

(d,n).

= Aufgabe 4.2

Ist die Wahl von p und ¢ im obigen Beispiel sinnvoll? Begriinden Sie Thre Antwort.

W Aufgabe (Challenge) 4.3

Erstellen Sie nun zu zweit jeweils ein Schliisselpaar mit dem RSA-Verfahren. Verwenden
Sie dazu Primzahlen p und ¢ mit jeweils mindestens 2 Ziffern. Tauschen Sie danach Ihre
offentlichen Schliissel aus und verschliisseln Sie eine Nachricht (eine Zahl) an Thren Partner.
Entschliisseln Sie danach die Nachricht wieder.

Eine Liste der ersten 1000 Primzahlen finden Sie hier: https://en.wikipedia.org/wiki/
List_of_prime_numbers.

39


https://en.wikipedia.org/wiki/List_of_prime_numbers
https://en.wikipedia.org/wiki/List_of_prime_numbers

Kryptologie O Informatik, 2026

W Aufgabe (Challenge) 4.4

Verwenden Sie Thre RSA-Schliissel aus 4.3, um eine echte Nachricht als Zahl auszutauschen
(ein Wort). Um ein Wort in Zahlen umzuwandeln (Buchstabe fiir Buchstabe) kénnen Sie
folgendes Python-Skript verwenden:

def text_to_numbers(text):
numbers = []
for char in text.upper():
if char.isalpha(): # Nur Buchstaben beriicksichtigen
numbers.append(ord(char) - ord('A') + 1) # A=1, B=2, ..., Z=26
return numbers

print(text_to_numbers("ABC")) # Ausgabe: [1, 2, 3]

W Aufgabe (Challenge) 4.5

Wéhlen Sie zwei Primzahlen p und ¢ mit jeweils mindestens 3 Ziffern. Generieren Sie den
offentlichen und privaten Schlissel. Verschliisseln Sie eine Nachricht IThrer Wahl und ent-
schliisseln Sie diese wieder. Verwenden Sie Python, um die Berechnungen durchzufiihren.

Die Zahl d kann in Python folgendermassen berechnet werden:

Eine Liste der ersten 1000 Primzahlen finden Sie hier: https://en.wikipedia.org/wiki/
List_of_prime_numbers

d = pow(e, -1, phi_n)

\

4.1.1 Digitale Signaturen mit RSA

Neben der Verschliisselung von Nachrichten kann das RSA-Verfahren auch zur Erstellung digitaler
Signaturen verwendet werden. Digitale Signaturen dienen dazu, die Authentizitidt und Integritat
einer Nachricht zu gewédhrleisten. Hierbei wird die Nachricht mit dem privaten Schliissel des Ab-
senders signiert, sodass der Empfanger die Signatur mit dem offentlichen Schliissel des Absenders
iberpriifen kann.

Vorgehen 4.2 (Digitale Signaturen mit RSA):
Die Erstellung und Uberpriifung digitaler Signaturen mit dem RSA-Verfahren erfolgt in fol-
genden Schritten:
1. Signaturerstellung:
e Der Absender erstellt eine Nachricht m.
o Er berechnet den Hashwert H(m) der Nachricht m mithilfe einer kryptographi-
schen Hashfunktion (z.B. SHA-256).
e Der Absender signiert den Hashwert mit seinem privaten Schliissel (d,n):

s=H(m)? modn

e Das Ergebnis s ist die digitale Signatur.
2. Signaturiiberpriifung:
e Der Empféanger erhélt die Nachricht m und die Signatur s.
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o Er berechnet den Hashwert H(m) der empfangenen Nachricht m.
o Der Empfinger iiberpriift die Signatur mit dem 6ffentlichen Schliissel (e, n) des
Absenders:
H'(m) =5 mod n

o Wenn H'(m) = H(m), ist die Signatur giiltig, andernfalls ist sie ungiiltig.

Beispiel 4.2:
Angenommen, Alice mochte eine Nachricht m = 42 signieren. Sie verwendet ihren privaten
Schliissel (d,n) = (9677,12317) und den offentlichen Schlissel (e, n) = (5,12317).

