
[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Informatik

Programmieren
Skript

Hauptautor Ko-Autor
Cyril Wendl Thomas Graf

« Winterthur, 14. Januar 2026

mailto:cyril.wendl@edu.zh.ch
mailto:thomas.graf@edu.zh.ch

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Inhaltsverzeichnis

1 Getting Started 4
1.1 Installation von Python und VS Code . 4

1.1.1 Anleitung für MacOS . 4
1.1.2 Anleitung für Windows . 5

1.2 VS Code für Python konfigurieren (MacOS und Windows) 6
1.3 Ordner / Verzeichnis für meine Programme . 7
1.4 Erstes Python-Programm schreiben und ausführen 7
1.5 Installation von NumPy und Matplotlib . 8

2 Einführung in Python und erste Schleifen 9
2.1 Einige grundlegende Befehle und Operationen . 9

2.1.1 print-Funktion und built-in Funktionen . 9
2.1.2 Python-Kommentare . 10
2.1.3 Einfache Arithmetik . 11

2.2 Erste Zeichnungen mit der Python-Turtle . 12
2.3 Schleifen . 14

3 Variablen, Datentypen & Debugging 19
3.1 Variablen . 19
3.2 Teilen mit Rest . 22
3.3 Zusammengesetzte Zuweisungsoperatoren . 23
3.4 Arbeiten mit Text (Strings) . 25

3.4.1 Verkettung und Vervielfachung von Strings 25
3.5 Datentypen . 26
3.6 Textinput . 29
3.7 Debugging . 30

3.7.1 Syntaxfehler . 30
3.7.2 Laufzeitfehler . 30
3.7.3 Semantische Fehler . 31
3.7.4 Debugging-Strategien . 31

3.8 Weitere Aufgaben . 32

4 Funktionen 33
4.1 Eigene Funktionen in Python definieren . 33
4.2 Parameter . 36

4.2.1 Lebensdauer (scope) einer Variable . 39
4.3 Werte zurückgeben mit return . 40

4.3.1 Einzelne Funktionen . 40
4.3.2 Mehrere Funktionen . 42

4.4 Weitere Aufgaben . 47

1

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

5 Verzweigungen und bedingte Schleifen 49
5.1 Verzweigungen mit if, elif und else . 49

5.1.1 Verzweigungen mit if . 49
5.1.2 Verzweigungen mit if und else . 51
5.1.3 Verzweigungen mit if, elif und else . 52
5.1.4 Logische Ausdrücke miteinander verbinden: and und or 56
5.1.5 Logische Ausdrücke negieren: not . 58

5.2 Fussgesteuerte Schleifen mit break . 60
5.3 Kopfgesteuerte Schleifen mit while . 62

6 Datenstrukturen 67
6.1 Listen . 67

6.1.1 Einführung in Listen . 67
6.1.2 Algorithmen . 72
6.1.3 Listen verändern . 78

6.2 Wörterbücher (dictionaries) . 80
6.3 Mengen (sets) . 84
6.4 Tupel . 86
6.5 Weitere Aufgaben . 87

7 Objektorientierte Programmierung 89
7.1 Klassen . 89
7.2 Vordefinierte Klassen in Python . 93
7.3 Klassenmethoden und Attribute . 94
7.4 Vererbung und Polymorphismus . 96

7.4.1 Vererbung . 96
7.4.2 Polymorphismus . 97

7.5 Praktisches Beispiel: Bibliothekssystem . 98
7.6 Zusammenfassung . 101

8 Praktische Anwendungen 102
8.1 Kalorienverbrauch . 102
8.2 Bilder Bearbeiten (Anwendung von Listen und Schleifen) 106

8.2.1 Vorbereitung . 106
8.2.2 Aufgaben zur Bearbeitung von Bildern . 106

9 Game 109
9.1 Einführung in Pygame . 109
9.2 Game-Auftrag . 117

9.2.1 Thema . 117
9.2.2 Anforderungen . 117
9.2.3 Bonus . 118

9.3 Bewertung . 118
9.3.1 Projektbewertung . 118
9.3.2 Gruppen-Besprechung des Spiels . 118

A Lernziele 120

B Nützliche Shortcuts 124

C Details 126
C.1 Division mit Rest . 126

2

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

C.2 Umrechnung von Basis a zu Basis b in Python . 127
C.3 Python Cheatsheet . 131

Literatur 137

3

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Kapitel 1

Getting Started

1.1 Installation von Python und VS Code
Um mit dem Programmieren loslegen zu können, müssen wir zuerst die Programmiersprache auf un-
serem Computer installieren, sowie einen guten Code-Editor, mit welchem wir Python-Code schrei-
ben und ausführen können. Ein solches Programm wird typischerweise Integrated Development
Environment (IDE) genannt. In diesem Skript verwenden wir die kostenfreie Programmiersprache
Python, sowie die ebenfalls kostenfreie, weit verbreitete IDE mit dem Namen Visual Studio Code
(VS Code). Der nachfolgende Abschnitt leitet Sie durch die Installation sowohl auf Windows wie
auf MacOS.

1.1.1 Anleitung für MacOS

Um VS Code unter MacOS zu installieren, benötigen Sie zuerst den Paket-Manager brew. Was
macht brew? Laut der offiziellen Webseite: „Homebrew installiert Zeug, das du brauchst, das Apple
aber nicht mitliefert.“

Falls Sie brew noch nicht auf Ihrem Mac installiert haben, tun Sie dies wie folgt:

1. Öffnen Sie ein neues Terminal-Fenster, indem Sie zunächst die Spotlight-Suche mit +

(+ Leertaste) öffnen. In der Spotlight-Suche müssen Sie nun den Suchbegriff Terminal
eingeben und schliesslich die Suchanfrage mit Drücken der Taste (ENTER-Taste) ausführen.

2. Geben Sie folgende Code-Zeile ein und führen Sie diese aus (indem Sie mit der -Taste
bestätigen):

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install
/HEAD/install.sh)"

Folgen Sie den Instruktionen, welche brew Ihnen im Terminal gibt! Sie erhalten einige Befehle,
welche Sie kopieren und in demselben Terminal-Fenster ausführen müssen.

Führen Sie danach folgende Befehle einzeln aus (jeweils durch das Drücken der -Taste), um VS
Code, Python und die Turtle zu installieren.

Installieren des IDE VS Code:

brew install --cask visual-studio-code

Installieren von Python 3 (neuste Version):

brew install python3

4

https://brew.sh/de/

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Installieren der Library tkinter, welche für die turtle-Grafik benötigt wird:

brew install python-tk

Nun sollten sowohl VS Code als auch Python installiert sein. Falls Sie VS Code nicht öffnen kön-
nen und stattdessen eine Sicherheits-Warnmeldung erhalten, folgen Sie dieser Anleitung, um das
Programm dennoch zu öffnen.

1.1.2 Anleitung für Windows

Öffnen Sie das Programm PowerShell (Sie können mit der WINDOWS -Taste danach suchen) als Admi-
nistrator. Bei uns sieht die Situation aus wie in Abbildung 1.1.

Abbildung 1.1: PowerShell unter Windows als Administrator öffnen.

Exclamation-Triangle Achtung

Wichtiger Hinweis 1.1:
Beim Kopieren und Einfügen der nachfolgenden Befehle in die PowerShell werden die Leer-
zeichen in den Befehlen entfernt. Diese sind aber wichtig! Sie müssen diese selber ergänzen
(navigieren Sie mithilfe der Pfeiltasten).

In der PowerShell geben Sie folgende Zeile ein, um den Package-Manager winget zu installieren
(bestätigen mit der -Taste):

winget install -e --id Microsoft.PowerShell

Führen Sie danach folgende Befehle einzeln aus (jeweils durch das Drücken der -Taste), um VS
Code und Python zu installieren:

winget install -e --id Microsoft.VisualStudioCode

5

https://support.apple.com/de-ch/guide/mac-help/mh40616/mac

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Der folgende Befehl listet die verfügbaren Python-Versionen auf. Führen Sie ihn aus und merken
Sie sich die höchste Versionsnummer (so ist zum Beispiel Python 3.12 > Python 3.11):

winget search --id Python.Python

Installieren Sie nun die neueste (höchste Nummer) Version von Python mit dem nachfolgenden
Befehl. Dabei muss allerdings der Platzhalter .3.__ durch die neueste Versionsnummer von Python
ersetzt werden (e.g. anstelle von .3.__ muss .3.12 stehen).

winget install -e --id Python.Python.3.__ --scope machine

Sie können jetzt mit der WINDOWS -Taste das Programm-Menu öffnen und nach Visual Studio Code suchen,
welches nun installiert sein sollte.

1.2 VS Code für Python konfigurieren (MacOS und Windows)
Im Folgenden (falls diese auftauchen) müssen Sie Pop-Ups der Form wie sie in Abbildung 1.2 gezeigt
sind, stets mit Yes, I trust the authors bestätigen.

Abbildung 1.2: Meldungen dieser Art können Sie mit „Ja / Yes“ bestätigen.

Öffnen Sie zunächst VS Code und betrachten Sie Abbildung 1.3. Navigieren Sie mit der Maus ganz
links zu den Extentions (Baustein-Icon) und suchen Sie im Suchfeld nach python. Installieren Sie
die Erweiterung gemäss Abbildung 1.31

1Python language support with extension access points for IntelliSense (Pylance), Debugging (Python Debugger),
linting, formatting, refactoring, unit tests, and more.

6

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Abbildung 1.3: Installation der Python-Extension in VS Code.

1.3 Ordner / Verzeichnis für meine Programme
Wir empfehlen Ihnen, einen neuen Ordner (ein neues Verzeichnis) zu erstellen. Darin sollten Sie
in Zukunft alle Programme, welche Sie im Grundlagenfach Informatik schreiben, abspeichern und
verwalten. Wir haben das entsprechende Verzeichnis deshalb einfach „Grundlagenfach“ genannt.
Am besten erstellen Sie Ihren Ordner in einem Cloud-Service, den Sie verwenden (z.B. OneDrive).
Dadurch werden Ihre Daten zwischen all Ihren Geräten synchronisiert. In diesem Ordner sollten Sie
keine persönlichen Daten ablegen.

Nun sind wir bereit, unser erstes Python-Programm zu schreiben und auszuführen.

1. In VS Code, klicken Sie File und dann Open Folder... und navigieren Sie zu dem Ordner,
den Sie erstellt haben.

2. Erstellen Sie in diesem Ordner ein neues File mit dem Namen hello_world.py. Die Datei-
endung .py gibt an, dass es sich dabei um ein Python-File handelt.

Bei uns sieht die Situation nun aus wie in Abbildung 1.4.

Abbildung 1.4: Python-Programm hello_world.py in VS Code erstellen.

1.4 Erstes Python-Programm schreiben und ausführen
Jetzt schreiben wir unser erstes Python-Programm! Dieses besteht aus nur einer einzigen Zeile und
lautet:

7

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

print("Hello, World!")
Programm 1.1: hello_world.py

Die kleine Ziffer 1 ist die Zeilennummer (diese wird vom Code-Editor automatisch gesetzt). Wir
führen nun das Programm aus („lassen das Programm laufen“), indem wir (oben rechts) auf den

-Knopf klicken. Bei uns sieht die Situation aus wie in Abbildung 1.5.

Abbildung 1.5: Python-Programm hello_world.py in VS Code ausführen.

Programm 1.1, macht nichts weiter, als den Text

Hello, World!

auf im Terminal (Englisch: terminal) auszugeben2.

1.5 Installation von NumPy und Matplotlib
Bitte öffnen Sie nochmals ein Terminal-Fenster (MacOS) oder eine PowerShell (Windows) und
installieren NumPy mit dem nachfolgenden Befehl:

für MacOS:
brew install numpy

für Windows:
pip install numpy

Installieren Sie bitte auch noch die Matplotlib-Bibliothek mit dem nachfolgenden Befehl:

für MacOS:
pip3 install matplotlib

für Windows:
pip install matplotlib

2https://de.wikipedia.org/wiki/Hallo-Welt-Programm

8

https://de.wikipedia.org/wiki/Hallo-Welt-Programm

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Kapitel 2

Einführung in Python und erste
Schleifen

Um mit einem Computer zu „sprechen“, brauchen wir eine Sprache, die er versteht: eine Program-
miersprache. Indem wir Programme schreiben, geben wir dem Computer klare Anweisungen,
welche Aufgaben er erledigen soll. In diesem Skript nutzen wir die neueste Version der Program-
miersprache Python.

Genau wie unsere menschlichen Sprachen haben Programmiersprachen Wörter mit einer festen
Bedeutung. Wörter, die dem Computer sagen, was er tun soll, nennen wir Befehlswörter oder einfach
Befehle.

Ein Programm ist im Grunde eine Reihe von Befehlen in einer Programmiersprache, die zusam-
men eine bestimmte Aufgabe lösen. Stell dir ein Programm als eine genaue Anleitung vor, die ein
Computer Schritt für Schritt abarbeiten kann.

Das Hauptziel des Programmierens ist die Automatisierung von Abläufen. Wir übertragen die Aus-
führung einer Aufgabe komplett an den Computer. Deshalb muss ein Programm absolut eindeutig
sein und genau beschreiben, was zu tun ist. Es darf keine Missverständnisse geben.

In diesem Kapitel schreiben Sie Ihre ersten eigenen Programme. Dabei lernen Sie das Konzept
der Schleifen kennen. Schleifen sind unglaublich praktisch, denn sie ermöglichen es, wiederkehrende
Aufgaben automatisch mehrfach auszuführen. Sie werden sehen, wie nützlich das in vielen Alltags-
situationen ist!

2.1 Einige grundlegende Befehle und Operationen

2.1.1 print-Funktion und built-in Funktionen

In unserem Hello, World!-Programm (Programm 1.1) haben wir bereits die Python-Funktion
print(...) gesehen. Diese Funktion ermöglicht es uns, Dinge (genauer: Python-Objekte) auszu-
geben („zu printen“) und dadurch für den User sichtbar zu machen. Die print-Funktion ist eine
built-in Funktion, das heisst, sie ist direkter Bestandteil der Python-Sprache und ist in Python
standardmässig verfügbar.

Beispiel 2.1:
Weitere Beispiele von Prints in Python:

9

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

print("Hallo, World!")

print(5 / 2, "ist grösser als", 3 / 2)

print(3 * 15)
Programm 2.1: prints.py

Bemerkung 2.1:
Unter dem Link

https://docs.python.org/3/library/functions.html#print

finden Sie eine Übersicht aller built-in Funktionen in Python. Wir empfehlen Ihnen für diesen
Link ein Lesezeichen (Bookmark) in Ihrem Webbrowser zu erstellen. Einige dieser Funktionen
werden wir im Folgenden gemeinsam kennenlernen.

2.1.2 Python-Kommentare

Kommentare in Python dienen dazu, Programmcode genauer zu beschreiben. Kommentare werden
von Python vollständig ignoriert und dienen lediglich dem besseren Verständnis des (menschlichen)
Lesers.

Beispiel 2.2:
Dieses Beispiel zeigt die Funktionsweise von Zeilenkommentaren und Blockkommentaren.

Dies ist ein Zeilenkommentar.
Ein Zeilenkommentar beginnt mit einem Rautesymbol / Hashtag.
print("Treffende Kommentare können dem Verständnis dienlich sein.")

"""
Dies ist ein Blockkommentar.
Ein solcher Kommentar darf sich über mehrere Zeilen erstrecken.

Ein Blockkommentar beginnt und endet mit jeweils drei Anführungszeichen.

Kommentare werden von Python ignoriert.
Diese Eigenschaft kann man sich zu
Nutze machen, um ausgewählte Programmteile temporär zu deaktivieren.
"""

Wäre die folgende Zeile nicht kommentiert, würden wir
einen Fehler erhalten (Divsion durch Null):
print(7 / 0)

Diese Berechnung ist aber ok:
print(7 / 3)

Kommentare beginnen erst NACH dem Rautesymbol:

10

https://docs.python.org/3/library/functions.html#print

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

print("Das WIRD geprintet.") # das wird aber ignoriert
Programm 2.2: kommentare.py

2.1.3 Einfache Arithmetik

In Python lassen sich einfache Rechenoperationen ähnlich wie bei einem Taschenrechner angeben.
Dabei hält sich Python an die gewohnten Konventionen wie zum Beispiel „Punkt vor Strich“. Sym-
bole gängiger arithmetischer Operationen sind in Tabelle 2.1 zusammengefasst.

mathematische Operation In Python

Addition +

Subtraktion -

Multiplikation *

Division /

Potenzieren **

Tabelle 2.1: arithmetische Operationen in Python

Übersicht 2.1 (arithmetische Operationen in Python):

Beispiel 2.3:
Wir haben einige typische Rechenoperationen für Sie aufgeführt:

berechnet zwar die Summe 9 + 10,
gibt aber keinen Output (fehlender print)
9 + 10

es gilt die Konvention 'Punkt vor Strich':
print(5 + 7 * 3) # äquivalent zu 5 + (7 * 3) = 26

Summe
5 + 503 # 508
Differenz
10 - 24 # -14
Produkt
8 * 5 # 40
Division
10 / 4 # 2.5

Potenz
2**4 # 16

"""
die Quadratwurzel (English: square root, kurz: sqrt)

11

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

ist nicht direkt Teil von Python, sondern muss durch
Importieren der Library 'math' hinzugefügt werden.
"""
import math

math.sqrt(2) # 1.4142135623730951
Programm 2.3: basisoperationen.py

2.2 Erste Zeichnungen mit der Python-Turtle
Für den Einstieg in das Programmieren ist es didaktisch sinnvoll, mit der Python-Turtle zu starten.
Genau dies werden wir hier tun! Wir werden der Turtle Instruktionen erteilen, damit sie für uns
bestimmte Bilder und geometrische Formen zeichnet. Der didaktische Vorteil des Arbeitens mit
der Turtle liegt in dem grafischen Output. Dieser lässt Sie (meist) sofort selber erkennen, was Ihr
Programm macht und auch potenzielle Fehler lassen sich in der Regel recht einfach auffinden.

Um mit der Turtle arbeiten zu können, müssen Sie das turtle-Modul durch den Befehl import
turtle zu Beginn des Programms (ganz oben) importieren. Ein Modul ist eine „Erweiterung“ von
Python, so dass wir zusätzlich zu den built-in functions auch die Befehle des Moduls verwenden
können.

Mit dem Ausdruck import turtle as t sagen wir, dass wir das Modul turtle in unser Programm
importieren und dieses Modul innerhalb des Programms mit dem Ausdruck t benennen werden (wird
könnten auch import turtle as bliblablup schreiben, dies wäre jedoch wohl weniger praktisch.

Programm 2.4 lässt die Turtle einen Strich mit einer Länge von 140 zeichnen. Programm 2.5 zeichnet
ein gleichseitiges Dreieck mit Seitenlänge 100.

import turtle as t

Tempo der Turtle festlegen
t.speed(1)

gerade Linie / Strich zeichnen
t.forward(140)

Turtle-Zeichnung stehen lassen
t.done()

Programm 2.4: strich.py

import turtle as t

Tempo der Turtle festlegen
t.speed(1)

gleichseitiges Dreieck zeichnen
t.forward(100)
t.left(120)
t.forward(100)
t.left(120)
t.forward(100)

12

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

t.left(120)

Turtle-Zeichnung stehen lassen
t.done()

Programm 2.5: dreieck.py

Bemerkung 2.2:
Unter dem Link

https://docs.python.org/3/library/turtle.html#module-turtle

finden Sie eine Übersicht aller Turtle-Funktionen. Wir empfehlen Ihnen für diesen Link ein
Lesezeichen (Bookmark) in Ihrem Webbrowser zu erstellen. Einige dieser Funktionen werden
wir im Folgenden gemeinsam kennenlernen.

EDIT Aufgabe 2.1

Vervollständigen Sie die gegebene Vorlage, um ein Haus ähnlich dem in Abbildung 2.1 mithilfe
der Turtle zu zeichnen.

Abbildung 2.1: Traumhaus

• Die Längen dürfen Sie selber bestimmen.
• Das Schrägdach soll in roter Farbe gezeichnet werden und muss ein gleichschenkliges

und rechtwinkliges Dreieck sein.
• Das Programm soll die Länge der Kathete dieses rechtwinkligen Dreieckes mit einem

Print ausgeben.

import math
import turtle as t

Tempo der Turtle festlegen
t.speed(1)

Mauern
...
...
...

13

https://docs.python.org/3/library/turtle.html#module-turtle

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Dach (rechtwinkliges Dreieck)
t.pencolor("red") # setzte die Stiftfarbe auf rot
...
...
...

Turtle verstecken (damit sie nicht das Haus verdeckt)
t.hideturtle()

Turtle-Zeichnung stehen lassen
t.done()

Programm 2.6: haus_vorlage.py

EDIT Aufgabe 2.2

Schreiben Sie ein Programm um einen Dreizack möglichst ähnlich dem in Abbildung 2.2
mithilfe der Turtle zu zeichnen.

Abbildung 2.2: Poseidons Dreizack

Tipp: Durchsuchen Sie die Turtle-Dokumentation (siehe Bemerkung 2.2) um zu lernen, wie
die Stiftbreite und Stiftfarbe (hier: "gold") angepasst werden kann.

2.3 Schleifen
Schleifen (Englisch: loops) ermöglichen uns, Prozesse zu wiederholen.

14

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Beispiel 2.4:
In Abbildung 2.3 ist eine Treppe gezeigt. Wie können wir diese Treppe mithilfe der Turtle
zeichnen? Mit unserem bisherigen Wissen wäre dies sehr mühsam:

1 import turtle as t
2

3 t.lt(90)
4

5 # diese 4 Zeilen müssen wir 14 weitere Male Kopieren,
6 # um insgesamt 15 Stufen zu erhalten
7 t.fd(15)
8 t.lt(90)
9 t.fd(25)

10 t.rt(90)
11

12 t.hideturtle()
13 t.done()

Abbildung 2.3: Stairway to Heaven

Stellen Sie sich vor, Sie müssten eine Treppe mit 10000 Stufen zeichnen .

Beispiel 2.4 zeigt auf, dass wir eine praktikable Methode zum häufigen Wiederholen von Mustern
oder Prozessen benötigen. In Python lassen sich Wiederholungen mit Schleifen realisieren. Die Trep-
pe aus Beispiel 2.4 lässt sich mit einer sogenannten for-Schleife ganz einfach wie in Programm 2.8
realisieren.

import turtle as t

t.lt(90)
for _ in range(6):

t.fd(15)
t.lt(90)
t.fd(25)
t.rt(90)

t.hideturtle()
t.done()

Programm 2.8: treppe.py

15

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Dabei wird folgender Ausdruck:

for _ in range(15):

der Schleifenkopf der Schleife genannt. Die vier Zeilen (6 – 9) werden Schleifenkörper der Schleife
genannt, wie im unten stehenden Code zu sehen ist.

for _ in range(15):
t.fd(15)
t.lt(90)
t.fd(25)
t.rt(90)

Schleifenkopf

Schleife

Körper der Schleife

Der Schleifenkörper ist (in Python) daran erkennbar, dass er (relativ zu dem Schleifenkopf) nach
rechts eingerückt (Englisch: indented) ist. Diese Einrückung erreichen wir in VS Code durch das
einfache Drücken der Tabulator-Taste (). Wir können Code auch wieder um einen Tab nach
links rücken, indem wir den entsprechenden Code zuerst selektieren (einfärben) und danach die
Shift-Taste sowie die Tabulator-Taste gleichzeitig drücken (+). In anderen Programmen als
VS Code kann es sein, dass die Tastaturkombination dafür eine andere ist.

EDIT Aufgabe 2.3

In Abbildung 2.4 wird gezeigt, wie ein Kreis schrittweise durch regelmässige Polygonea ap-
proximiert (angenähert)

Abbildung 2.4: Schrittweise Annäherung an einen Kreis durch ein- beziehungsweise umbe-
schriebene regelmässige Polygone (links: 5-Ecke, mittels: 6-Ecke, rechts: 8-Ecke).

• Lassen Sie die Turtle in demselben Bild ein regelmässiges 5-Eck, ein regelmässiges 6-Eck
sowie ein regelmässiges 8-Eck zeichnen.

• Die Orientierungen und Grössen der Figuren spielen dabei keine Rolle.
• Die Figuren sollen sich nicht überschneiden.
• Sie wollen die Turtle bewegen, ohne dabei zu zeichen? Schauen Sie sich die Funktionen

t.penup() und t.pendown() in der turtle-Dokumentation an (suchen Sie nach diesen
Befehlen mit dem Shortcut ctrl + F (Windows) oder + F (MacOS)).

ahttps://de.wikipedia.org/wiki/Regelm%C3%A4%C3%9Figes_Polygon

16

https://docs.python.org/3/library/turtle.html
https://de.wikipedia.org/wiki/Regelm%C3%A4%C3%9Figes_Polygon

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Trophy Aufgabe (Challenge) 2.4

Zeichnen Sie eine Blume, wie unten gezeigt.

EDIT Aufgabe 2.5

1. Zeichnen Sie die quadratische Schweizer Flagge (Tipp: zuerst ohne Farben, danach
farbig). Um eine Form auszufüllen, schauen Sie sich die Funktionen t.fillcolor(),
t.begin_fill() und t.end_fill() in der turtle-Dokumentation an. Suchen Sie nach
dem Begriff „fill“ mit dem Shortcut ctrl + F (Windows) oder + F (MacOS).

2. Zeichnen Sie die Flagge des Kantons Zürich (quadratisch):

Farbe „Züri-Blau“: (0 / 255, 112 / 255, 180 / 255)
3. Zeichnen Sie eine horizontal dreigeteilte, rechteckige Flagge (wie etwa die Flagge Frank-

reichs oder Italiens).

Trophy Aufgabe (Challenge) 2.6

In den folgenden beiden Aufgaben müssen Sie dasselbe tun wie in Teil 3 von Aufgabe 2.5
aber mit den folgenden Ergänzungen:

1. Die Breite jedes einzelnen der drei Rechtecke soll vom Programm bei jeder Ausführung
individuell zufällig gewählt werden (das Programm soll zufällig drei Werte wählen).

2. Nun sollen zusätzlich zu den Breiten auch noch die Farben jeder der drei Rechtecksflä-
chen zufällig gewählt werden.

Übersicht 2.2 (turtle-Befehle):

17

https://docs.python.org/3/library/turtle.html

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Kurzform Langform Beschreibung

t.fd(x) t.forward(x) bewegt die Turtle um x Schritte vorwärts
t.bk(x) t.backward(x) bewegt die Turtle um x Schritte rückwärts
t.rt(x) t.right(x) dreht die Turtle um x Grad nach rechts
t.lt(x) t.left(x) dreht die Turtle um x Grad nach links
t.color(c) t.color(c) setzt die Zeichenfarbe auf c (z. B. "red")
t.begin_fill() t.begin_fill() Start des Füllbereichs
t.end_fill() t.end_fill() Ende des Füllbereichs (füllt Fläche)
t.pu() t.penup() hebt den Stift (es wird nicht mehr gezeichnet)
t.pd() t.pendown() senkt den Stift (es wird wieder gezeichnet)
t.ht() t.hideturtle() versteckt die Turtle
t.st() t.showturtle() zeigt die Turtle
t.speed(x) t.speed(x) Geschwindigkeit setzen (0 = schnellste)
t.goto(x, y) t.goto(x, y) bewegt die Turtle zu den Koordinaten (x, y)
t.circle(r) t.circle(r) zeichnet einen Kreis mit Radius r
t.tracer(False) t.tracer(False) zeigt direkt das Resultat (ohne Animation)a

t.teleport(x, y) t.teleport(x, y) teleportiert die Turtle zu (x, y)

Tabelle 2.2: Zusammenfassung nützlicher turtle-Befehle
aFunktioniert nicht in allen Programmier-Umgebungen

18

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Kapitel 3

Variablen, Datentypen & Debugging

3.1 Variablen

Beispiel 3.1:
In Aufgabe 2.5 haben Sie bereits die (quadratische) Flagge des Kantons Zürich mithilfe der
Turtle gezeichnet. Ohne Beachtung der Farben könnte der Code dafür wie in Programm 3.1
aussehen.

import turtle as t
import math

for _ in range(4):
t.forward(50)
t.left(90)

t.forward(50)
t.left(135)
t.forward(50 * math.sqrt(2))

t.hideturtle()
t.done()

Programm 3.1: ohne_variable.py

Angenommen wir wollten die Grösse der Züri-Flagge ändern, dann müssten wir den Wert
50 an genau drei Stellen entsprechend anpassen! Dieses Vorgehen ist zum einen Mühsam
und zum Andern höchst fehleranfällig (es kann sehr gut passieren, dass eine Änderung nicht
konsequent an allen Stellen durchgeführt wird).

Viel besser ist es, wenn wir der Seitenlänge des Quadrats einen Namen geben. Genau dies
haben wir in Programm 3.2 getan: Wir haben der Länge den Namen laenge gegeben.

import turtle as t
import math

Wir benutzen die Variable 'laenge', um der Länge einen Namen zu geben:
laenge = 50

19

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

for _ in range(4):
t.forward(laenge)
t.left(90)

t.forward(laenge)
t.left(135)
t.forward(laenge * math.sqrt(2))

t.hideturtle()
t.done()

Programm 3.2: mit_variable.py

Der Ausdruck laenge ist ein Beispiel einer sogenannten Variable.

Definition 3.1 (Variable in Python):
Eine Variable in Python ist im Wesentlichen ein Name, der auf einen im Speicher (des Com-
puters) abgelegten Wert verweist. Mit der Zuweisung

a = 436 # a verweist auf ein Objekt vom Typ "ganze Zahl" mit dem Wert 436

wird veranlasst, dass der Variablenname a zu einer Referenz (einem Verweis) auf den Spei-
cherort eines Objekts vom Typ „ganze Zahl“ mit dem Wert 436 wird.

Eine Variable wird erstellt, sobald man ihr mit dem Gleichheitszeichen (=) ein Objekt zuweist.
Das Gleichheitszeichen hat allerdings nicht dieselbe Bedeutung wie in der Mathematik! Vielmehr
bedeutet das Gleichheitszeichen in Python: „die linke Seite ist ein Name für das Ding auf der rechten
Seite“:

a = 10+3︸ ︷︷ ︸
Die Erklärung dieser Zeile ist: „Wir werten den Ausdruck 10 + 3 aus und erhalten die Zahl 13.
Diesen Wert (13) speichern wir nun in der Variable a“.

Wir können dies einfach überprüfen, indem wir den Wert von a ausgeben:

a = 10 + 3
print(a) # gibt 13 aus

a = 25 # der Wert der Variable wurde neu definiert
print(a) # gibt jetzt 25 aus

Variablen sind kurz gesagt ein Wort, das einen veränderbaren (= variablen) Wert enthält. Der
Variablenname darf dabei (fast) frei gewählt werden, sofern folgende Regeln eingehalten werden:

Übersicht 3.1 (Benennung von Variablen):
Bei der Wahl eines Variablennamens gibt es einige Punkte zu beachten:

1. Der Name muss mit einem Buchstaben beginnen (nicht: 1meinname, _abc).
2. Der Name darf kein von Python reserviertes Wort sein (for, def, if, print, etc.).
3. Der Name sollte sinnvoll und beschreibend (deskriptiv) sein. Wenn Sie beispielsweise

die Höhe eines Hauses in einer Variable speichern, ist es sinnvoll, diese h oder hoehe zu
nennen und nicht etwa x.

20

https://www.programiz.com/python-programming/keyword-list

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

4. Variablennamen dürfen nur alphanumerische Symbole (a – z, A – Z, 0 – 9) und Unter-
striche enthalten. Insbesondere also weder Leerzeichen noch Umlaute.

5. Da Variablennamen keine Leerzeichen enthalten dürfen, sollten zusammengesetzte Na-
men mithilfe von Unterstrichen (_) gebildet werden:

laenge_rechteck = 100
number_of_occupied_squares = 5

Exclamation-Triangle Achtung

Wichtiger Hinweis 3.1:
In der Mathematik bedeutet das Gleichheitszeichen „der rechte Teil der Gleichung ist gleich
dem linken“. Dies ist in Python nicht so! Hier bedeutet das Gleichheitszeichen: „werte den
rechten Teil aus und speichere das Resultat im linken Teil“. Es gibt also keine Speicherung
von Werten in Python ohne Verwendung des Gleichheitszeichens.

EDIT Aufgabe 3.1

Berechnen Sie die folgenden Ausdrücke in Python und speichern Sie das Resultat jeweils in
einer Variable:

Berechnung Name der Variable

17 − 3 · 8 res1

(5 − 2) · 4 + 1 res2

36 res3

18(2+3) res4

EDIT Aufgabe 3.2

Gegeben sind zwei Variablen x und y. Sie möchten die Werte dieser zwei Variablen austau-
schen, so dass danach x den ursprünglichen Wert von y enthält und umgekehrt. Sie experi-
mentieren zunächst mit folgendem Vorgehen:

1 # anfängliche Werte für x und y:
2 x = 5
3 y = 11
4

5 # Versuch die Werte von x und y zu tauschen:
6 x = y
7 y = x

Führen Sie das Programm aus und geben Sie die Werte von x und y auf der Konsole aus.
Funktioniert das Programm wie erwartet? Weshalb (nicht)?

21

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 3.3

Wie könnte der Code aus Aufgabe 3.2 angepasst werden, sodass der Tausch korrekt vollzogen
wird?

Tipp: Verwenden Sie neben x und y noch eine dritte Variable.

Trophy Aufgabe (Challenge) 3.4

In den Variablen x und y sei jeweils eine ganze Zahl gespeichert. Schreiben Sie ein Programm,
welches die Werte von x und y tauscht, ohne eine weitere „Hilfsvariable“ wie in Aufgabe 3.3
zu verwenden.

Tipp: Definieren Sie zuerst x = x + y

3.2 Teilen mit Rest
In diesem Abschnitt werden wir einige Überlegungen anstellen, welche Sie vielleicht an Ihre Zeit in
der Primarschule zurückerinnern werden.

Beispiel 3.2:

• Angenommen seit einem gewissen Zeitpunkt seien 23 Tage vergangen. Der Zeitpunkt
liegt also 3 ganze Wochen zurück und in der vierten Woche sind bereits 2 Tage vergan-
gen. Wir können die Zahl 23 darstellen als 23 = 7 · 3 + 2. Dabei ist 3 (der Quotient)
das Resultat der ganzzahligen Division von 23 (Dividend) geteilt durch 7 (Divisor).
Dabei bleibt ein Rest von 2.

• Bei der ganzzahligen Division 23 geteilt durch 7 bestimmen wir also, wie häufig 7
vollständig (ganz) in 23 „passt“.

• Nehmen wir weiter an, der Tag 0 sei ein Montag. Dann war auch schon Tag −7 ein
Montag und ebenso Tag +7. Offensichtlich entsprechen zwei Tage genau dann demselben
Wochentag, wenn ihre Differenz (die Differenz ihrer Nummern) durch 7 teilbar ista. So
sind beispielsweise die Tage 23 und 37 beide Mittwoche.

aMit anderen Worten: Ihre Differenz ist ein ganzzahliges Vielfaches von 7.

Definition 3.2 (ganzzahlige Divsion und Modulo-Operation (informell)):
Es seien a und b natürliche Zahlen und b 6= 0.

• Wir bezeichnen in Python mit a // b das Resultat der ganzzahligen Division von a
geteilt durch b (wie oft hat b ganz in a Platz).
Beispiel: 23 // 7 ist 3.

• Mit a % b (sprich: a modulo b) bezeichnen wir den Rest, welcher bei der ganzzahligen
Division von a geteilt durch b bleibt. Wir nennen % die Modulo-Operation.
Beispiel: 23 % 7 ist 2.

Für mehr Details zur Division mit Rest siehe Abschnitt C.1.

22

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Beispiel 3.3:
Beispiele für die ganzzahlige Division in Python:

20 // 3 # ist 6
80 // 4 # ist 20
37 // 5 # ist 7

Beispiel 3.4:
Beispiele für Modulo-Berechnungen (Rest der ganzzahligen Division) in Python:

8 % 3 # ist 2
8 % 4 # ist 0
9 % 5 # ist 4
5 % 9 # ist 5

EDIT Aufgabe 3.5

Füllen Sie die zweite Spalte von Hand aus, berechnen Sie danach (zur Kontrolle) die Werte
in Python.