Signaturerstellung:
s=H(m)? modn

= 42977 mod 12317
=161

Die digitale Signatur ist also s = 161.
Signaturiiberpriifung:
H'(m)=5° modn

=161° mod 12317
=42

Da H'(m) = H(m), ist die Signatur giiltig.

[#' Aufgabe 4.6

Alice mochte die Nachricht m = 15 signieren. Ihr privater Schliissel ist (d,n) = (7,33) und
ihr offentlicher Schliissel ist (e,n) = (3, 33).

Erstellen Sie die digitale Signatur s fiir die Nachricht m.

Uberpriifen Sie danach die Signatur mit dem &ffentlichen Schliissel.
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Anhang A

Python-Ubungen zu Kryptologie

A.1 Allgemeine Zeichenketten-Aufgaben

Zeichenketten konnen verkettet, also aneinandergehéngt werden mit dem Befehl "Text1" + "Text2
" + "Text3" usw. Falls Sie eine Zeichenkette mehrfach drucken wollen, kénnen Sie diesen mit einer
Zahl multiplizieren, die dann die Anzahl Wiederholungen der Zeichenkette bestimmt. So ist der
Ausdruck "a" * 3 beispielsweise gleichbedeutend mit einer Zeichenkette "aaa".

Im Nachfolgenden schauen wir uns einige Ubungen an, mit denen wir die einzelnen Zeichen aus
Zeichenketten herauslesen kénnen.

J

@ Aufgabe A.1

Fiithren Sie das nachfolgende Programm aus und erklédren Sie, was das Programm tut.

text = "EASY"
for buchstabe in text:
print (buchstabe)

@ Aufgabe A.2

I r

Fithren Sie das nachfolgende Programm aus und erkléren Sie, was das Programm tut.

Klartext = "Schweiz"
print(Klartext[0])
print (Klartext[1])
print (Klartext[2])
print (Klartext [3])
print (Klartext[4])
print (Klartext [5])
print (Klartext[6])

~
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[# Aufgabe A.3 )

Fiihren Sie das nachfolgende Programm aus und erkldren Sie, was das Programm tut.

Klartext = "Schweiz"
for i in range(len(Klartext)):
print (Klartext[i])

\. J

Der Befehl for i in range(len(Klartext)) erstellt eine Variable i innerhalb der for-Schleife,
welche jedes Zeichen von 0 bis zur Lange von Klartext minus 1 geht. Weshalb minus 17 Das erste
Zeichen von Klartext wird in Python mit Klartext [0] ausgelesen, das letzte mit Klartext [len(
Klartext)-1], da wir bei 0 zu zdhlen beginnen und nicht bei 1. Mit dem Ausdruck Klartext[i]
wird also das i-te Zeichen der Zeichenkette Klartext ausgelesen, wobei i von 0 bis zu (Lénge des
Klartexts minus 1) geht.

Der Befehl for i in range(len(Klartext)) kann auch geschrieben werden also Befehl for i in
range (0, len(Klartext), 1), wobei dies meint:

e i beginnt bei 0
e i geht bis zu len(Klartext)-1
e i vergrossert sich in ler-Schritten

Dieser Befehl konnte auch verwendet werden, um bei einer beliebigen Zahl zu starten (nicht notwen-
digerweise 0), und um i in Schritten grosser als 1 zu vergrossern. Die allgemeine Syntax des Befehls
lasst sich also wie folgt zusammenfassen: for i in range(start, ende, schrittgroesse).

W Aufgabe (Challenge) A.4

Eine Person verréit uns lediglich die Vorwahl ihrer 10-stelligen Mobiltelefonnummer. Zudem
verrédt Sie Thnen auch, dass ihre Telefonnummer gerade ist (also auf 2, 4, 6, 8 oder 0 endet).
Damit gibt es nur noch 5 Millionen Kombinationen, die es (im schlimmsten Fall) auszuprobie-
ren gilt. Schreiben Sie ein Python-Programm, welches die 200 kleinsten, geraden Nummern
auflistet. Die erste Nummer sollte 0790000000 sein, die letzte 0790000198. Das Programm
soll die Nummern als Zeichenkette (eine Nummer pro Zeile) ausgeben.