Code Resultat

1 % 3 ?

2 % 3 ?

3 % 3 ?

4 % 3 ?

5 % 3 ?

6 % 3 ?

EDIT Aufgabe 3.6

Es nehmen p > 0 Personen an einem Fest teil. Für das Fest wurden liebevoll m viele Muffins
gebacken. Jede Person soll genau gleich viele Muffins erhalten. Berechnen Sie, wie viele Muffins
nach dieser gerechten Verteilung auf p Personen übrig bleiben werden. Verwenden Sie dazu
den Modulo-Operator.

Beispiel 3.5:
Offensichtlich ist eine natürliche Zahl n genau dann gerade, wenn die Gleichheit n % 2 = 0
gilt, also n beim Teilen durch 2 den Rest 0 hat.

3.3 Zusammengesetzte Zuweisungsoperatoren
Wir haben bislang schon mehrfach Werte von Variablen verändert. In diesem Abschnitt führen wir
einige gebräuchliche Python-Operatoren ein. Betrachten Sie das folgende Programm:

23

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

alter = 11
print(alter) # alter hat den Wert 10
alter = alter + 1 # alter hat neu den Wert 11
print(alter) # printet 11
alter + 5 # berechnet die Summe alter + 5, Inhalt von alter bleibt unverändert
print(alter) # printet 11
z = alter + 5 # Inhalt von alter bleibt unverändert
print(alter) # printet 11
alter += 7 # alter hat neu den Wert 18
print(alter) # printet 18

Es existiert ein fundamentaler Unterschied zwischen den beiden Ausdrücken x + 5 (Wert von x
bleibt unverändert) und x += 5 beziehungsweise x = x + 5 (Wert von x wird überschrieben).
Anstelle von x = x + y werden wir häufig den zusammengesetzten Operator += in der Form x +=
y verwenden. Analoge zusammengesetzte Operatoren für weitere mathematische Operatoren sind

in Tabelle 3.1 aufgeführt.

zusammengesetzte Zuweisungsoperation Bedeutung

x += y speichere x + y in x

x -= y speichere x - y in x

x *= y speichere x * y in x

x /= y speichere x / y in x

x //= y speichere x // y in x

x \%= y speichere x \% y in x

Tabelle 3.1: häufig verwendete zusammengesetzte Operatoren

EDIT Aufgabe 3.7

Zeichnen Sie eine Spirale der Form:

Die kürzeste Seitenlänge der Spirale ist 10 und nach jeder 90-Grad-Rotation soll die Seiten-
länge um 10 länger werden.

24

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 3.8

Die Kubikzahl einer Zahl x ist gleich der Zahl hoch 3, also x3. Verwenden Sie eine Schleife
um die 10 Kubikzahlen 13, 23, . . . , 103 auszugeben. Beginnen Sie mit einer Variablen x = 1
und erhöhen Sie den Wert von x in jedem Durchgang der Schleife um 1.

3.4 Arbeiten mit Text (Strings)
In Python kann man nicht nur arithmetische Operationen mit Zahlen durchführen, sondern auch mit
Text arbeiten. In der Informatik verstehen wir unter einem Text jede endliche Folge von Symbolen
der Tastatur. Eine solche Folge von Symbolen bezeichnet man auch als Zeichenkette (Englisch:
string). Beispiele von Strings haben wir bereits in Beispiel 2.1 gesehen. Wir können Strings, ebenso
wie Zahlen, in Variablen speichern.

Beispiel 3.6:
Folgendes Beispiel speichert den Text "Hello, World!" in der Variable a, der Wert der
Variable wird danach auf der Konsole ausgegeben:

a = "Hello, World!"
print(a) # printet den String "Hallo, World!" in der Konsole

anstelle von doppelten Anführungszeichen "..."
dürfen auch einfache Anführungszeichen '...' verwendet werden:
b = 'Kantonsschule'

aber auch sowas ist ein String:
c = "23adsf34# 2 @!!30y"

3.4.1 Verkettung und Vervielfachung von Strings

Zeichenketten können verkettet, also aneinandergehängt werden:

wort = "Kan" + "tons" + "schule"
print(wort) # Kantonsschule

Die „Addition“ von Strings wird Konkatenation (Englisch: concatenation) genannt.

Strings können mithilfe des *-Operators vervielfacht werden:

wort = "abc"
print(4 * wort) # abcabcabcabc

Falls Sie also Wiederholungen einer Zeichenkette wünschen, können Sie diese mit einer ganzen Zahl
multiplizieren. Diese Zahl bestimmt die Anzahl der Wiederholungen der Zeichenkette. So entspricht
der Ausdruck "a" * 3 beispielsweise dem String "aaa".

25

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 3.9

Führen Sie das nachfolgende Programm aus und erklären Sie, was das Programm tut:

print(" " * 3 + "X" * 1)
print(" " * 2 + "X" * 3)
print(" " * 1 + "X" * 5)
print(" " * 0 + "X" * 7)
print(" " * 3 + "X" * 1)
print(" " * 3 + "X" * 1)

EDIT Aufgabe 3.10

Erstellen Sie nun ein Programm, das (analog zu Aufgabe 3.9) lediglich mit prints und
Stringoperationen ein „Herz“ zeichnet.

Trophy Aufgabe (Challenge) 3.11

Schreiben Sie ein Programm, welches die Form einer Banane auf der Konsole ausgibt, indem
Sie die Stringoperationen * und + verwenden.

3.5 Datentypen
Bisher haben wir zwei Arten, oder Typen von Variablen gesehen: Zahlen und Text (Strings).

x = 2 + 3 # x ist eine Variable vom Typ "ganze Zahl"
y = "Hallo Welt!" # y ist eine Variable vom Typ "Text"
z = 'Donald Knuth' # ebenfalls eine Variable vom Typ "Text"

Variablen vom Typ „Text“ werden gut daran erkannt, dass der Wert der Variable (also der Text)
in Anführungszeichen steht.

Bei Zahlen gilt es in Python zwischen der Darstellung einer ganzen Zahl (Englisch: integer number
→ int) und der Darstellung einer Dezimalzahl (Englisch: floating point number → float) zu unter-
scheiden, siehe Tabelle 3.2. Bitte beachten Sie, dass Dezimalzahlen immer mit Dezimalpunkt und
nicht etwa mit einem Komma geschrieben werden, also 2.75 und nicht etwa 2,75. Kommas werden
in Python als Trennzeichen in Auflistungen verwendet.

Beispiel Datentyp (englische, Abk.) Datentyp (Deutsch)

"Hallo Welt", 'abc', "42" string (str) Zeichenkette

15, 45, -5, 0 integer (int) ganze Zahl

12.23, -5.33, 23.0 float (float) Kommazahl

Tabelle 3.2: Auswahl elementarer Datentypen in Python und Beispiele

Folgendes Beispiel illustriert, wie wichtig es ist, sich des Datentyps einer Variable bewusst zu sein.
Das Plus-Symbol kann für zwei unterschiedliche Dinge verwendet werden:

1. Zahlen addieren: print(2 + 3) # gibt 5 aus
2. Strings verketten: print("Hallo" + " " + "Welt") # gibt "Hallo Welt" aus

26

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Wichtig dabei ist, dass auf beiden Seiten des Plus-Zeichens (+) Werte desselben Datentyps stehen,
da Python ansonsten nicht weiss, ob es addieren oder verketten soll. Daher ist es in gewissen Fällen
nötig, eine Zahl in einen Text umzuwandeln, beispielsweise dann, wenn eine Zahl und ein Text im
gleichen Print ausgegeben werden sollen. Hierzu verwenden wir den Befehl str(). Beispielsweise
gibt uns str(15) die Zeichenkette "15".

Beispiel 3.7:
Führen Sie folgenden Code in VS Code aus und beobachten Sie das Resultat in der Konsole:

n = 20
m = 30
prod = n * m
print(str(n) + " mal " + str(m) + " ist " + str(prod))

Eine etwas elegantere Art, Variablen in einem print mit Text zu verbinden ist, die Python-Schreibweise
print(f"...") zu verwenden.

Beispiel 3.8:
Führen Sie folgenden Code in VS Code aus und beobachten Sie das Resultat in der Konsole:

n = 20
m = 30
quot = n / m
print(f"{n} durch {m} ist {quot}")

Diese Schreibweise erlaubt es uns, Variablen innerhalb der geschweiften Klammern zu ver-
wenden, ohne sie vorher in Strings umwandeln zu müssen. Wir beobachten allerdings, dass
der Quotient nicht sehr schön formatiert wird. Wir können die Anzahl der Dezimalstellen mit
der Formatierung :.2f anpassen. Dabei bezeichnet :.2f eine Dezimalzahl mit 2 Nachkom-
mastellen. Führen Sie folgenden Code aus:

n = 20
m = 30
quot = n / m
print(f"{n} durch {m} ist {quot:.2f}")

EDIT Aufgabe 3.12

Schreiben Sie ein Python-Programm, welches in einer Schleife die Quotienten von 2/3, 3/3,
4/3, etc. bis 11/3 berechnet und auf der Konsole ausgibt, z.B.:"4 durch 3 ist 1.333".
Verwenden Sie dazu die f"-Schreibweise und formatieren Sie die Quotienten so, dass immer
3 Nachkommastellen angezeigt werden.

27

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 3.13

Eine Dame verrät uns die dreistellige Vorwahl 079 ihrer 10-stelligen Mobiltelefonnummer.
Zudem verrät sie uns auch, dass die letzten drei Ziffern eine gerade Zahl zwischen 0 und 200
darstellen (also eine der Zahlen 000, 002, 004, . . . , 200).

Schreiben Sie ein Python-Programm, welches alle möglichen Nummern auflistet. Die erste
Nummer sollte 0790000000 sein, die letzte 0790000200. Das Programm soll die Telefonnum-
mern als Zeichenkette (eine Nummer pro Zeile) ausgeben.

Tipps:

• Mit str(num) wird aus der Zahl num eine Zeichenkette.
• Erinnern Sie sich, was die Operation + in dem Ausdruck "In" + "form" + "atik"

macht?

Exclamation-Triangle Achtung

Wichtiger Hinweis 3.2 (Quotienten ganzer Zahlen sind in Python floats):
Im Allgemeinen ist der Quotient n/m von zwei ganzen Zahlen n, m keine ganze Zahl. In
Python wird deshalb das Resultat einer Division immer als Dezimalzahl (float) angeschaut,
auch wenn n durch m ohne Rest teilbar ista:

bruch = 6 / 2 # bruch ist ein float und kein int
print(bruch) # gibt 3.0 und nicht etwa 3 aus
bruch = int(bruch) # explizite Typenumwandlung von float zu int
print(bruch) # gibt 3 aus

x = 5.999999
x = int(x) # Weglassen von Dezimalstellen
print(x) # gibt 5 aus

Die folgende Schleife erzeugt einen Fehler (TypeError):

das ist nicht ok:
for _ in range(6 / 2):

print("hallo")

TypeError: 'float' object cannot be interpreted as an integer

das ist ok:
for _ in range(int(6 / 2)):

print("hallo")

da eine Schleife nur „ganzzahlig-viele“ Durchgänge durchführen kann, doch 6 / 3 ist 3.0,
also vom Typ float und nicht int.
aDas Konzept von Teilbarkeit ergibt in den reellen oder rationalen Zahlen keinen Sinn.

28

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Trophy Aufgabe (Challenge) 3.14

Schreiben Sie ein Programm, welches 123456789 Sekunden in Jahre (à 365 Tage), Tage, Stun-
den, Minuten und Sekunden umrechnet. Das Programm soll den folgenden Text ausgeben,
wobei alle Zahlen (ausser 123456789) im Programm berechnet werden: „123456789 Sekunden
sind 3 Jahre, 333 Tage, 21 Stunden, 33 Minuten, 9 Sekunden!“

EDIT Aufgabe 3.15

Mit welchen Datentypen würden Sie folgende Informationen über sich selbst in Python spei-
chern?

• Ihr Vorname
• Ihr Alter in Jahren
• Ihre Grösse in Metern

3.6 Textinput
Mithilfe der input-Funktion kann der User während der Programmausführung zu einer Eingabe
aufgefordert werden.

Beispiel 3.9:
Mit der Funktion input("Hilfstext...") können wir eine Variable während der Programm-
ausführung erstellen:

"""
Folgender Befehl druckt den Hilfstext
'Was ist ihr Name?' auf der Konsole.

Die Antwort kann auf der Konsole eingetippt
werden und wird danach in der Variable name gespeichert.

Mit der letzten Zeile wird der eingegeben Name
danach 5-mal gedruckt.
"""
name = input("Was ist ihr Name?")
print(name * 5)

Führen Sie diesen Code in VS Code aus und beobachten Sie das Resultat.

EDIT Aufgabe 3.16

Schreiben Sie ein Programm, das Sie nach Ihrem Namen fragt, indem der Hilfstext "Wie
heissen Sie?" auf der Konsole ausgegeben wird. Verwenden Sie dazu die Funktion name =
input("Hilfstext hier..."). Danach soll Sie das Programm neunmal begrüssen, indem

es auf 3 Zeilen je dreimal den Text Hallo [Ihr Name] druckt.

29

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Bemerkung 3.1 (Input erwartet immer einen String):
Bitte beachten Sie, dass die Input-Funktion in Python den Tastaturinput immer als String
auffasst. Falls Ihr Input als Zahl angesehen werden soll, dann müssen Sie den Input x mit
int(x) beziehungsweise float(x) konvertieren:

alter = input("Wie alt bist du?") # alter ist vom Typ 'String'
print("In einem Jahr wirst du", int(alter) + 1, "Jahre alt sein.")
andere, mögliche Schreibweise mit f"...:
print(f"In einem Jahr wirst du {int(alter) + 1} Jahre alt sein.")

dies würde einen Fehler geben, da wir hier die Summe eines Strings (alter)
und einer ganzen Zahl zu berechnen versuchen:
print("In einem Jahr wirst du", alter + 1, "Jahre alt sein.")

3.7 Debugging
Häufig kommt es beim Schreiben von Code zu „unerklärlichen“ Fehlern: Der Code macht nicht,
was man will, stürzt ab oder liefert nicht das gewünschte Resultat. Wir sprechen dabei von bugs
(englisches Wort für Käfer), womit allgemein Fehler beziehungsweise unerwünschtes Verhalten oder
unerwünschte Resultate gemeint sind. Daher ist es wichtig, zu lernen, wie man einem Problem auf
die Schliche kommt. Darum handelt es sich beim sogenannten debugging um das Beheben unter-
schiedlicher Fehlerarten, welche in den folgenden Abschnitten kurz erklärt werden.

3.7.1 Syntaxfehler

Syntax-Fehler (Englisch: syntax error) sind in Programmiersprache vergleichbar mit Rechtschreib-
fehlern in Aufsätzen: Es handelt sich um Schreibweisen, die nicht erlaubt sind. Beispielsweise würde
folgender Code eine Fehlermeldung geben:

print "Hello World" # Fehler!

Der Fehler tritt aufgrund der Tatsache auf, dass nach dem Befehl print Klammern stehen müssen.
Der korrekte Code würde wie folgt geschrieben:

print("Hello World")

Syntax-Fehler, also Fehler in der grammatikalischen Struktur einer Programmiersprache, führen
dazu, dass der Code nicht richtig ausgeführt werden kann.

Weitere, ähnliche Fehler können etwa auftreten, weil die Klammern nicht geschlossen wurden oder
weil die Anführungszeichen bei Texten vergessen wurden:

print("Hello World" # Fehler (Klammer nicht geschlossen)!
print(Hello World) # Fehler (keine Anführungszeichen)!

3.7.2 Laufzeitfehler

Laufzeitfehler (Englisch: runtime error) werden erst bei der Ausführung des Programms erkannt.
Dabei stimmt die grammatikalische Struktur (Syntax) des Codes zwar, der Code ergibt aber keinen
Sinn: Beispielsweise wird versucht, auf Variablen zuzugreifen, welche es gar nicht gibt. Fehler können
beispielsweise aufgrund von Gross- und Kleinschreibung auftreten:

X = 10 + 5
print(x) # Fehler: kleines "x" gibt es nicht!

30

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Ein weiterer Laufzeitfehler könnte wie folgt aussehen

print(Hello, World)

In diesem Fall wollte der Autor des Codes den Text "Hello, World" auf die Konsole drucken, hat
jedoch die Anführungszeichen vergessen. Dies führt dazu, dass der Code die Variablen Hello und
World drucken will, die es jedoch nicht gibt.

EDIT Aufgabe 3.17

Führen Sie alle obigen Beispiele in VS Code aus und beobachten Sie die Fehlermeldungen.
Verstehen Sie, was mit den Fehlermeldungen gemeint ist?

3.7.3 Semantische Fehler

Semantische Fehler sind Logik-Fehler, also Fehler aufgrund der Tatsache, dass die Programmiererin
Denkfehler beim Schreiben gemacht hat. In diesem Fall gibt der Code zwar keine Fehlermeldung
aus, die Ausgabe des Codes entspricht jedoch nicht dem erwarteten Resultat. Beispielsweise könnte
folgender Code zu einem unerwarteten Resultat führen:

mittelwert = 3 + 13 / 2
print(mittelwert) # 9.5

Das Resultat sollte 8 sein, denn der Mittelwert von 3 und 13 ist (3 + 13)/2 = 8 und nicht etwa
3 + 13/2 = 9.5. Der Fehler hat damit zu tun, dass der Programmierer vergessen hat, Klammern zu
setzen. Korrekt wäre folgendes Beispiel:

mittelwert = (3 + 13) / 2
print(mittelwert) # 8

3.7.4 Debugging-Strategien

Einige Strategien, um fehlerhaften Code zu beheben, sind:

1. Lesen Sie Fehlermeldungen aufmerksam und versuchen sie zu verstehen, woher diese stammen
könnten. Auch die Zeilenangaben sind dabei sehr hilfreich.

2. Brechen Sie ihren Code in einzelne Teile auf. Geben Sie Zwischenresultate auf der Konsole
aus, indem Sie print-Befehle verwenden — dies kostet Sie nichts.

3. Rechnen Sie einige Beispiele von Hand aus, sofern der Code etwas Komplexeres berechnet.
4. Testen Sie Ihren Code mit (extremen oder besonderen) Testfällen, also anderen Werten für

Ihre Variablen.

EDIT Aufgabe 3.18

Um welche Art von Fehler handelt es sich im Code aus Aufgabe 3.2?

31

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

3.8 Weitere Aufgaben

Trophy Aufgabe (Challenge) 3.19

Berechnen Sie die ersten 8 Zahlen der Fibonacci-Zahlenserie, welche wie folgt aussieht:

0, 1, 1, 2, 3, 5, 8, 13, . . .

Dabei ist jede Zahl die Summe ihrer beiden Vorgänger in der Folge. Die ersten zwei Glieder
0 und 1 der Folge sind vorgegeben.

Verwenden Sie dazu eine for-Schleife sowie drei Variablen.

Zeichnen Sie danach mit der Turtle eine Spirale, bestehend aus 8 Viertelkreisen, welche als
Radiusa jeweils das Zehnfache der zuletzt berechneten Fibonacci-Zahl 1, 2, 3, 5, 8, 13, . . . ha-
ben.

Die Spirale sollte folgendermassen aussehen:

Abbildung 3.1: Fibonacci-Spirale

aNatürlich zeichnen wir hier regelmässige Polygone und keine Kreise.

32

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Kapitel 4

Funktionen

4.1 Eigene Funktionen in Python definieren
Sie kenne bereits die Funktionen print sowie t.forward und haben diese auch schon mehrmals
selbst verwendet. In diesem Kapitel werden Sie lernen, wie Sie eigene Funktionen in Python de-
finieren und schliesslich sinnvoll verwenden können. Funktionen helfen enorm dabei, Programme
leserlicher, kürzer, effizienter und wartbarer zu machen. Funktionen sind deshalb aus modernen
Programmen kaum wegzudenken sind.

Beispiel 4.1:
Wir betrachten nochmals den Code aus Challenge 2.4:

import turtle as t

for _ in range(10):
zeichne ein Viereck
for _ in range(4):

t.fd(100)
t.rt(360 / 4)

leichte Rechtsdrehung
t.rt(360 / 10)

Turtle-Zeichnung stehen lassen
t.done()

Programm 4.1: blume.py

Die Blume entsteht durch das wiederholte Zeichnen eines Quadrats, wobei sich die Turtle
nach jedem gezeichneten Quadrat um 36 Grad rotiert. Wir könnten den Code leserlicher
machen, indem wir zunächst eine Funktion quadrat() definieren, welche lediglich ein Quadrat
zeichnet. Danach definieren wir eine weitere Funktion quadrat_blume, welche die Funktion
quadrat insgesamt 10 Mal aufrufen wird:

33

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

1 import turtle as t
2

3 def quadrat():
4 for _ in range(4):
5 t.fd(100)
6 t.rt(360/4)
7

8 def quadrat_blume():
9 for _ in range(10):

10 quadrat()
11 t.rt(360/10)
12

13 quadrat_blume()
14

15 t.done()

Aufruf

Aufruf

Die Erstellung der Definitionen einer Funktion ist vergleichbar mit dem Verfassen eines Koch-
rezepts (oder eines Bauplans). Die Funktion beschreibt dabei einen Programmablauf, also
ein „Rezept“. Die alleinige Existenz eines Kochrezepts führt natürlich nicht zu einem fertigen
Gericht. Dieses entsteht erst bei der Ausführung des Rezepts. Genauso hat in Python die
Definition noch keinen Effekt. Der Effekt (die Wirkung der Funktion) erfolgt erst bei ihrem
Aufruf (in dem obigen Beispiel erfolgen solche Funktionsaufrufe in den Zeile 10 und 13).

Übersicht 4.1:
Innerhalb des eingerückten Bereichs unter def wird eine Wirkung definiert. Diese Wirkung
wird aber erst ausgelöst, wenn die Funktion aufgerufen (und somit der Code ausgeführt)
wird!
Das Schreiben von Definitionen hat mehrere Vorteile:

• Der Code wird modular: Man kann nun einfachere Funktionen schreiben, wie bei-
spielsweise quadrat(), und komplexere Funktionen, die Unter-Funktionen aufrufen, wie
beispielsweise quadrat_blume(). Auf diese Weise wird ein komplexer Code in einzelne,
einfachere Teile (Module) unterteilt.

• Der Code wird übersichtlicher: Jede Teil-Aktivität ist eine Funktion
• Falls das komplexere Programm nicht das gewünschte Resultat liefert, können wir es

debuggen, indem wir die einfacheren Funktionen zuerst aufrufen und sicherstellen, dass
diese richtig funktionieren.

Beispiel 4.2:
Die folgende Gegenüberstellung illustriert, wie Funktionen dabei helfen, Programme über-
sichtlicher zu machen und Struktur in den Code zu bringen:

34

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

import turtle as t

for _ in range(10):
for _ in range(4):

t.fd(100)
t.rt(360 / 4)

t.fd(360 / 10)

t.done()

import turtle as t

def quadrat():
for _ in range(4):

t.fd(100)
t.rt(360 / 4)

def quadrat_blume():
for _ in range(10):

quadrat()
t.rt(360/10)

quadrat_blume()

t.done()

Abbildung 4.1: Vergleich von Schleifen mit Funktionsdefinitionen

Tipps für das Schreiben von Funktionen:

• Der Name einer Funktion sollte selbsterklärend und beschreibend sein. Im Idealfall lässt der
Name der Funktion schon viel über ihren Effekt erahnen. Beispielsweise ist der Funktionsname
quadrat viel beschreibender als ein nichtssagender Name wie zum Beispiel f.

• Etwas komplexere Tätigkeiten sollten jeweils als eine Funktion definiert werden und damit
einen Namen erhalten. So kann beispielsweise das Zeichnen eines Quadrats in einer Funktion
quadrat definiert werden, während das Zeichnen einer Blume in der Funktion quadrat_blume
definiert wird. Diese Funktion kann dann wiederum die Funktion quadrat aufrufen.

EDIT Aufgabe 4.1

Führen Sie den folgenden Code zuerst aus und betrachten Sie das Resultat. Schreiben Sie
den Code um, indem Sie zwei Funktionen schreiben:

1. viertelkreis
2. abgerundetes_quadrat

import turtle as t

for _ in range(4):
for _ in range(9):

t.fd(4)
t.lt(10)

t.fd(100)

35

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 4.2

Packen Sie Ihre Lösung aus Aufgabe 2.1 in eine Funktion mit dem Namen haus. Testen
Sie zunächst, ob die Funktion wirklich das gewünschte Resultat liefert (ein einzelnes Haus),
indem Sie die Funktion aufrufen. Schreiben Sie dann eine zweite Funktion haeuserreihe,
welche eine Häuserreihe aus 5 Häusern zeichnet, indem haus fünfmal aufgerufen wird.

Ihr Code sollte folgendes Bild ausgeben:

4.2 Parameter
Stellen Sie sich vor, sie wollen drei unterschiedlich grosse Quadrate zeichnen. Sie könnten folgender-
massen vorgehen:

import turtle as t

def quadrat50():
for _ in range(4):

t.fd(50)
t.rt(90)

def quadrat100():
for _ in range(4):

t.fd(100)
t.rt(90)

def quadrat150():
for _ in range(4):

t.fd(150)
t.rt(90)

quadrat50()
quadrat100()
quadrat150()

Programm 4.2: squares_noparams.py

Das ging gerade noch! Was jedoch, wenn Sie 20 unterschiedlich grosse Quadrate zeichnen wollen?
Brauchen Sie dann 20 Definitionen? Zum Glück nicht, wie Beispiel Beispiel 4.3 zeigt.

Beispiel 4.3:
Folgendes Beispiel verwendet einen Parameter laenge, um die Länge des Quadrats jedes Mal

36

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

anzupassen:

1 import turtle as t
2

3 def quadrat(laenge):
4 for _ in range(4):
5 t.fd(laenge)
6 t.rt(90)
7

8 quadrat(50)
9 quadrat(100)

10 quadrat(150)

Übergaben

Funktionen können mehrere (oder auch gar keine) Parameter haben. Ersteres ist besonders nützlich,
wenn Sie eine Funktion schreiben wollen, die mehrere Werte benötigt, um ihre Aufgabe zu erfüllen.
Zum Beispiel könnte eine Funktion, die ein Vieleck zeichnet, sowohl die Anzahl der Ecken als auch
die Farbe des Vielecks benötigen.

Beispiel 4.4:
In folgendem Beispiel kann nicht nur die Anzahl Ecken, sondern auch die Farbe eines Vielecks
übergeben werden.

import turtle as t

def farb_vieleck(ecken, farbe):
t.color(farbe)
for _ in range(ecken):

t.fd(50)
t.rt(360 / ecken)

farb_vieleck(3, "red")
farb_vieleck(6, "green")
farb_vieleck(4, "blue")

t.done()
Programm 4.3: farb_vieleck.py

37

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Übersicht 4.2 (Nomenklatur bei Python-Funktionen):
Wir haben in diesem Kapitel mehrere wichtige Begriffe im Zusammenhang mit Funktionen
in Python kennengelernt. Diese Begriffe wollen wir hier anhand eines Beispiels übersichtlich
darstellen:

def produkt(x, y):
print(x * y)

produkt(5, 3)

Name der Funktion : produkt
Das ist der Name (Bezeichner) der Funktion, mit dem sie definiert und aufgerufen wird.

Parameter der Funktion : x, y
Das sind die Platzhalter in der Funktionsdefinition, die beim Aufruf der Funktion mit
Werten (Argumenten) belegt werden.

Argumente der Funktion : 5, 3
Das sind die tatsächlichen Werte, die beim Aufruf an die Funktion übergeben werden.

Funktionsaufruf : produkt(5, 3)
Das ist der Ausdruck, mit dem die Funktion ausgeführt wird.

Funktionssignatur : produkt(x, y)
Das ist die Kombination aus dem Funktionsnamen und der Parameterliste, also wie die
Funktion definiert ist und wie sie verwendet werden soll.

Körper der Funktion : print(x * y)
Der Anweisungsblock innerhalb der Funktion. Er definiert, was die Funktion macht.

Die allgemeine Form einer Funktion in Python sieht also so aus:

Definition einer Funktion
def funktionsname(parameter1, parameter2, ...):

Körper der Funktion
...

Funktionsaufruf
funktionsname(argument1, argument2, ...)

EDIT Aufgabe 4.3

Ändern Sie den Code aus Beispiel 4.4 so ab, dass zusätzlich zur Farbe und der Anzahl Ecken
auch noch die Stiftdicke für jedes Vieleck verändert werden kann. Verwenden Sie dazu einen
weiteren Parameter sowie die Funktion t.width.

38

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 4.4

Erstellen Sie die Funktionen mit den folgenden Signaturen:

• def summiere(x1, x2): Berechnet die Summe der zwei Parameter x1 und x2 und gibt
das Resultat mittels print auf der Konsole aus.

• def summe_quadrate(x, y): Berechnet die Summe x2+y2 und gibt diese mittels print
auf der Konsole aus.

4.2.1 Lebensdauer (scope) einer Variable

Im Code aus Beispiel 4.3 wird bei jedem Aufruf der Definition quadrat eine neue Variable laenge
erstellt, welche nur innerhalb der Funktion existiert und welche jedes Mal einen anderen Wert hat.
Den Wert erhält die Variable zum Zeitpunkt des Aufrufs der Funktion, also auf den Zeilen 8, 9 und
10!

Die Variable laenge existiert also nur innerhalb der Definition quadrat. Wenn wir nach Zeile 6
im Hauptprogramm (nicht eingerückt) den Befehl print(laenge) eingeben würden, würden wir
eine Fehlermeldung erhalten, da es die Variable nicht mehr gibt. Parameter sind also immer lokale
Variablen, ebenso wie Variablen, welche wir innerhalb von Funktion erstellen. Diese Variablen
„sterben“ nach Ausführung der Definition, daher spricht man auch von der Lebensdauer einer
Variable, bzw. von deren Reichweite (Englisch: scope)

Variablen, welche im Hauptprogramm (nicht eingerückt) erstellt werden, sind sogenannte globale
Variablen.

EDIT Aufgabe 4.5

Beschreiben Sie, welche der Variablen im unten stehenden Code lokal oder global sind, und
welche Variablen auch Parameter sind. Sie sollten insgesamt 5 Variablen finden!

import turtle as t
import math

def haus(laenge):
anzahl_mauern = 4
Mauern
for _ in range(anzahl_mauern):

t.fd(laenge)
t.lt(90)

Bewegung zu Dach hin
t.lt(90)
t.fd(laenge)

Dach
t.rt(45)
t.fd(laenge / math.sqrt(2))
t.rt(90)
t.fd(laenge / math.sqrt(2))
t.rt(45)

39

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

t.fd(laenge)
t.lt(90)

def haeuserreihe(laenge_pro_haus):
anzahl_haeuser = 5
for _ in range(anzahl_haeuser):

haus(laenge_pro_haus)

seitenlaenge = 50
haeuserreihe(seitenlaenge)

Zeichnung stehen lassen
t.done()

Programm 4.4: houses.py

EDIT Aufgabe 4.6

Was könnte der Vorteil von lokalen Variablen sein?

4.3 Werte zurückgeben mit return

4.3.1 Einzelne Funktionen

Wie Sie bereits wissen, können Definitionen mit Kochrezepten verglichen werden: Sie beschreiben
einen Ablauf, ohne diesen auszuführen. Damit der Code einer Funktion ausgeführt wird, müssen Sie
die Definition aufrufen: In Beispiel 4.4 wurde dies beispielsweise mit farb_vieleck(3, "red")
gemacht. Erst aufgrund dieser Zeile wurde etwas gezeichnet!

Dies kann nützlich sein, wenn sie eine Aufgabe mehrmals und in unterschiedlichen Varianten aus-
führen wollen, wie beispielsweise in Beispiel 4.4.

Eine wichtige Limitation von Definitionen war bisher, dass Sie zwar Dinge berechnen und auf der
Konsole drucken konnten, allerdings verschwinden alle Parameter und lokalen Variablen nach der
Ausführung einer Funktion. Dies bedeutet, dass alle Variablen, die wir je in einer Definition erstellt
haben, nur in dieser Definition „lebten“. Wir konnten jedoch nicht mehr auf Parameter oder lokale
Variablen zugreifen, nachdem das Programm beendet wurde.

Beispiel 4.5:
Betrachten Sie folgenden Code. Weshalb führt er zu einer Fehlermeldung?

1 def summiere(x1, x2):
2 summe = x1 + x2
3

4 summiere(3, 5)
5 print(summe)

Die Konsole gibt folgende Meldung aus: [Zeile: 5] NameError: name 'summe' is not

40

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

defined. Dies bedeutet, dass die Variable summe auf Zeile 5 nicht existiert. Die Fehlermeldung
erklärt sich dadurch, dass alle Variablen, die innerhalb einer Definition erstellt werden, nur
innerhalb dieser Definition „leben“, also existieren. Dass Variablen mittels dem Befehl return
auch an das Hauptprogramm „zurückgegeben“ werden können, lernen wir in diesem Kapitel.

Funktionen können jedoch auch Werte an das Hauptprogramm zurückgeben: In diesem Kapitel
lernen wir, wie Funktionen, ähnlich wie „Sous-Chefs“ (Hilfs-Köche) in einer komplexen Küche Zu-
taten (Parameter) entgegennehmen und Resultate an andere „Sous-Chefs“ (Funktionen) via das
Hauptprogramm weitergeben werden können.

Eine Funktion kann man sich vorstellen wie ein Kochrezept, das einige Zutaten entgegennimmt
und ein Resultat (Gericht) zurückgibt. Die Zutaten, oder „Inputs“, werden dabei häufig als „Pa-
rameter“ bezeichnet, währenddem das fertige Gericht, oder „Resultat“ häufig als „return-Wert“
bezeichnet wird. Diese Idee ist in Abbildung 4.2) veranschaulicht.

x1 x2
ou
t1

def a1(x1, x2, ...)

3 12 36

Abbildung 4.2: Illustration einer Funktion mit Inputs (Parametern) und Outputs (return-Wert)

Beispiel 4.6:
Betrachten Sie nochmals den folgenden, leicht modifizierten Code aus Beispiel 4.5. Wenn
wir den Wert mit return an das Hauptprogramm zurückgeben und in einer Variable (im
Hauptprogramm, auf Zeile 5) abspeichern, funktioniert der Code nun: Wir können auch aus-
serhalb der Funktion summiere() auf einen Wert zugreifen, welcher innerhalb der Definition
berechnet wurde, und diesen potentiell weiterverwenden.

1 def summiere(x1, x2):
2 summe = x1 + x2
3 return summe
4

5

6

7 res=summiere(3, 5)
8 print(res)

Wert an das Hauptprogramm zurückgeben...

... und Wert in Variable speichern, z.B. res

41

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Exclamation-Triangle Achtung

Wichtiger Hinweis 4.1:
Man muss sich diesen Code wie folgt vorstellen: Auf Zeile 7 wird die Funktion summiere
aufgerufen, die Werte 3 und 5 werden für die Parameter x1 und x2 übergeben. Zeile
2 berechnet nun die Summe dieser beiden Werte. Auf Zeile 3 wird nicht die Variable
summe an das Hauptprogramm zurückgegeben, sondern deren Wert (in diesem Fall:
8). Dies ist sehr wichtig: Nur weil wir return summe schreiben, heisst dass nicht,
dass wir ausserhalb der Funktion summiere auf eine Variable summe zugreifen können.
Vielmehr kann man sich vorstellen, dass der blau markierte Bereich auf Zeile 7 nun
„ersetzt“ wird durch den Wert 8, welcher vom Unterprogramm an das Hauptprogramm
zurückgegeben wird. Zeile 7 liest sich also nach der Ausführung des Unterprogramms
so als ob man res = 8 geschrieben hätte. Man könnte selbstverständlich auch einen
anderen Variablenname statt res auswählen, z.B. x, y, resultat (kurz res) oder
einfach summe. In letzterem Falle wäre summe auf Zeile 7 eine globale Variable und
somit gänzlich unterschiedlich von der lokalen Variable summe auf Zeile 2.