Tipps:

e Mit str(num) wird aus der Zahl num eine Zeichenkette. Beispielsweise gibt uns str(15)
die Zeichenkette "15".

e Erinnern Sie sich, was die Operation + in dem Ausdruck "In" + "form" + "atik"
macht?

A.2 Verschliisselung von Texten in Python

Wihrend des Zweiten Weltkriegs arbeitete der brillante Mathematiker Alan Turing in Bletchley Park
im Vereinten Konigreich und war mit der entscheidenden Aufgabe betraut, den Enigma-Code zu
knacken, den die Deutschen zur Verschliisselung ihrer Nachrichten verwendeten. Um diesen komple-
xen Code zu entschliisseln, musste Turing sein tiefes Verstdndnis von Sprache und Mustern nutzen.
In diesem Kapitel folgen wir in Turings Fussstapfen und entziffern einige Geheimnachrichten!
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Abbildung A.1: Turing mit seiner berithmten Turing-Maschine

Im Nachfolgenden schauen wir uns einige Python-Befehle an, die dazu dienen, mit Zeichenketten (=
engl. strings) zu arbeiten. Dies werden wir insbesondere bendtigen, um eigene Python-Programme
zu schreiben, mit denen wir Texte verschliisseln und entschliisseln kénnen. Genauer gesagt bezeich-
nen wir Texte in Python als Zeichenketten. Zeichenketten werden in Python innerhalb von einfa-
chen oder doppelten Anfilhrungszeichen geschrieben, also entweder '...' oder "...". Innerhalb
der Anfithrungszeichen konnen beliebige Zeichen stehen, beispielsweise Buchstaben, Leerzeichen,
Spezialzeichen oder Zahlen.

Tabelle A.1 und Tabelle A.2 enthalten eine Ubersicht einiger niitzlicher Befehle, die Sie in diesem
Kapitel verwenden werden.
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Python ‘ Beschreibung Beispiel
len(s) Gibt die Liinge des Textes s n = len("hallo") # 5
zurtck.
= "hallo"
= "hallo"
s [index] Greift auf das Zeichen an der | .o = g[0] # "n"
Index-Position index zu. Bei | 1 = s[1] # "a"
negativen Indizes zéhlt man | .o = g[-1] # "o"
von rechts.
s[start:end] Extrahiert den Teiltext vom | S1 = "hallo”
Index start bis und ohne end | 82 = s1[1:4] # "all
nl = ord('A') # 65
ord(c) Gibt die Position des Zeichens | no = ord('B') # 66
¢ in der Unicode-Tabelle zu- | p3 = ord('Z') # 90
rick
cl = chr(65) # "A"
chr(n) Gibt die das Zeichen an der c2 = chr(66) # "B"
n-ten Position er Unicode- | (3 = chr(67) # "C"
Tabelle zuriick
sl = "Das Haus ist gross und das
s1.count (s2) Zahlt, wie oft der Text s2 im Da.ch ist grin."
Text s1 vorkommt s2 = "ist"
n = sl.count(s2) # 2
s = "Das Haus ist gross und das
s1.find(s2) Gibt den niedrigsten Index Dach ist grin."
des Teiltexts s2 zuriick, falls | , = s.find("ist") # 9
dieser vorhanden ist, ansons-
ten -1
sl = "hallo"
sl.replace(old, new) | Ersetzt alle Vorkommen des | g5 = sl.replace("a", "e") # "

g Aufgabe A.5

Teil-Texts old durch new.

hello"

Tabelle A.1: Ubersicht von Zeichenketten-Befehlen

Schreiben Sie ein Programm, um jeden Buchstaben ,e / E¢ des folgenden Texts durch den
Buchstaben durch ,a / A“ zu ersetzen:

my_text =

"Eines Tages entschied der Elefant, einen edlen Teppich zu weben."
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[#' Aufgabe A.6 .

Schreiben Sie ein Programm, um zu zéhlen, wie haufig der Buchstabe ,e / E“ im gesamten
folgenden Text vorkommt:

my_text = "Eines Tages entschied der Elefant, einen edlen Teppich zu weben."

W Aufgabe (Challenge) A.7

Was konnte der Nutzen davon sein, dass es zwei Moglichkeiten gibt und nicht nur eine,
Zeichenketten zu schreiben ('..." oder "...")?

\ J

Mit der Lange von Zeichenketten ist die Anzahl der Zeichen zwischen den Anfiithrungszeichen
gemeint: Die Zeichenkette "Hello World" hat beispielsweise eine Lénge von 11 Zeichen. Die Lange
einer Zeichenkette kann mit dem Ausdruck len(Klartext) bestimmt werden.

= Aufgabe A.8

Bestimmen Sie die Linge Ihres vollen Namens mithilfe des Befehls 1en() in Python.

n = "Vorname Nachname"
print(len(n)) # 16

Die Losung fiir Aufgabe 2.1 kénnte in Python wie folgt implementiert werden:

def zweiertausch(klartext):
geheimtext = "" # leerer String
b=20
while b < (len(klartext) - 1):
geheimtext += klartext[b + 1] + klartext[b]
b += 2

if len(klartext) % 2 != 0:
# Klartexte ungerader Lange
geheimtext += klartext[len(klartext) - 1]

print (geheimtext)

# Verwendung:
# zweiertausch("KANTONSSCHULE")

[#" Aufgabe A.9 |

Schreiben Sie eine Python-Funktion def dreiertausch(klartext), welche den ,Dreier-
tausch® aus der Einfiihrungsaufgabe 2 implementiert.

= Aufgabe A.10

Schreiben Sie eine Python-Funktion def umkehren(klartext), welche alle Zeichen eines
Klartexts in umgekehrter Reihenfolge ausgibt.
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Python

Beschreibung Beispiel

s = "a,b,c"
s1.split(sep) | Zerlegt den Text an jedem sep | 14 = s.split(",")

und glbt eine Liste der Teil- # [uau’ "b", "C"]
texte zuriick.

s.join(1i) Verbindet die Elemente von | tXt = ":".join(["a", "b", "c"])
1i zu einem Text, getrennt # "a:b:c
durch den Text s.
str(n) Zahl n in einen Text (engl. | = 10
string) umwandeln s = str(n) # "10
S = llloll

int(s) Text s in eine ganze Zahl
(engl. integer) umwandeln

int(s) # 10

Tabelle A.2: Ubersicht von Befehlen, um Zeichenketten zu verbinden, bzw. trennen

@' Aufgabe A.11 |

Der Schliissel fiir einen Geheimtext ist in Blocken organisiert:

geheime_zahl_als_text = "2_10_38"

Trennen Sie die Blocke von geheime_zahl_als_text in eine Liste auf und addieren Sie die
Zahlen der Liste zusammen.

Als Resultat sollten Sie die Zahl 50 erhalten.

@ Aufgabe A.12 .

Verbinden Sie die Worter in der Liste liste = ["Der", "Code", "wurde", "geknackt']
mit Leerzeichen zu einem vollsténdigen Satz.
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A.3 Caesar-Verschliisselung in Python

[#' Aufgabe A.13

Entwickeln Sie eine Funktion, die zwei Parameter entgegennimmt: den Klartext (nur Gross-
buchstaben!) und den Schliissel (0-25). Als erstes soll jeder Buchstaben des Klartexts auf
einer neuen Zeile ausgegeben werden.

Beispiel: Falls der Text HALLO eingegeben wird, soll folgendes ausgegeben werden:

ot = m

\. J

[# Aufgabe A.14 .

Passen Sie das Programm aus Aufgabe 1.13 so an, dass statt den Buchstaben die Position in
der Unicode-Tabelle ausgegeben wird. Verwenden Sie dafiir die Funktion ord ().

Beispiel: Falls der Text HALLO eingegeben wird, soll folgendes ausgegeben werden:

72
65
76
76
79

\

2" Aufgabe A.15 .

Passen Sie das Programm aus Aufgabe 1.14 so an, dass Sie zu den Unicode-Positionen auch
noch die Verschiebung hinzurechnen.