EDIT Aufgabe 4.7

Gegeben seien die Höhe h und die Grundseite b eines Dreiecks. Schreiben Sie eine Funkti-
on flaeche_dreieck(h, b), welche den Flächeninhalt dieses Dreiecks berechnet und mit
return zurückgibt. Testen Sie die Funktion mit den Werten h=5 und b=10, speichern Sie das
Resultat in einer Variable result und geben Sie deren Wert per print nach dem Funktions-
aufruf (im Hauptprogramm) aus.

Überprüfen Sie die Korrektheit Ihrer Funktion, indem Sie sie auf Moodle hochladen.

EDIT Aufgabe 4.8

Geben sei eine ganze Zahl n. Schreiben Sie eine Funktion square(n), welche das Quadrat von
n berechnet und mit return zurückgibt. Testen Sie die Funktion mit dem Wert 5, speichern
Sie das Resultat in einer Variable result und geben Sie deren Wert per print nach dem
Funktionsaufruf (im Hauptprogramm) aus.

Überprüfen Sie die Korrektheit Ihrer Funktion, indem Sie sie auf Moodle hochladen.

EDIT Aufgabe 4.9

In welchen Fällen ist es sinnvoller, einen Wert einfach per print auf der Konsole auszugeben,
und wann ist ein return-Befehl sinnvoller? Ist das Zurückgeben des Werts in Aufgabe 4.8
und Aufgabe 4.7 sinnvoll, oder würde hier auch ein print reichen?

4.3.2 Mehrere Funktionen

Wie Sie in Aufgabe 4.9 gesehen haben, ist ein return in vielen Fällen nicht notwendig, ein einfa-
ches print reicht in vielen Fällen aus. Wozu kann ein return eigentlich nützlich sein? Wenn Sie
Code schreiben, wird dieser oftmals schnell komplizierter. Somit kann es hilfreich sein, die einzelnen
Schritte in Unter-Programme aufzuteilen. Dies erleichtert zudem die Modularisierung und Wie-
derverwendbarkeit von Code: Beispielsweise könnte eine Funktion, die das Maximum einer Liste

42

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

berechnet, an verschiedenen Orten in einem längeren Programm mehrmals zum Einsatz kommen

Zum Vergleich: stellen Sie sich vor, Sie arbeiten in einer edlen Michelin-Sterne-Küche an einem
raffinierten Gericht, in das viele Arbeitsschritte involviert sind. Häufig müssen in solchen Restaurants
bis zu 200 Schritte pro Gericht ausgeführt werden. Daher könnte es sinnvoll sein, einzelne Aufgaben,
wie beispielsweise die Herstellung der Saucen, an Ihre Sous-Chefs zu delegieren, und eine Person
zu bestimmen, die das ganze Gericht zusammenfügt. Häufig werden Funktionen genau mit solchen
komplexen Aufgaben im Hinterkopf geschrieben. Diese Idee ist in Abbildung 4.3 illustriert.

x1 x2
ou
t1

def a1(x1, x2, ...)

3 12 36

x1 x2 x3
ou
t2

def a2(x1, x2, x3, ...)

x1 x2
ou
t3

def a3(x1, x2, ...)

return out1

Abbildung 4.3: Illustration einer Code-Struktur, bei welcher mehrere Funktionen zusammenarbeiten

In Abbildung 4.3 haben wir eine Funktion a1, die zwei Parameter entgegennimmt (x1 und x2). Mit
diesen Parametern macht sie etwas (z.B. die Summe berechnen, ein Quadrat zeichnen oder irgend
eine sonstige Aufgabe) und gibt danach einen neuen, berechneten Wert a1 zurück. Dieser kann im
Hauptprogramm abgespeichert und an andere Funktionen weitergegeben werden, beispielsweise an
die Funktion a3.

Beispiel 4.7:
Stellen Sie sich vor, Sie arbeiten für einen Supermarkt und sollten den Preis Ihrer Produkte
berechnen. Sie kaufen Ihre Artikel bei einem Grossverteiler ein, daher erhalten Sie auf alle
Produkte 10 % Rabatt. Der Grossverteiler befindet sich im Ausland, Sie müssen also noch 7
% Mehrwertsteuer hinzufügen. Der Grossverteiler gibt Ihnen den Original-Preis Ihrer Waren
vor Rabatt und vor Mehrwertsteuer.

Folgender Code berechnet den Endpreis, für den Sie ihre Waren verkaufen werden, indem
folgende zwei Funktionen aufgerufen werden:

1. berechne_rabatt berechnet den Preis nach Abzug eines Rabatts für ein Produkt.
2. berechnet_gesamtpreis ruft berechne_rabatt auf und fügt zum rabattierten Preis

die Mehrwertsteuer hinzu.

43

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

def berechne_rabatt(preis, rabatt_prozent):
rabatt = preis * (rabatt_prozent / 100)
return preis - rabatt # Gibt den Preis nach Abzug des Rabatts zurück

def berechne_gesamtpreis(preis, rabatt_prozent, mwst_prozent):
rabattpreis = berechne_rabatt(preis, rabatt_prozent)
mwst = rabattpreis * (mwst_prozent / 100)
return rabattpreis + mwst # Gibt den Gesamtpreis inklusive Mwst. zurück

Anwendung
preis = 100 # Basispreis in CHF
rabatt_prozent = 10 # Rabatt in %
mwst_prozent = 7.7 # Mehrwertsteuer in %

endpreis = berechne_gesamtpreis(preis, rabatt_prozent, mwst_prozent)
print("Der Endpreis nach Rabatt und Mehrwertsteuer ist:", endpreis)

Wert zurückgeben (und speichern)

Wert zurückgeben (und speichern)

Mit folgendem Code können wir die Turtle eine Spirale aus mehreren Vielecken zeichnen lassen:

import turtle as t

don't show turtle moving
t.tracer(False)

def vieleck(umfang, ecken):
for _ in range(ecken):

t.fd(umfang / ecken)
t.rt(360 / ecken)

def vieleck_muster(umfang, ecken):
for _ in range(60):

vieleck(umfang, ecken)
t.rt(6)
umfang -= 10

vieleck_muster(600, 36)
t.done()

Programm 4.5: spirale_kreis.py

Beispiel 4.8:
Leider ist unsere Turtle etwas müde und sollte nicht zu viel laufen. Daher möchten wir

44

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

fortlaufend die Gesamtdistanz berechnen, um am Ende herauszufinden, ob unsere Turtle
zu viel Strecke zurückgelegt hat. Dies können wir tun, indem wir die Funktion einen Wert
zurückgeben lassen:

import turtle as t

def vieleck(umfang, ecken):
for _ in range(ecken):

t.fd(umfang/ecken)
t.rt(360/ecken)

def vieleck_muster(umfang, ecken):
gesamtdistanz=0
for _ in range(60):

vieleck(umfang, ecken)
gesamtdistanz+=umfang
umfang-=10
t.rt(10)

return gesamtdistanz

gesamtdistanz = vieleck_muster(600,35)
print(gesamtdistanz)

EDIT Aufgabe 4.10

Schreiben Sie eine Python-Funktion def notenskala(maxPunkte, erreichtePunkte), wel-
che die erreichte Note in Abhängigkeit der maximal möglichen Punktzahl und der erreichten
Punktzahl berechnet und per return zurückgibt. Verwenden Sie dafür die folgende Formel:

note = erreichtePunkte
maxPunkte

· 5 + 1

EDIT Aufgabe 4.11 Formel 1

Ein Formel-1-Auto fährt eine bestimmte Strecke in einer bestimmten Zeit. Schreiben Sie eine
Funktion durchschnittsgeschwindigkeit(strecke_km, zeit_min), die Strecke in Kilo-
metern und Zeit in Minuten als Eingabe erhält und die durchschnittliche Geschwindigkeit in
km/h per return zurückgibt.

Formel: Durchschnittsgeschwindigkeit = Strecke (km) / Zeit (h)

45

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 4.12 Boxenstopp

Ein Formel-1-Rennteam möchte die Gesamtzeit eines Rennens inklusive Boxenstopps berech-
nen. Gegeben sind die Gesamtstrecke in Km, die Durchschnittsgeschindigkeit in Km/h, die
Anzahl Stopps sowie die Dauer pro Stopp in Sekunden.

Schreiben Sie zwei Funktionen:

def fahrzeit_ohne_stopps(strecke, kmh): Berechnet die reine Fahrzeit in Sekunden und
gibt diese per return zurück.

def gesamtzeit(strecke, kmh, stopps, stoppdauer): Berechnet zuerst die Fahrzeit oh-
ne Stopps (mit der ersten Funktion) und berechnet dann die Gesamtzeit mit Stopps, indem
zur Fahrzeit ohne Stopps die Anzahl Boxenstopps mal die Dauer eines Boxenstopps (in Se-
kunden) hinzugefügt wird. Das Resultat soll ebenfalls per return zurückgegeben werden.

Formel 1: Fahrzeit (Sekunden) = Strecke (Km) / Geschindigkeit (Km/h) * 3600

Formel 2: Gesamtzeit (Sekunden) = Fahrzeit + (Anzahl Stopps × Stoppdauer)

Tipp 1: Schreiben Sie den Code zuerst in VS Code und testen sie ihn erst nachher auf
Moodle.

Tipp 2: Schreiben Sie zuerst die erste Funktion und testen Sie diese mit folgenden Testwerten:
Geschwindigkeit = 210 km/h, Strecke = 305 km. Das Resultat sollte sein: 5228.57 Sekunden.
Schreiben Sie erst danach die zweite Definition, und rufen Sie darin die erste Definition auf.

46

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

4.4 Weitere Aufgaben

47

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 4.13

Sie wollen ein Haus in der Schweiz kaufen. Der Kaufpreis beträgt k Franken. Sie kaufen das
Haus mit E Franken Ihres gesparten Geldes (Eigenkapital) und der Restbetrag wird durch
die Aufnahme einer Hypothek von h := k − E Franken gedeckt.

Die Tragbarkeitsrechnung in der Schweiz prüft, ob die Kosten einer Immobilie langfristig fi-
naziell tragbar (bezahlbar) sind. Banken und andere Kreditinstitute verwenden diese (sehr
grobe) Berechnung, um sicherzustellen, dass Sie Ihre Hypothek auch dann noch bezahlen
könnten, falls die Zinsen steigen würden. Als Faustregel gilt, dass die jährlichen (kalkula-
torischena) Wohnkosten nicht mehr als 1/3 Ihres Bruttojahreseinkommens (b) ausmachen
dürfen.

Die kalkulatorischen jährlichen Wohnkosten setzten sich als die Summe der folgenden drei
Positionen zusammen:

• Kalkulatorischer Zins: 5 Prozent des Hypothekenbetrags h, also 5 Prozent von k − E
• Nebenkosten: 1 Prozent des Kaufpreises k
• Amortisation: Falls die aufgenommene Hypothek grösser als 2/3 des Kaufpreises k ist,

muss der darüberliegende Betrag h − (2/3)k nach 15 Jahren zurückbezahlt sein. Die
Bank rechnet also hierführ mit jährlichen Kosten a für die Amortisation von

a := h − (2/3)k
15 = (k − E) − (2/3)k

15
und mit a := 0, falls die Hypothek 2/3 des Kaufpreises nicht übersteigt.

Zusammengefasst muss also die Ungleichung
Brutto-Jahreseinkommen

3 ≥ Kalkulatorischer Zins + Nebenkosten + Amortisation

oder anderst geschrieben

b/3 ≥ 0.05(k − E) + 0.01k + max {0, (k/3 − E)/15}

erfüllt sein. Wir wollen unsere Berechnung möglichst allgemein halten und ersetzen die kal-
kulatorische Hypothekenrate von 0.05 durch die positive Variable α und die kalkulatorische
Nebenkostenrate 0.01 durch die positive Variable β:

b/3 ≥ α(k − E) + βk + max {0, (k/3 − E)/15} . (4.1)

Nun gibt es für den Kaufpreis k noch eine weitere Zusatzbedingung: Der Kaufpreis darf
nicht höher sein als das Fünffache des Eigenkapitals.

1. Lösen Sie die Ungleichung nach k auf. Natürlich wird k abhängig sein von E, b, α und
β.

2. Schreiben Sie eine Funktion max_kaufpreis(E, b, alpha, beta), welche für gegebe-
ne Werte von E, b, α und β den maximal tragbaren Kaufpreis berechnet und mit return
zurück gibt.

3. Geben Sie eine Formel für das maximal tragbare k in Excel an, falls E in A1, b in A2,
α in A3 und β in A4 gespeichert sind.

aDer Begriff Kalkulatorisch bedeutet in diesem Zusammenhang, dass dieser Betrag nach bestimmten Vorgaben
berechnet wird und überhaupt nicht den tatsächlichen Kosten entsprechen muss.

48

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Kapitel 5

Verzweigungen und bedingte Schleifen

5.1 Verzweigungen mit if, elif und else

In vielen Fällen möchten wir Code nur Ausführen, falls eine gewisse Bedingung wahr ist: beispiels-
weise möchte ein Arzt nur dann eine Warnung erhalten, wenn der Blutdruck eines Patienten zu
hoch ist, oder ein selbstfahrendes Auto sollte nur dann piepsen, wenn der Fahrer nicht aufmerksam
auf die Strasse schaut. Um solche konditionale (bedingte) Logik zu programmieren, können wir die
Begriffe if („falls“), elif („sonst falls“) und else („in allen anderen Fällen“) verwenden.

5.1.1 Verzweigungen mit if

Beispiel 5.1:
Folgendes Beispiel führt nur zu einem Output, falls eine Temperatur von 30 Grad oder mehr
eingegeben wird.

def beschreibe_wetter(temperatur):
if temperatur >= 30:

print("Es ist heiss")

beschreibe_wetter(33)
Programm 5.1: ex_if.py

Der Code kann folgendermassen als Fluss-Diagramm aufgezeichnet werden (siehe Abbil-
dung 5.1). Auf dem Flussdiagramm werden die einzelnen Schritte des Codes als Boxen dar-
gestellt. Die Boxen sind durch Pfeile verbunden, die den Fluss des Codes darstellen. Die
Entscheidungspunkte sind durch Rauten dargestellt, und die Pfeile zeigen, welche Aktion
ausgeführt wird, je nachdem, ob die Bedingung wahr oder falsch ist.

49

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

beschreibe_wetter(33)

temperatur >= 30 print("Es ist heiss")
True

False

Abbildung 5.1: Flussdiagrammm für den Code aus Beispiel 5.1

Dabei bezeichnen blaue, rechteckig-abgerundete Boxen eine Zeile Code, grüne, rauteförmige
Formen einen Test der schwarze Punkt das Programmende. Wenn immer eine Verzweigung
vorliegt, geht der Pfeil für True nach links, der Pfeil für False geht nach rechts

Nach jedem if steht ein logischer Ausdruck oder ein logischer Wert.

Definition 5.1:
Logische Ausdrücke, auch Boolsche Ausdrücke sind Ausdrücke, die genau zwei verschie-
dene Werte annehmen können: entweder wahr (True) oder falsch (False). Beispiele sind:

3 == 5 # gibt den Wert False zurück
(9 + 3) < (2 * 8) # gibt den Wert True zurück

Wie Sie im obigen Beispiel sehen, wird von einem Wahrheitstest ein Wert zurückgegeben:
entweder der Wert True (Wahr) oder False (Falsch).

Mögliche logische Relationen sind in Tabelle 5.1 abgebildet.

Python Mathematische Bedeutung

== gleich (=)
!= ungleich (6=)
< kleiner (<)
<= kleiner oder gleich (≤)
> grösser (>)
>= grösser oder gleich (≥)

Tabelle 5.1: Logische Relationen und Schreibweise in Python

Logische (oder auch bool’sche) Audrücke wie z.B. 3 < 45 führen zu einem Bool’schen Wert,
also einem Wahrheitswert, welcher entweder den Wert True (wahr) oder False (falsch) hat.

Die typische Verwendungsart logischer Ausdrücke ist in folgendem Code abgebildet:

if BOOLSCHER_WERT:
dieser Code wird nur dann ausgeführt, wenn BOOLSCHER_WERT wahr (True)
ist.

50

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 5.1

Entwickeln Sie eine Funktion def quadrat(laenge) zum Zeichnen von Quadraten. Der Be-
fehl soll aber nur etwas zeichnen, wenn die Seitenlänge mindestens 40 beträgt. Zeichnen Sie
sich zuerst ein Flussdiagramm des Codes auf Papier auf.

EDIT Aufgabe 5.2

Entwickeln Sie ein Programm, das dem Benutzer im Rahmen einer interaktiven Fragerunde
drei Fragen stellt (mit dem Befehl input("...")).

Das Programm soll die Anzahl der richtigen Antworten zählen und diese Anzahl ausgeben.

Zur Erinnerung: input("Frage") gibt den Text "Frage" auf dem Bildschirm aus und
wartet auf eine Eingabe des Benutzers. Um die Antwort zu speichern, muss der Befehl in eine
Variable gespeicher werden. Zum Beispiel:

name = input("Wie heisst du?")
print("Hallo " + name)

Die Eingabe eines input("...")-Befehls wird immer als Text zurückgegeben, selbst wenn
eine Zahl eingetippt wird. Um die Eingabe als Zahl zu interpretieren, muss der Text in eine
Zahl umgewandelt werden. Dies geschieht mit dem Befehl int(input("Frage")). Beispiel:

age = int(input("Wie alt sind Sie?"))
print("Sie sind " + str(age) + " Jahre alt.")

Zeichnen Sie Ihre Lösung als Flussdiagramm des Codes auf Papier auf.

5.1.2 Verzweigungen mit if und else

Beispiel 5.2:
In folgendem Code wird mit dem else-Ausdruck ein Fall definiert, welcher ausgeführt wird,
sofern die if-Kondition nicht zutrifft.

def beschreibe_wetter(temperatur):
if temperatur >= 30:

print("Es ist heiss")
else:

print("Es ist kühl")

beschreibe_wetter(19)
Programm 5.4: ex_if_else.py

Beachten Sie, dass nach dem else kein logischer Ausdruck steht, da der Code unterhalb des
else nur dann stattfindet, wenn alle zuvor genannten Tests falsch waren.