Beispiel: Falls der Text HALLO eingegeben wird und die Verschiebung 2, soll folgendes ausge-
geben werden:

T4
67
78
78
81
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[#' Aufgabe A.16

Passen Sie das Programm aus Aufgabe 1.15 so an, dass Sie statt den verschobenen Unicode-
Positionen die Buchstaben ausgeben. Verwenden Sie dafiir die Funktion chr ().

Beispiel: Falls der Text HALLO eingegeben wird und die Verschiebung 2, soll folgendes ausge-
geben werden:

= Aufgabe A.17

I D =22 Q4

Wenn man den Klartext ZORRO mit dem Schliissel 14 verschliisselt, erhédlt man mit dem
Programm aus Aufgabe Aufgabe 1.16 den Geheimtext h] ™ ~]. Eigentlich sollte man aber den
Geheimtext NCFFC erhalten. Losen Sie das Problem!

Tipp: Der grosste giiltige Unicode-Wert ist 90 fiir den Buchstaben ,,Z“. Wenn man einen Wert
bekommt, der 91 oder grosser ist, muss man ihn verkleinern!

= Aufgabe A.18

I r
J

Passen Sie das Programm aus Aufgabe 1.17 so an, dass die Geheimtextbuchstaben nicht
untereinander, sondern auf derselben Zeile in die Ausgabe geschrieben werden.

Tipp: Mit dem Operator + lassen sich in Python Texte miteinander verbinden.

text = ""

text += "Hello"

text += " Bob"
print(text) # Hello Bob

Die verschlisselte Zeichenkette soll per return-Befehl zuriickgegeben werden.

\. J

= Aufgabe A.19 .

Entwickeln Sie ein Programm, das iiber einen Parameter den Geheimtext und den Schliissel
entgegennimmt und dann mit Hilfe der Caesar-Chiffre den Klartext wiederherstellt. Testen
Sie es anschliessend, indem Sie eine verschlisselte Nachricht von Ihrer Sitznachbarin oder
Threm Sitznachbar entschliisseln!
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A.4 Vigenere-Verschliisselung in Python

[#' Aufgabe A.20

Entwickeln Sie eine Funktion def vigenere(text, key), die iiber die zwei Parameter text
und key einen Klartext sowie einen Schliissel entgegennimmt. Das Programm soll den Klar-
text mit der Vigenere-Chiffre und mit dem Schliissel verschliisseln.

I r

= Aufgabe A.21

Entwickeln Sie eine Funktion def vigenere_ent(text, key), die iiber die zwei Parameter
text und key einen Geheimtext sowie einen Schliissel entgegennimmt. Das Programm soll
den Geheimtext mit der Vigenere-Chiffre und mit dem Schlissel entschliisseln.

7~

W Aufgabe (Challenge) A.22

Sie wollen all ihre Passworter auf einer lokalen Textdatei abspeichern. Dies ist jedoch nicht
sicher, denn falls jemand ihren Computer knackt, kann die Person alle Passworter einsehen.
Sie kommen auf folgende Idee: Statt die Passworter aufzuschreiben, speichern Sie eine mit
Vigenere verschliisselte Variante davon. So miissen Sie sich lediglich den Vigeneére-Schliissel
im Kopf merken, nicht aber ihre Passworter. Verwenden Sie Thr Programm aus Aufgabe 1.20,
um ein Programm zu schreiben, das sie zuerst mit input nach einem Schliissel und einem
verschlisselten Passwort fragt. Das Programm gibt Thnen danach ihr Passwort im Klartext
zuriick.