Der Code kann ebenfalls als Fluss-Diagramm aufgezeichnet werden:

51

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

beschreibe_wetter(19)

temperatur >= 30 print("Es ist heiss")

print("Es ist kühl")

False

True

5.1.3 Verzweigungen mit if, elif und else

Beispiel 5.3:
Folgender Code führt eine von drei Möglichkeiten aus:

def beschreibe_wetter(temperatur):
if temperatur >= 30:

print("Es ist heiss")
elif temperatur >= 20:

print("Es ist warm")
else:

print("Es ist kühl")

beschreibe_wetter(19)
Programm 5.5: ex_if_elif_else.py

Der Code kann folgendermassen als Fluss-Diagramm aufgezeichnet werden:

52

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

beschreibe_wetter(19)

temperatur >= 30 print("Es ist heiss")

temperatur >= 20 print("Es ist warm")

print("Es ist kühl")

True

False

True

False

EDIT Aufgabe 5.3

Ein Bäcker möchte Kekse backen und gleichmässig in Keksdosen verpacken, so dass jede Dose
voll ist. Jede Dose fasst 12 Kekse. Schreibe ein Programm, das berechnet:

• Wie viele Dosen benötigt werden für n Kekse.
• Wie viele Kekse übrig bleiben.

Falls mehr als 500 oder weniger als 1 für n eingegeben werden, soll ausgegeben werden:

"Ungültige Anzahl Kekse!"

Verwenden Sie die Ganzzahldivision (//) und Modulo (%)! Zur Erinnerung: // gibt den ganz-
zahligen Teil der Division zurück, % gibt den Rest der Division zurück.

EDIT Aufgabe 5.4

Verwenden Sie einen input-Befehl, um den Benutzer nach einer Zahl n zu fragen.

1. Falls die Zahl n=1 eingegeben wird, soll ein blaues Viereck gezeichnet werden.
2. Falls eine Zahl n von 2 bis und mit 6 eingegeben wird, soll ein grünes Sechseck gezeichnet

werden.
3. Falls eine Zahl n von 7 oder grösser eingegeben wird, soll ein schwarzes n-Eck gezeichnet

werden.

53

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 5.5

Bei einer Flugreise darf der aufgegebene Koffer üblicherweise nicht schwerer sein als 20 kg.
Ansonsten bezahlt man einen Aufschlag von CHF 5.- pro kg Übergewicht.

Schreiben Sie ein Unterprogramm koffer(gewicht), der einen Parameter Gewicht entgegen-
nimmt und einen Text auf der Konsole druckt, je nach Fall:

• Wenn der Koffer über 100 kg wiegt, wird er nicht transportiert ("Der Koffer ist zu
schwer").

• Wenn der Koffer über 20 kg und bis und mit 100 kg wiegt, muss der Aufpreis berech-
net und ausgegeben werden (z.B. "Ihr Koffer hat X kg Übergewicht. Das kostet
(5*X).-").

• Wenn der Koffer über 0 kg und bis und mit 20 kg wiegt, muss kein Aufpreis bezahlt
werden und es wird gedruckt "Der Koffer ist gratis".

• In allen anderen Fällen soll ausgegeben werden Das eingegebene Gewicht ist nicht
zulässig (0, negative Zahlen etc.).

EDIT Aufgabe 5.6

Entwickeln Sie eine Funktion def vielecke_sicher(anzahl, seite) zum Zeichnen von re-
gelmässigen Vielecken mit wählbarer Anzahl Ecken und wählbarer Seitenlänge. Wenn anzahl
(die Anzahl der Ecken) kleiner als 1 ist, soll das Programm nichts tun. Wenn anzahl == 1
ist, soll das Programm "Es gibt kein 1-Eck" ausgeben. Wenn anzahl == 2 ist, soll das
Programm "Es gibt kein 2-Eck" ausgeben. Wenn anzahl >= 3 ist, soll das Programm das
anzahl-Eck mit Seitenlänge seite zeichnen. Zeichnen Sie auch das dazugehörige Flussdia-
gramm.

EDIT Aufgabe 5.7

Was gibt dieser Code aus? Ist die Ausgabe sinnvoll? Weshalb (nicht)?

def beschreibe_wetter(temperatur):
if temperatur >= 30:

print("heiss")
if temperatur >= 20:

print("warm")
else:

print("kühl")

beschreibe_wetter(33)
Programm 5.10: ex_if_if_else.py

54

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 5.8

Entwickeln Sie eine Funktion def quadgleich(a, b, c), welche quadratische Gleichungen
der Form ax2 + bx + c = 0 löst.

Zur Erinnerung: die Formel zur Berechnung der Lösungen ist:

x1,2 = −b ±
√

b2 − 4ac

2a
(5.1)

Der Befehl soll zuerst d = b2 −4ac ausrechnen und abhängig vom Wert von d keine, eine oder
zwei Lösungen ausgeben.

• Falls d < 0, gibt es keine reelle Lösung
• falls d = 0, gibt es genau eine reelle Lösung
• falls d > 0, gibt es genau zwei Lösungen

EDIT Aufgabe 5.9

Gegeben seien zwei Zahlen x1 und x2. Schreiben Sie eine Funktion maxzahl(x1, x2), welche
die grössere der beiden Zahlen mit return ausgibt. Wenn beide Zahlen gleich gross sind, soll
x2 ausgegeben werden.

Trophy Aufgabe (Challenge) 5.10 Dynamisches Schachbrett

Wir möchten ein quadratisches Schachbrettmuster mit n × n Feldern erzeugen, wobei n eine
gerade positive natürliche Zahl ist. Jedes der n2 Felder soll dabei eine Grösse von genau s × s
Zeichen haben (s ≥ 1). Die Zahl 1 repräsentiere die schwarzen Felder, die Zahl 0 die weissen
Felder.

Zusätzlich möchten wir wählen können, ob das linke obere Feld schwarz oder weiss sein
soll (upper_left = 'black' oder upper_left = 'white'). Folgende Beispiele zeigen die
entsprechenden Schachbrettmuster für verschiedene Wahlen der drei Parameter n, s und
upper_left:

Schachbrettmuster für n = 2, s = 3, upper_left = 'white'
000111
000111
000111
111000
111000
111000

Schachbrettmuster für n = 4, s = 1, upper_left = 'black'
1010
0101
1010
0101

Schachbrettmuster für n = 6, s = 2, upper_left = 'black'
110011001100
110011001100

55

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

001100110011
001100110011
110011001100
110011001100
001100110011
001100110011
110011001100
110011001100
001100110011
001100110011

Allgemein soll das Muster immer genau ns Zeichen breit und ebenso hoch sein. Schreiben Sie
ein Python-Programm, welches die drei oben beschriebenen Parameter akzeptiert und das
entsprechende Schachbrettmuster ausgibt.

5.1.4 Logische Ausdrücke miteinander verbinden: and und or

Häufig fällen wir im echten Leben Entscheidungen, welche nicht nur von einer Bedingung abhängen,
sondern gleich von mehreren, so zum Beispiel:

• Ich gehe per Fahrrad zur Schule, falls das Wetter schön ist und ich mich körperlich fit fühle.
• Ich esse etwas, falls ich Hunger habe oder ich Lust darauf habe (auch wenn ich keinen Hunger

habe).

Beim ersten Beispiel handelt es sich um eine Verbindung per „und“: beide Konditionen müssen wahr
sein, damit etwas geschieht. Dies kann in Python mit and (englisch für „und“) umgesetzt werden.

Beispiel 5.4:
Folgendes Beispiel illustriert, wie mehrere Bedingungen miteinander verknüpft werden kön-
nen:

temperature = 25 # aktuelle Aussen-Temperatur
fitness = 80 # körperliche Fitness (zwischen 0-100, subjektiv empfunden)
if (temperature > 20) and (fitness > 80):

print("Ich gehe per Fahrrad zur Schule!")

Beim zweiten Beispiel handelt es sich um eine Verbindung mehrerer Bedingungen per „oder“: es
reicht, dass eine von beiden Bedingungen wahr ist, damit etwas geschieht. Dies kann in Python
mittels dem Wort or (englisch für „oder“) umgesetzt werden.

Beispiel 5.5:
Folgendes Beispiel illustriert, wie mehrere Bedingungen miteinander verknüpft werden kön-
nen:

hunger = 25 # aktueller Hunger-Wert (zwischen 0-100, subjektiv empfunden)
lecker = 80 # wie lecker ist das Lebensmittel (Skala von 0 bis 100)?
if (hunger > 80) or (lecker > 80):

print("Ich will das essen!")

56

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 5.11

Schreiben Sie eine Funktion geschwindigkeit_angemessen(geschwindigkeit), welche als
Parameter geschwindigkeit eine Zahl entgegennimmt (z.B. 50 oder 120). Falls die Geschwin-
digkeit zwischen 30 und 100 km/h liegt (einschliesslich dieser Werte), soll auf der Konsole
ausgegeben werden: „Die Geschwindigkeit ist angemessen“. Ansonsten soll ausgegeben werden
„Die Geschwindigkeit ist nicht angemessen“. Verwenden Sie dazu den Ausdruck and.

EDIT Aufgabe 5.12

Schreiben Sie eine Funktion temperatur_ist_unangenehm(temperatur), welche einen Pa-
rameter temperatur als Zahl entgegennimmt. Falls die Temperatur kleiner als 10 Grad oder
grösser als 30 Grad ist, soll auf der Konsole ausgegeben werden: „Unangenehme Tempera-
tur“. Ansonsten soll ausgegeben werden: „Angenehme Temperatur“. Verwenden Sie dazu den
Ausdruck or.

EDIT Aufgabe 5.13

Entwickeln Sie eine Funktion def vieleck_kreis(anzahl_ecken, umfang), die ein Vieleck
zeichnet. Damit das Vieleck aussieht wie ein Kreis, soll es nur gezeichnet werden, wenn die
Anzahl der Ecken grösser als 35 ist und wenn der Umfang mindestens 100 ist.

EDIT Aufgabe 5.14

Schreiben Sie eine Funktion positiv_und_gerade(zahl), welche einen Parameter zahl ent-
gegennimmt, und testet, ob die Zahl positiv und gerade ist, und falls dies zutrifft, den Text
ausgibt "Die Zahl ist positiv und gerade". Ansonsten soll nichts ausgegeben werden.

Zur Erinnerung: Eine Zahl ist gerade, wenn sie ohne Rest durch 2 teilbar ist. Der Rest einer
Ganzzahldivision kann in Python mit dem Modulo-Operator % berechnet werden. Beispiel:

zahl % 2 == 0

Dieser Ausdruck gibt True zurück, wenn die Zahl gerade ist, da sie dann vollständig (ohne
Rest) durch 2 teilbar ist. Andernfalls gibt der Ausdruck den Wert False zurück.

EDIT Aufgabe 5.15

Entwickeln Sie ein Programm, das alle natürlichen Zahlen zwischen 0 und 100 auf den Bild-
schirm schreibt, die durch 7, aber nicht durch 3 teilbar sind.

Trophy Aufgabe (Challenge) 5.16

Einen Code mit mehreren Bedingungen kann man statt mit or häufig auch mit if, elif und
else umsetzen. Überlegen Sie sich, wie Sie den Code aus Aufgabe 5.12 mit if, elif und
else statt mit or schreiben könnten.

In welchen Fällen ist es sinnvoller, if, elif und else zu verwenden? In welchen Fällen ist es
sinnvoller or zu verwenden?

57

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Trophy Aufgabe (Challenge) 5.17

Einen Code mit mehreren Bedingungen kann man statt mit and häufig auch mit verschach-
telten if-Bedingungen umsetzen. Überlegen Sie sich, wie Sie den Code aus Aufgabe 5.11 mit
verschachtelten if-Bedingungen statt mit and schreiben könnten.

In welchen Fällen ist es sinnvoller, and zu verwenden? In welchen Fällen sind verschachtelte
if-Bedingungen besser geeignet?

Trophy Aufgabe (Challenge) 5.18

Diskutieren Sie den Gebrauch der Begriffe „und“ und „oder“ im Alltag und in der Informatik.
Wo sehen Sie Unterschiede in der Verwendung dieser Begriffe?

Trophy Aufgabe (Challenge) 5.19

Das harmonische Mittel zweier Zahlen a und b ist eine wichtige Grösse in der Informatik,
da es in vielen Algorithmen verwendet wird, beispielsweise in der Berechnung von Durch-
schnittswerten.

Beispiel: Wenn Sie 100 Kilometer mit 50 km/h und 100 Kilometer mit 100 km/h fahren,
beträgt die Durchschnittsgeschwindigkeit nicht 75 km/h, sondern 66.67 km/h. Das harmoni-
sche Mittel kann in diesem Fall verwendet werden, um die Durchschnittsgeschwindigkeit zu
berechnen:

Das harmonische Mittel zweier Zahlen a und b ist 2
1
a

+ 1
b

. Es lässt sich aber nur berechnen,
wenn weder a noch b null sind. Entwickeln Sie eine Funktion def harmonisches_mittel(a,
b), die für die Parameter a und b das harmonische Mittel ausrechnet, wenn sowohl a als auch
b nicht null sind. Ansonsten gibt der Befehl den Text "Das kann man nicht berechnen."
aus.

Trophy Aufgabe (Challenge) 5.20

Schreiben Sie eine Python-Funktion def ist_schaltjahr(jahr), welche prüft, ob ein gege-
benes Jahr ein Schaltjahr ist oder nicht.

Ein Jahr ist ein Schaltjahr, genau dann wenn gilt:

1. (das Jahr ist durch 400 teilbar) oder
2. (das Jahr ist durch 4 teilbar aber nicht durch 100)

Für die Prüfung auf Teilbarkeit sollen Sie den Modulo-Operator (%) verwenden.

5.1.5 Logische Ausdrücke negieren: not

Negieren bedeutet in der Informatik nicht, das Gegenteil einer (urpsrünglichen) Aussage zu machen,
sondern alle Aussagen zu machen, welche durch die ursprüngliche Aussage nicht gemacht wurden,
also alles „andere“ als die ursprüngliche Aussage zu sagen.

Beispiel 5.6:
Folgende Tabelle illustriert, was mit der Negation einer Aussage gemeint ist.

58

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Aussage Negation

„Das Mädchen heisst Elin“ „Das Mädchen heisst nicht Elin“

„Niemand in dieser Klasse ist volljährig“ „Mindestens eine Person in dieser Klasse
ist volljährig“

x > 2 x ≤ 2

EDIT Aufgabe 5.21

(Von Hand) Notieren Sie zu folgenden Aussagen die Negation, ohne die Wörter „nicht“ oder
„kein“ zu verwenden:

• x ≥ 3
• y ist eine negative Zahl
• in der Variable test ist der Wert "Franz" gespeichert.
• Im Auto sitzen mindestens drei Menschen
• Der Koffer ist leer
• Das Programm ist falsch geschrieben
• Die Anzahl der Jugendlichen in der Klasse ist genau 19
• Morgen wird es in Zürich mindestens 22 Grad Celsius warm

Die Negation einer Aussage kann in Python mit dem Ausdruck not (englisch für „nicht“) gemacht
werden. Die Negation einer Aussage (mit not) ist insbesondere praktisch, um die Negation einer
Aussage zu machen, ohne die Aussage komplett umschreiben zu müssen.

Beispiel 5.7:
Wir können den Code aus Beispiel 5.4 einfach mit dem Ausdruck not umschreiben, um
auszugeben, unterwelchen Bedingungen wir nicht per Fahrrad zu Schule gehen wollen:

if not((temperature > 20) and (fitness > 80)):
print("Ich gehe nicht per Fahrrad zur Schule!")

Man könnte dieselbe Aussage auch folgendermassen formulieren: „Falls ich mich nicht fit
fühle oder das Wetter schlecht ist, gehe ich nicht per Fahrrad zur Schule“. Dies sähe in
Python folgendermassen aus:

if (temperature <= 20) or (fitness <= 80):
print("Ich gehe nicht per Fahrrad zur Schule!")

Weshalb haben wir im ersten Code ein and und im zweiten Code ein or? Dank dem not
müssen wir nichts vom ursprünglichen Code in Beispiel 5.4 umformulieren, da wir mit dem
not einfach alljene Fälle negieren, welche innerhalb der Klammer stehen. Somit kommen
beide Codes zum selben Resultat.

59

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 5.22

Schreiben Sie Ihren Code aus Aufgabe 5.14 so um, dass getestet wird, ob eine Zahl weder
gerade noch positiv ist. Verwenden Sie dazu unter anderem den Ausdruck not. Testen Sie
ihre Funktion für die Werte -3, +3, -4 und +4.

Schreiben Sie danach dieselbe Funktion nochmals, ohne den Ausdruck not zu verwenden.

EDIT Aufgabe 5.23

Entwickeln Sie ein Programm, das alle Zahlen von 1 bis 24 mit print ausgibt, die nicht Teiler
von 24 sind. Verwenden Sie den Ausdruck not.

5.2 Fussgesteuerte Schleifen mit break

Bisher haben wir eine Art von Schleife gesehen: for _ in range(...). Dabei gibt die Zahl in-
nerhalb des Befehls range(...) an, wie viele Mal der Schleifenkörper wiederholt wird. Manchmal
wissen wir jedoch nicht im voraus, wie viele Male eine Schleife wiederholt werden soll, wir kennen
jedoch eine Bedingung, bei der die Schleife abgebrochen werden soll. Dies könnte beispielsweise der
Fall sein, wenn wir eine Spirale zeichnen wolle, die immer grösser wird, bis die Seitenlänge eine
gewisse maximale Länge max_seite erreicht hat.

Abbildung 5.3: Bild einer Spirale, deren grösste Seitenlänge max_seite lang ist

Natürlich könnte man auch hier berechnen, wie viele Male die for-Schleife ausgeführt werden muss.
Die Formel, um dies zu berechnen, wäre:⌊

maxseite - seite
add

⌋
+ 1

Es geht allerdings auch einfacher, indem wir eine „unendliche“ Schleife starten, die wir abbrechen,
sobald eine gewisse Kondition wahr ist.

Grundsätzlich können wir auch direkt die Werte True (Wahr) oder False (Falsch) in Logischen
Ausdrücken verwenden:

Beispiel 5.8:
Der print-Befehl in folgendem Beispiel wird immer ausgeführt:

if True:
print("Hello World")

60

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Den Wert True könnten wir beispielsweise verwenden, um eine Endlosschleife mit while True: zu
konstruieren.

import turtle as t

Tempo der Turtle festlegen
t.speed(100)

gleichseitiges Dreieck zeichnen
seite = 5
max_seite = 50
increment = 5
while True:

if seite > max_seite:
break

t.fd(seite)
t.rt(90)
seite += increment

Turtle-Zeichnung stehen lassen
t.done()

Unendliche Schleife

Schleifenabbruch

EDIT Aufgabe 5.24

Schreiben Sie eine Funktion erraten_zahl(), die ein einfaches Zahlenratespiel implementiert
(siehe Code-Vorlage untenan). Die Funktion soll:

1. Eine zufällige Zahl zwischen 1 und 100 generieren (dies wird gemacht mit dem Befehl
random.randint(1, 100), ist im Code bereits gemacht).

2. Den Benutzer in einer Schleife auffordern, die Zahl zu erraten (int(input("Rate die
Zahl: "))).

3. Falls die Eingabe kleiner als die gesuchte Zahl ist, soll ausgegeben werden: „Die Zahl
ist grösser.“.

4. Falls die Eingabe grösser als die gesuchte Zahl ist, soll ausgegeben werden: „Die Zahl
ist kleiner.“.

5. Falls die Eingabe korrekt ist, soll die Nachricht „Richtig! Du hast die Zahl erraten.“
ausgegeben werden und die Schleife mit break beendet werden.

Testen Sie die Funktion, indem Sie sie ausführen und versuchen, die Zahl zu erraten. Vervoll-
ständigen Sie folgende Code-Vorlage:

import random

def erraten_zahl():
Zufallszahl generieren
ziel_zahl = random.randint(1, 100)

while True:
x = int(input("Errate die Zahl!"))
IHR CODE HIER

61

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 5.25

Schreiben Sie eine Funktion zeichne_spirale(seitenlaenge, winkel, increment), die
eine Spirale zeichnet. Die Funktion soll folgende Parameter haben:

• seitenlaenge: Die Startlänge der ersten Seite.
• winkel: Der Winkel, um den sich die Turtle nach jeder gezeichneten Seite dreht.
• increment: Der Wert, um den die Seitenlänge nach jeder gezeichneten Seite erhöht

wird.

Die Spirale soll so lange gezeichnet werden, bis die Seitenlänge 200 erreicht oder überschritten
hat.

EDIT Aufgabe 5.26

Schreiben Sie eine Funktion ist_quadrat(x), die überprüft, ob eine gegebene natürliche Zahl
x eine Quadratzahl ist (also ob es eine ganze Zahl a gibt, so dass x = a · a).

Das Programm soll mit a = 1 starten und überprüfen, ob a · a = x. Falls a · a = x, soll a
ausgegeben werden und die Schleife abgebrochen werden. Ansonsten fährt man mit a = a +1
weiter.

Sobald a ·a > x soll die Schleife abgebrochen und ausgegeben werden: x ist kein Quadrat.

Verwenden Sie dazu eine while True-Schleife.

Trophy Aufgabe (Challenge) 5.27

Was gibt folgender Code aus und wann endet er?

i = 2
while True:

if i>5:
break

5.3 Kopfgesteuerte Schleifen mit while

Beispiel 5.9:
Folgendes Beispiel zeigt, wie ein while True: mit einem break-Befehl zu einem einfachen
while mit Ausführungs-Bedingung vereinfacht werden kann. Beide Codes machen dasselbe.
Die Schleife wird solange ausgeführt, wie die Ausführungs-Bedingung wahr ist. Die Abbruchs-
kondition wird vor jeder neuen Schleifenausführung überprüft und die Schleife wird nur dann
ausgeführt, wenn die Ausführungs-Bedingung noch wahr ist. Beim linken Code verwenden
wir nicht eine Ausführungs-Bedingung sondern eine Abbruch-Bedingung.

62

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

import turtle as t

def spirale(seite, add, max_seite):
while True:

if seite > max_seite:
break

t.fd(seite)
t.rt(90)
seite+=add

spirale(10, 10, 100)

import turtle as t

def spirale(seite, add, max_seite):
while seite < max_seite:

t.fd(seite)
t.rt(90)
seite+=add

spirale(10, 10, 100)

Exclamation-Triangle Achtung

Wichtiger Hinweis 5.1 (Endlos-Schleifen):
Beachten Sie folgende Punkte:

• Passen Sie auf, dass Sie keine unendlichen Schleifen produzieren! In diesem Fall kann
das Programm, auf dem Python läuft, hängen bleiben. Vergessen Sie daher nie die
Abbruchkondition klar zu formulieren!

• Ein while True: (unendliche Schleife) ohne break kann zum Absturz des Programms
führen

• Je nachdem kann das auch in einem while mit einer Kondition passieren, sofern die
Bedingung nach dem while so geschrieben ist, dass sie immer wahr (True) ist (siehe
Unterabschnitt 3.7.3 zu semantischen Fehlern).

• Speichern Sie regelmässig Ihre Aufgaben!
• Falls das Programm VS Code hängenbleibt: Beenden mit Ctrl + Alt + (Windows),

bzw. Activity Monitor unter MacOS

EDIT Aufgabe 5.28

Schreiben Sie eine Funktion verdreifache_bis_ueber1Mio(zahl), welche eine Zahl zahl so
lange immer wieder verdreifacht, bis zahl erstmals grösser als 1’000’000 ist. Dabei sollen alle
Zwischenresultate in der Konsole ausgegeben werden. Am Schluss soll ausserdem die Anzahl
Verdreifachungen ausgedruckt werden.

EDIT Aufgabe 5.29

Entwickeln Sie eine Funktion, dem eine Zahl x > 1 als Parameter übergeben wird. Aus x wird
nun eine Folge von Zahlen generiert und ausgegeben. Dabei wird folgende Regel angewendet:
Wenn x durch zwei teilbar ist, ist die nächste Zahl x/2 . Wenn x nicht durch zwei teilbar
ist, ist die nächste Zahl 3 · x + 1 . Dieser Prozess wird wiederholt, solange die neu berechnete
Zahl grösser als 1 ist.

63

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 5.30

Entwickeln Sie ein Programm, das eine siebeneckige Spirale von aussen nach innen zeichnet.
Die Startlänge der Seite und die Verkleinerung der Seite in jedem Schritt sollen Parameter
sein. Verwenden Sie eine while-Schleife und lassen Sie die Spirale so lange zeichnen, wie die
Seitenlänge grösser als 10 ist.

EDIT Aufgabe 5.31

Gegeben ist eine natürliche Zahl x > 1. Ein echter Teiler einer Zahl ist eine Zahl, die grösser
als 1 und kleiner als x ist und x ohne Rest teilt. 10 hat beispielsweise die Teiler 1, 2, 5 und
10, wovon nur 2 und 5 echte Teiler sind.

Schreiben Sie ein Programm, das für eine vom Benutzer eingegebene Zahl x mit einer while
-Schleife den kleinsten und den grössten echten Teiler von x bestimmt.

Gibt es keine echten Teiler (d.h. x ist eine Primzahl), soll das Programm ausgeben "x ist
eine Primzahl.". Andernfalls sollen der kleinste und der grösste echte Teiler ausgegeben

werden.

EDIT Aufgabe 5.32

Wenn man die folgende Zahlenfolge von Brüchen immer weiter addiert, wird die Summe
immer grösser:

1
2 + 1

3 + 1
4 + 1

5 + . . .

Wie viele Brüche müssen addiert werden, damit die Summe mindestens gleich einer gegebenen
Zahl x wird?

Schreiben Sie ein Python-Programm, das die Brüche addiert, solange deren Summe kleiner
als x ist. Am Ende soll das Programm ausgeben, welcher Nenner beim letzten hinzugefügten
Bruch verwendet wurde und wie gross die Summe insgesamt ist.

Wenn über 100 Brüche addiert wurden, soll die while-Schleife abgebrochen werden (mit
break).

Trophy Aufgabe (Challenge) 5.33

Wie viele Schleifen durchläuft das folgende Programm?

a = 1
summe = 0

while summe < 2:
summe += 1 / a
a *= 2
print("a =", a)
print("Summe =", summe)

Programm 5.31: schleifen_wiederh.py

64

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 5.34

Schreiben Sie ein Programm, das den Benutzer wiederholt auffordert, Wörter einzugeben.
Sobald das Wort „Voldemort“ eingegeben wird, soll der Prozess beendet werden. Der Com-
puter soll anschliessend eine Aneinanderreihung aller vor „Voldemort“ eingegebenen Wörter
ausgeben.

EDIT Aufgabe 5.35 Weizenkornlegende

Sissa ibn Dahir lebte angeblich im dritten oder vierten Jahrhundert in Indien und gilt Le-
genden zufolge als der Erfinder des Schachspiels.

Der indische Herrscher Shihram tyrannisierte seine Untertanen und stürzte sein Land in Not
und Elend. Um die Aufmerksamkeit des Königs auf seine Fehler zu lenken, ohne seinen Zorn
zu entfachen, schuf der weise Brahmane Sissa ein Spiel, in welchem der König als wichtigste
Figur ohne Hilfe anderer Figuren und Bauern nichts ausrichten kann. Der Unterricht im
Schachspiel machte auf den Herrscher Shihram einen starken Eindruck. Er wurde milder und
liess das Schachspiel verbreiten, damit alle davon Kenntnis nehmen.

Um sich für die anschauliche Lehre von Lebensweisheit und zugleich Unterhaltung zu bedan-
ken, gewährte er dem Brahmanen einen freien Wunsch. Dieser wünschte sich Weizenkörner:
Auf das erste Feld eines Schachbretts wollte er ein Korn, auf das zweite Feld das Doppelte,
also zwei, auf das dritte wiederum die doppelte Menge, also vier und so weiter.

Sie sollen die Menge Weizenkörner, welche Sissa vom Herrscher gefordert hat, berechnen.
Gehen Sie folgendermassen vor:

Auf dem ersten Schachfeld liegt 1 Reiskorn, auf dem zweiten Feld liegen 2 Reiskörner, auf
dem dritten Feld liegen 4 Körner usw.

Allgemein liegen auf dem n+1-ten Schachfeld genau doppelt soviele Körner wie auf dem n-ten
Schachfeld. Unser Schachbrett habe n-Felder, wobei n ≤ 67. Wie viele Reiskörner würden in
dieser Situation insgesamt auf dem Schachfeld liegen (angenommen so viel Reis hätte Platz)?

Schreiben Sie eine Funktion reis(n), welche die gesuchte Anzahl Reiskörner in Abhängigkeit
der Anzahl n der Felder berechnet und per return zurückgibt.

• reis(3) sollte 7 ausgeben.

65

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

• reis(8) sollte 255 ausgeben.
• reis(64) sollte 18446744073709551615 ausgeben.

66

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Kapitel 6

Datenstrukturen

6.1 Listen

6.1.1 Einführung in Listen

Bisher haben wir uns mit Variablen beschäftigt, die nur einen Wert speichern können::

• x = 3 (eine Zahl / „integer“)
• name = "Hallo" (einen Text / „string“)
• ist_wahr = True (einen Wahrheitswert / „boolean“)

In der Informatik ist es jedoch oft nötig, mit vielen Werten gleichzeitig arbeiten zu können, gerade
im Kontext von Big Data. Eine Möglichkeit, in Python mit vielen Werten zu arbeiten, sind Listen.

Definition 6.1 (Liste):
Eine Liste ist eine Sammlung von Werten, die in einer Variable gespeichert werden können.
Eine Liste kann beliebig viele Werte enthalten und diese Werte können von einem beliebigen
Typ wie zum Beispiel „integer“, „string“ oder „boolean“ sein.

Beispiel 6.1 (Listen erstellen):
Folgendes Beispiel zeigt, wie eine Liste in Python definiert wird. Wir können dabei, wie auch
bei anderen Variablentypen, beliebige Namen verwenden. Die Inhalte der Liste werden in
eckigen Klammern [] geschrieben und die einzelnen Werte werden durch Kommas , getrennt.

Liste, die nur Zahlen enthält
liste_1 = [1, 2, 3, 4, 5]
Liste, die nur Strings enthält
liste_2 = ["Hallo", "Welt", "Python"]
Liste, die nur Wahrheitswerte (Typ bool) enthält
liste_3 = [True, False, True]
Liste, die Werte von verschiedenen Typen enthält
liste_4 = [1, "Hallo", True, 3.14]

Beispiel 6.2 (Zugriff auf Listen):
Wenn wir auf die einzelnen Werte in der Liste zugreifen möchten, können wir dies mit dem

67

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Index tun. Der Index ist eine Zahl, die angibt, an welcher Stelle sich der Wert in der Liste
befindet. Der Index beginnt bei 0, das heisst, der erste Wert in der Liste hat den Index 0, der
zweite Wert hat den Index 1 und so weiter.

Liste a erstellen
a = [1, 2, 3, 4, 5]
Zugriff auf das erste Element der Liste
print(a[0]) # gibt 1 aus
Zugriff auf das zweite Element der Liste
print(a[1]) # gibt 2 aus
Zugriff auf das letzte Element der Liste
print(a[-1])

Beispiel 6.3 (Listen-Werte verändern):
Um den Wert an einer bestimmten Stelle in der Liste zu ändern, können wir ebenfalls den
Index verwenden. Wir können den Wert an dieser Stelle einfach durch einen neuen Wert
ersetzen.

Liste a erstellen
a = [1, 2, 3, 4, 5]
Ändern des Wertes an der Stelle 0 in der Liste a
a[0] = 10
print(a) # gibt [10, 2, 3, 4, 5] aus

Beispiel 6.4 (Länge einer Liste):
Der Befehl len(liste) gibt die Länge der Liste zurück, also die Anzahl der Werte, die in
der Liste gespeichert sind. Dies ist nützlich, wenn wir wissen möchten, wie viele Werte in der
Liste enthalten sind.

Listen erfüllen vielfältige Aufgaben in der Informatik. Sie können verwendet werden, um Daten zu
speichern, zu sortieren, zu filtern und zu analysieren. In Python gibt es viele eingebaute Funktionen
und Methoden, die speziell für Listen entwickelt wurden, um diese Aufgaben zu erleichtern.

Beispiel 6.5 (Zahlen-Liste summieren):
Folgendes Beispiel zeigt auf, wie eine Liste in einer Funktion verwendet werden kann, um
eine Summe zu berechnen. Die Funktion berechne_summe nimmt eine Liste von Zahlen als
Eingabe und gibt die Summe dieser Zahlen zurück.

def summiere(daten):
i = 0 # Hilfs-Index, um auf Elemente von daten zuzugreifen
summe = 0 # Variable, um alle Elemente von "daten" zu summieren

Jedes Element von Daten zu Summe hinzufügen
for _ in range(len(daten)):

summe += daten[i] # Wert von daten[i] zu Summe hinzufügen
i += 1 # Hilfs-Index um 1 vergrössern (Werte?)

print(summe)

68

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

summiere([4, 2, -6, 17, 5, 12]) # Ausgabe: 34
Programm 6.1: summe.py

Beispiel 6.6 (Schleifen ohne Index):
Etwas effizienter kann auf jedes Element der Liste mit dem Befehl for zahl in liste zu-
gegriffen werden. Dabei wird die Variable zahl nacheinander auf jedes Element der Liste
gesetzt.

def summiere(daten):
summe = 0
for zahl in daten:

summe += zahl
print(summe)

summiere([4, 2, -6, 17, 5, 12]) # Ausgabe: 34
Programm 6.2: summe_for_zahl_in.py

EDIT Aufgabe 6.1

Erstellen Sie eine Funktion vergroessere_um_fuenf(liste), die mithilfe einer Schleife jeden
Wert in der Liste daten = [20, -7, 8, 2, 1, 6] um 5 erhöht. Die Anzahl der Wiederho-
lungen der Schleife soll dabei mit len() bestimmt werden. Kontrollieren Sie Ihr Programm
mit print(daten).

EDIT Aufgabe 6.2

Entwickeln Sie eine Funktion berechne_durchschnitt(liste), die für die Liste (z.B. [5, 0,
-2, 3, 51, 8, 13, -100, -10, -1]) den Durchschnittswert der Beträge aller Elemente

berechnet und mit print() ausgibt.

Der Durchschnitt einer Liste von Zahlen ist die Summe aller Zahlen geteilt durch die Anzahl
der Zahlen.

EDIT Aufgabe 6.3

Erstellen Sie ein Programm, das alle geraden Zahlen in der Liste daten = [5, 7, 8, 6, 3]
verdoppelt. Kontrollieren Sie Ihr Programm mit print(daten).

69

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 6.4

Das Skalarprodukt wird in vielen Lebensbereichen verwendet, z.B. in der Mathematik, Physik
und Informatik. Im Alltag begegnen wir dem Skalarprodukt häufig in der Finanzwelt, z.B.
bei der Berechnung des Gesamtpreises von Produkten:

Produkt Menge m Preis p

800 g 2.- / kg

1200 g 2.50 / kg

2300 g 5.- / kg

Schreiben Sie eine Funktion, die das Skalarprodukt zweier Listen berechnet. Das Skalar-
produkt ist die Summe der Produkte der jeweils entsprechenden Elemente beider Listen.
Beispiel: Für die Listen m = [0.8, 1.2, 2.3] (in kg) und p = [2.0, 2.5, 5.0] (Preis pro
kg) berechnet das Skalarprodukt den Gesamtpreis.

Wie berechnen wir den Gesamtpreis? Dies kann mit dem Skalarprodukt gemacht wer-
den: m[1] * p[0] + m[1] * p[1] + ... + m[-1] * p[-1]. Zur Erinnerung: m[-1] gibt
uns das letzte (hinterste) Element der Liste m.a

aAlternativ können wir anstelle von m[-1] auch m[len(m) - 1]

Beispiel 6.7 (Kleinste Zahl in einer Liste):
Mit folgendem Code können wir die kleinste Zahl in einer Liste finden. Wir verwenden eine
Schleife, um alle Zahlen in der Liste zu durchlaufen und die kleinste Zahl zu finden. Der Code
gibt am Schluss die kleinste Zahl in der Liste aus.

def finde_kleinste_zahl(liste):
kleinste_zahl = liste[0]
index = 0
for _ in range(len(liste)):

if liste[index] < kleinste_zahl:
kleinste_zahl = liste[index]

index += 1

print(kleinste_zahl) # Kleinste Zahl ausgeben

Beispielaufruf der Funktion
finde_kleinste_zahl([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, -5]) # gibt -5 aus

Programm 6.7: findmin.py

EDIT Aufgabe 6.5

Verändern Sie den Code aus Beispiel 6.7 so, dass die Funktion finde_kleinste_zahl nicht
nur die kleinste Zahl in einer Liste von Zahlen ausgibt, sondern auch deren Position (Index)
in der Liste.