[# Aufgabe A.23 Hiufigkeitsanalyse und Caesar

Eine Nachricht wurde abgefangen: msg = "AZDIYDHRZNOZI".

e Die Nachricht wurde mit der Caesar-Chiffre verschliisselt. Finden Sie zunéchst einmal
den héufigsten Buchstaben in der verschliisselten Nachricht. Tipp: ,A“ und ,,Z“ haben
die Positionen 65 und 90 im Unicode. Um in einer Schleife alle Zahlen von x by y
durchzugehen, konnen Sie Folgendes schreiben: for num in range(x, y+1):.

e Bestimmen Sie den verwendeten Schliissel, indem Sie die Funktion ord() zweimal ver-
wenden.

e Ermitteln Sie den Klartext mithilfe Thres Programms aus Aufgabe 1.18. Tipp: Das
héufigste Zeichen in einem deutschen Text ist in der Regel ,,E*

e Ersetzen Sie am Schluss im Klartext das Wort ,WESTEN“ durch ,OSTEN*
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[#' Aufgabe A.24 .

Gegeben sei die durchschnittliche Buchstabenhéufigkeit fiir alle Buchstaben des deutschen
Alphabets. Diese ldsst sich berechnen, indem man die Haufigkeiten fiir sehr lange deutsche
Texte aufsummiert.

german_letter_frequencies = [6.51, 1.89, 3.06, 5.08, 17.40, 1.66, 3.01,
4.76, 7.55, 0.27, 1.21, 3.44, 2.53, 9.78, 2.51, 0.79, 0.02, 7.00, 7.27,
6.15, 4.35, 0.67, 1.89, 0.03, 0.04, 1.13]

Berechnen Sie mithilfe folgenden Python-Programms die Friedman’sche Charakteristik fiir
diese Haufigkeiten.

import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import numpy as np

from helpers import count_letters

def calculate fc(text):
# Determine the Friedman Characteristic for a given text
summe = 0
freq = count_letters(text)
for letter_freq in freq:
summe += (letter_freq - (1 / 26)) *x 2
return summe

def friedman_slice(text, keylength):
# Based on a text encrypted with Friedman and a given keylength,
determine the average Friedman characteristic for all subgroups of the
text.
i=20
fc_avg = 0
for i in range(keylength):
text_slice = text[i::keylength]
fc = calculate_fc(text_slice)
fc_avg += fc
i+=1

fc_avg /= keylength

return fc_avg

def get_friedman_vals(text, maxkeylen):

For a Text text, get the average Friedman Characteristics for key
lengths up to maxkeylen

n = range(1l, maxkeylen)
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fc = I

for i in n:
fc.append(friedman_slice(text, i))

return fc

def draw_friedman(i, fc, turtle=False):

Draw the friedman Characteristics for various possible key lengths
if turtle:
xshift = 150
setPos(-xshift + 50, 150)
label("friedman'sche Charakteristik:")
setPos(-xshift, 0)
pd O
£d(200)
bk (200)
rt(90)
£d(400)
bk (400)

for i in n:
setPos(i * 40 - xshift, fc[i - 1] * 1000)
dot (10)
setPos(i * 40 - xshift, fc[i - 1] * 1000 + 40)
label (i)
else:
fig, ax = plt.subplots()
ax.plot(range(l, i), fc, "o")
plt.xticks(np.arange(1l, i, 1.0))
ax.yaxis.set_major_formatter(mtick.PercentFormatter (decimals=0, xmax
=1))

return fig, ax

if __name__ == "_main__":
print(calculate_fc("PAPPERLAPAPP"))

print(calculate_fc("BACKSTEIN"))
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Anhang B

Lernziele Kryptologie

O Ich weiss wie die folgenden Kryptosysteme funktionieren (Verschliisslung und Entschlisslung
bei gegebenem Schliissel):
O Skytale
[0 Caesar
0 Vigenere
[0 One-Time-Pad
O RSA

O Ich kenne die Grundbegriffe: Klartext, Kryptotext, Verschliisselung (Chiffrierung), Entschliis-
selung (Dechiffrierung), Schliissel, Kryptografie / Kryptologie, Kryptosystem.

O Ich kenne die grundlegenden Sicherheitsziele: Vertraulichkeit, Integritdt, Authentizitdt und
Verbindlichkeit (Nichtabstreitbarkeit) und kann sie kurz erldautern.

[0 Ich kann das Kerckhoff’sche Prinzip erklédren.

O Ich kann einen Caesar-Kryptotext durch Ausprobieren aller 25 Verschiebungen knacken (Brute-
Force) und erkenne den richtigen Klartext.

[0 Ich kann einen Kryptotext, der durch die Vigeneére-Verschliisslung entstanden ist, mit Hilfe
des Tools auf folgender Webseite entschliisseln: Link zum Cryptbreaker

[0 Ich kann die Idee der Haufigkeitsanalyse erkléren.

O Ich kann eine gruppenweise Haufigkeitsanalyse durchfithren, um Vigenere bei bekannter Schliis-
sellange zu knacken.

O Ich kann erldutern, weshalb eine kurze Schliissellinge Vigenere schwicht (Wiederholungsmus-
ter, Aufteilung in Gruppen) und warum lange bzw. OTP-lange Schliissel nicht angreifbar
durch Héufigkeitsanalyse sind.

O Ich kann den Unterschied zwischen monoalphabetischer und polyalphabetischer Substitution
erkléaren.

[0 Ich kann einen monoalphabetisch substituierten Text mittels Haufigkeitsanalyse und schritt-
weisem Erraten entschliisseln.

O Ich kann die Friedman’sche Charakteristik fiir einen kurzen Text von Hand berechnen

O Ich kann mit der Friedman’schen Charakteristik die Lénge eines Vigenere-Schliissels bestim-
men.

[0 Ich kann erkldren, was mit der Friedman’sche Charakteristik berechnet wird.

O Ich kann beim One-Time-Pad begriinden, warum es (bei perfekter Zufélligkeit, einmaliger
Verwendung und gleicher Lange wie der Klartext) perfekte Sicherheit bietet (Schliisselraum
= Nachrichtenraum, Gleichverteilung der moglichen Klartexte).

O Ich kann die Anzahl moglicher OTP-Schliissel einer gegebenen Lénge berechnen (z.B. 26™ fiir
Buchstaben, 2" fiir Bits).

O Ich kann erklaren, warum die Wiederverwendung eines OTP-Schliissels zu Informationsleckage
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fiihrt und ein Beispiel analysieren.

O Ich kann die bindre Version des OTP (Bitweise XOR) anwenden und Kryptotexte berechnen.

O Ich kenne die Eigenschaften der XOR-Operation: Kommutativitit, Assoziativitiat, neutrales
Element 0, Involution (selbstinverse: a®a = 0, a ® 0 = a) und deren Bedeutung fiir Ver- und
Entschliisselung.

O Ich kann erldutern, warum zweimalige Anwendung desselben Schliissels (mit XOR) den Klar-
text zuriickgibt.

O Ich kann das Three-Pass Protocol (Schliisseltausch mit drei Durchgéngen) Schritt fiir Schritt
durchfiihren und die beteiligten Nachrichten (ka,kap, kp) bestimmen.

[0 Ich kann erkldren, warum das Three-Pass Protocol unsicher ist, wenn ein Angreifer alle drei
Kryptotexte mitschneidet (Rekonstruktion von ¢ durch XOR aller Nachrichten).

O Ich kann das Diffie-Hellman-Merkle-Schliisseltauschverfahren mit kleinen Zahlen durchfithren
und den gemeinsamen Schliissel berechnen.

O Ich kann das zugrunde liegende Sicherheitsprinzip von Diffie-Hellman (Schwierigkeit des dis-
kreten Logarithmusproblems) erkléren.

O Ich kann den Man-in-the-Middle-Angriff auf Diffie-Hellman beschreiben und erldutern, wie
digitale Signaturen (z.B. RSA) Authentizitit sicherstellen.

O Ich kann eine Nachricht mit RSA asymmetrisch ver- und entschliisseln, indem ich ein Beispiel
mit kleinen Zahlen durchfiihre.

O Ich kann den Unterschied zwischen symmetrischen und asymmetrischen Verfahren (z.B. Vi-
genére/OTP vs. RSA /Diffie-Hellman) erkléren.
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Glossar

DHM Diffie-Hellman-Merkle. 34, 35
GGT Grosster Gemeinsamer Teiler. 38
OTP One-Time-Pad. 24-28, 36

RSA Rivest—Shamir-Adleman. 35, 37—40
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