70

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 6.6

Schreiben Sie eine Funktion, welche gleichzeitig den grössten und den kleinsten Wert sowie
deren Indizes (Positionen) in einer Liste von Zahlen zurückgibt.

EDIT Aufgabe 6.7

Schreiben Sie eine Funktion, die zählt, wie oft die Zahl 10 in einer Liste von Zahlen vorkommt.
Testen Sie Ihre Funktion mit der Liste [1, 2, 3, 10, 4, 10, 5]. Die Funktion soll die
Anzahl der Vorkommen von 10 ausgeben (2 in diesem Fall).

Trophy Aufgabe (Challenge) 6.8

Schreiben Sie eine Funktion, die überprüft, ob eine Liste von Zahlen sortiert ist oder nicht.
Falls die Liste sortiert ist, soll die Definition den Wert True zurückgeben, ansonsten den Wert
False.

Tipps:

1. Gehen Sie jedes Element der Liste mit einer Schleife durch, und überprüfen Sie, dass
das Element grösser oder gleich dem vorigen Element ist.

2. return bricht die Funktion ab und gibt einen Wert an das Hauptprogramm zurück. Sie
können also, sobald eine Zahl in falscher Reihenfolge gefunden worden ist, direkt False
zurückgeben.

3. Falls Sie nie ein falsches Element gefunden haben, geben Sie am Ende der Definition
True zurück.

EDIT Aufgabe 6.9

Eine Supermarkt-Kette bittet Sie, die Rabatte auf ausgewählte Produkte zu berechnen. Sie
gibt Ihnen hierzu zwei Listen: die erste Liste enthält die Preise der Produkte ohne Rabatt
und die zweite Liste enthält die Rabatte in Prozent.

Preise in Franken
liste_preise = [39.95, 65.95, 66.95, 76.95, 9.95, 10.95, 13.95]
Rabatte in Prozent
liste_rabatte = [30, 40, 30, 35, 20, 15, 35]

Das Beispiel bedeutet, dass das erste Produkt nicht 39.95, sondern 30 % weniger als 39.95
kosten sollte, also 70 % von 39.95 = 27.965.

Der rabattierte Preis eines einzelnen Produkts wird folgendermassen berechnet:

preis_rabattiert = preis_normal * (1 - rabatt_in_prozent / 100)

Schreiben Sie eine Definition, die die rabattierten Preise für alle Produkte berechnet und als
Liste auf der Konsole ausgibt. Sie müssen die Preise nicht runden.

71

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 6.10

Sie hatten zum Mittagessen ein Sandwich sowie einen Energy-Drink. Sie möchten gerne wis-
sen, wie viele Kalorien das gesamte Mittagessen hatte, die Nährwerte sind jedoch nur pro 100
Gramm oder 100 Milliliter (wobei 100 Gramm = 100 Milliliter sind) angegeben. Berechnen
Sie die Gesamt-Kalorien, indem Sie folgende zwei Listen erstellen:

• l_kcal: Liste der Kalorien pro 100 Gramm (bzw. 100 Milliliter) für das Sandwich und
den Energy-Drink.

• l_gram: Liste der Mengen in Gramm, bzw. Milliliter für das Sandwich und den Energy-
Drink.

Die Nährwert-Informationen entnehmen Sie dem Bild Abbildung 6.1

Abbildung 6.1: Mittagessen und dazugehörige Kalorien-Informationen

Trophy Aufgabe (Challenge) 6.11

Schreiben Sie nun eine Definition, mit der Sie beliebig viele Nährwerte und Mengenangaben
mittels Input eingeben. Die Definition soll folgendes machen:

1. Mittels input("...") nach einer Kalorienangabe für ein Lebensmittel fragen (pro 100
Gramm).

2. Mittels input("...") nach der konsumierten Menge für dasselbe Lebensmittel fragen.
3. Mittels input("...") fragen, ob noch weitere Lebensmittel hinzukommen.

Schritt 1-2 sollen so lange wiederholt werden, bis in Schritt 3 False eingegeben wird.

6.1.2 Algorithmen

6.1.2.1 Sortier-Algorithmen

Eine der häufigsten Anwendungen in der Informatik ist das Sortieren von Daten. Es gibt viele
verschiedene Algorithmen, um Daten zu sortieren, und jeder Algorithmus hat seine eigenen Vor-
und Nachteile, insbesondere hinsichtlich der Geschwindigkeit und der benötigten Rechenleistung. Im
Folgenden wird der Bubble-Sort-Algorithmus vorgestellt, der eine einfache Methode ist, um Daten
zu sortieren. Der Bubble-Sort-Algorithmus funktioniert, indem er die Liste von Werten durchläuft
und benachbarte Werte vergleicht. Wenn ein Wert grösser ist als der nächste Wert, werden die

72

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

beiden Werte vertauscht. Dieser Vorgang wird so lange wiederholt, bis die gesamte Liste sortiert
ist. Die ersten zwölf Schritte des Bubble-Sort-Algorithmus sind in Abbildung 6.2 dargestellt. Der
Algorithmus wird so lange wiederholt, bis die gesamte Liste sortiert ist.

5 3 8 20 2 10

?

Schritt 1

3 5 8 20 2 10

Schritt 1 (ausgetauscht!)

3 5 8 20 2 10

?

Schritt 2

3 5 8 20 2 10

?

Schritt 3

3 5 8 20 2 10

?

Schritt 4

3 5 8 2 20 10

Schritt 4 (ausgetauscht!)

3 5 8 2 20 10

?

Schritt 5

3 5 8 2 10 20

Schritt 5 (ausgetauscht!)

3 5 8 2 10 20

?

Schritt 6

3 5 8 2 10 20

?

Schritt 7

3 5 8 2 10 20

?

Schritt 8

3 5 2 8 10 20

Schritt 8 (ausgetauscht!)

Abbildung 6.2: Bubble-Sort-Algorithmus (erste 8 Schritte)

73

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Folgender Code zeigt, wie der Bubble-Sort-Algorithmus in Python implementiert werden kann. Der
Algorithmus wird in einer Funktion bubble_sort definiert, die eine Liste von Zahlen als Eingabe
erhält und die sortierte Liste zurückgibt. Die Funktion verwendet eine Schleife, um die Liste zu
durchlaufen und benachbarte Werte zu vergleichen. Wenn ein Wert grösser ist als der nächste Wert,
werden die beiden Werte vertauscht. Dieser Vorgang wird so lange wiederholt, bis die gesamte Liste
sortiert ist.

def bubble_sort(liste):
Initialisiere den äusseren Schleifenzähler
i = 0
Äussere Schleife: Wiederhole den Sortiervorgang n-mal
for _ in range(len(liste) - 1):

Initialisiere den inneren Schleifenzähler
j = 0
Innere Schleife: Vergleiche benachbarte Elemente
for _ in range(len(liste) - 1 - i):

Wenn das aktuelle Element grösser als das nächste ist, tausche sie
if liste[j] > liste[j + 1]:

temp = liste[j] # Temporäre Variable zum Speichern des Werts
liste[j] = liste[j + 1] # Tausche die Werte
liste[j + 1] = temp # Setze den gespeicherten Wert an die neue

Position
j += 1 # Erhöhe den inneren Schleifenzähler

i += 1 # Erhöhe den äusseren Schleifenzähler

Gib die sortierte Liste aus
print(liste)

Beispielverwendung
numbers = [64, 34, 25, 12, 22, 11, 90]
bubble_sort(numbers)

Programm 6.15: bubble_sort_w_comments.py

EDIT Aufgabe 6.12

Schauen Sie sich den Python-Code für Bubble an sowie die folgenden drei Listen:

• x = [3, 4, 1, -3, 6]
• x = [3, 4, 5, 6, 7]
• x = [7, 6, 5, 4, 3]

Notieren Sie von Hand, wie die Listen nach jedem Durchgang der äusseren Schleife aussehen
(für eine Liste von Länge 5 sollten Sie beispielsweise 4 Zwischenresultate notieren). Kontrol-
lieren Sie Ihr Resultat, indem Sie das Programm mit diesen Listen ausführen.

Der Algorithmus hat eine Zeitkomplexität von O(n2), was bedeutet, dass die Laufzeit des Algo-
rithmus quadratisch mit der Anzahl der Werte in der Liste wächst. Dies macht den Bubble-Sort-
Algorithmus für grosse Datenmengen ineffizient. Aufgrund der inneren Schleife (for _ in range(n
- 1 - i)) kann die Laufzeit noch geringfügig verbessert werden: In jedem Durchlauf der äusseren

Schleife ist das jeweils grösste Element bereits an die richtige Position gewandert, sodass die innere
Schleife jedes Mal um ein Element kürzer wird.

74

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

• nicht optimierte Version: Die Anzahl der Vergleiche beträgt

(n − 1)2

Das bedeutet: Für eine Liste mit 6 Elementen sind das 52 = 25 Vergleiche.
• optimierte Version: Die Anzahl der Vergleiche entspricht der Summe der Zahlen von 1 bis

n − 1:

(n − 1) + (n − 2) + . . . + 2 + 1 =
n−1∑
m=1

m.

Für eine Liste mit 6 Elementen ergibt das
5∑

m=1
m = 1 + 2 + 3 + 4 + 5 = 15 Vergleiche.

• Im Mathematikunterricht lernen Sie, dass die Gleichheit

(n − 1) + (n − 2) + . . . + 2 + 1 =
n−1∑
m=1

m = 1
2n2 + 1

2n

gilt. Damit bleibt die Anzahl der Vergleiche von Bubble-Sort auch mit dieser Optimierung im
Wesentlichen quadratisch.

Im Allgemeinen wächst die Anzahl der Vergleiche beim Bubble-Sort-Algorithmus quadratisch mit
der Länge der Liste, also O(n2). Die Optimierung reduziert die Anzahl der Vergleiche, ändert aber
nichts an der grundsätzlichen Komplexität.

6.1.2.2 Such-Algorithmen

In der Informatik stellt sich häufig die Frage, wie man möglichst schnell herausfinden kann, ob eine
bestimmte Zahl in einer Liste enthalten ist.

Ist die Liste unsortiert, wie zum Beispiel bei x = [5, 3, 8, 20, 2, 10], bleibt uns nichts anderes
übrig, als jedes Element der Liste einzeln zu überprüfen. Dies entspricht einer linearen Suche, bei
der im ungünstigsten Fall alle Elemente betrachtet werden müssen.

Ist die Liste jedoch bereits sortiert, wie zum Beispiel bei x = [2, 3, 5, 8, 10, 20], können wir
effizientere Suchverfahren anwenden. Dies lässt sich mit der Suche nach einem Gegenstand in einem
Koffer vergleichen. Wenn der Koffer unordentlich gepackt ist, müssen wir jeden einzelnen Gegenstand
herausnehmen, um den gesuchten zu finden. Wenn der Koffer jedoch ordentlich gepackt ist, können
wir die Gegenstände viel schneller finden (siehe Abbildung 6.3).

→

Abbildung 6.3: Unordentlich gepackter Koffer vs. ordentlich gepackter Koffer

Ein besonders schneller Algorithmus ist die sogenannte binäre Suche, bei der die Liste immer
wieder halbiert wird, um das gesuchte Element zu finden.

Das Suchen bezeichnet allgemein den Vorgang, ein bestimmtes Element in einer Datenmenge mög-
lichst effizient zu finden. Im Folgenden lernen wir die binäre Suche als effizienten Such-Algorithmus
für sortierte Listen kennen.

75

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

1 2 3 5 7 8 9 11 15 17 20

links mitte rechts

(a) Schritt 1

1 2 3 5 7 8 9 11 15 17 20

links mitte rechts

(b) Schritt 1 (nächster Vergleich)

1 2 3 5 7 8 9 11 15 17 20

links mitte rechts

(c) Schritt 2

Der Algorithmus zur Umsetzung der binären Suche ist in Python wie folgt implementiert:

1 def binaere_suche(liste, ziel):
2 # Definiere die Start- und Endpunkte des Suchbereichs
3 links = 0
4 rechts = len(liste) - 1
5

6 # Solange der Suchbereich gültig ist, also links <= rechts
7 while links <= rechts:
8 # Berechne das mittlere Element
9 mitte = (links + rechts) // 2

10

11 # Wenn das mittlere Element das gesuchte Ziel ist, gib den Index zurück
12 if liste[mitte] == ziel:
13 print("Ziel Gefunden an Position", mitte)
14 break
15

16 # Wenn das Ziel grösser ist als das mittlere Element,
17 # dann ist das Ziel im rechten Teil der Liste
18 elif liste[mitte] < ziel:
19 links = mitte + 1
20

21 # Wenn das Ziel kleiner ist als das mittlere Element,
22 # dann ist das Ziel im linken Teil der Liste
23 else:
24 rechts = mitte - 1
25

26

27 # Beispiel-Liste (muss sortiert sein)
28 meine_liste = [2, 3, 4, 10, 40]
29 ziel = 10
30

31 # Binäre Suche aufrufen

76

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

32 binaere_suche(meine_liste, ziel)
Programm 6.17: binary_search.py

Bei solchen, etwas komplexeren Codes, kann es nützlich sein, sich die Entwicklung der Variablenwerte
im Verlauf der Ausführung des Codes von Hand zu notieren (siehe Tabelle 6.1).

Code
Variable

links mitte rechts

1. while

2. while

3. while

…

Tabelle 6.1: Beispielhafte Zeit-Tabelle für die binäre Suche (zum Ausfüllen), jeweils nach Zeile 9

Beispiel 6.8:
Wir können für folgende Liste [4, 8, 9, 11, 15, 23, 42] die binäre Suche verwenden. Der
Code sucht nach der Zahl 9 und gibt den Index der Zahl in der Liste zurück. Wir evaluieren
jeweils die Werte der Variablen links, mitte und rechts nach Zeile 9, um den Ablauf des
Codes zu verstehen. Die Tabelle Tabelle 6.2 zeigt die Werte der Variablen nach jedem Schritt
der Schleife.

Code
Variable

links mitte rechts

1. while 0 3 6

2. while 0 1 2

3. while 2 2 2

Gefunden!

Tabelle 6.2: Beispielhafte Zeit-Tabelle für die binäre Suche, jeweils nach Zeile 9 evaluiert

EDIT Aufgabe 6.13

Verwenden Sie die folgende Liste: [-20, -17, -13, -13, 2, 5, 7, 7, 9, 10]. Vollziehen
Sie den Ablauf des Programms für folgende Werte

1. -20
2. 6

Zeichnen Sie eine Zeit-Tabelle wie in Tabelle 6.1 und überprüfen Sie Ihre Resultate, indem
Sie zwischen den Zeilen Zeilen 9 und 10 print-Befehle verwenden, um die Werte von links,
mitte und rechts auszugeben.

77

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 6.14

Ändern Sie den Code für die binäre Suche so ab, dass ein while True: gemeinsam mit einer
boolsche Variable gefunden sowie dem Befehl break verwendet wird.

6.1.3 Listen verändern

Häufig müssen Listen verändert werden, beispielsweise um Elemente hinzuzufügen oder zu entfernen,
oder um diese neu zu ordnen. Python bietet hierfür verschiedene Methoden an. Methoden sind
Funktionen, die auf bestimmte Variablen angewandt werden. In 7.1 werden wir lernen, wie Methoden
definiert werden können. Hier lernen wir einige vordefinierte Methoden für Listen kennen.

Definition 6.2 (Listen verändern):
Listen könnnen in Python dynamisch verändert werden, indem Elemente hinzugefügt oder
entfernt werden. Einige der wichtigsten Methoden sind:

• liste.append(wert) fügt am Ende der Liste einen neuen Wert hinzu.
• liste.insert(index, wert) fügt an der angegebenen Position (index) einen neuen

Wert ein. Alle nachfolgenden Elemente werden nach rechts verschoben.
• liste.pop(index) entfernt das Element an der angegebenen Position (index) und gibt

es zurück. Wird kein Index angegeben, wird das letzte Element entfernt.

Weitere Methoden zum Verändern von Listen sind in der offiziellen Python-Dokumentation
aufgelistet.

Beispiel 6.9 (Elemente hinzufügen und entfernen):
Folgender Code zeigt auf, wie Listen in Python verändert werden können. Wir erstellen eine
Liste von Zahlen und fügen dann neue Zahlen hinzu, entfernen das letzte Element und das
erste Element. Die Ergebnisse werden anschliessend ausgegeben.

zahlen = [1, 2, 3]
zahlen.append(4) # [1, 2, 3, 4]
zahlen.insert(1, 10) # [1, 10, 2, 3, 4]
letztes = zahlen.pop() # entfernt 4, jetzt [1, 10, 2, 3]
erstes = zahlen.pop(0) # entfernt 1, jetzt [10, 2, 3]
print(zahlen) # [10, 2, 3]
print(letztes) # 4
print(erstes) # 1

Programm 6.19: dynamic_lists.py

EDIT Aufgabe 6.15

Fügen Sie der Liste fruechte = ["Apfel", "Banane"] zuerst "Orange" am Ende hinzu,
dann "Kiwi" an der zweiten Stelle. Entfernen Sie danach das erste Element der Liste und
geben Sie die Liste aus.

78

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 6.16

Erstellen Sie eine leere Liste zahlen. Fügen Sie mit einer Schleife die Zahlen 1 bis 5 mit
append hinzu. Entfernen Sie dann das Element an der dritten Stelle mit pop und geben Sie
die Liste aus.

EDIT Aufgabe 6.17

Gegeben ist die Liste farben = ["rot", "blau", "grün"]. Fügen Sie "gelb" an der zwei-
ten Stelle ein und entfernen Sie das letzte Element mit .pop(). Geben Sie die veränderte
Liste aus.

EDIT Aufgabe 6.18

Gegeben seien zwei gleich lange Listen A und B.

Schreiben Sie eine Python-Funktion verschmelzen(A, B), welche die beiden Listen zu einer
Liste C zusammenfügt. Das Zusammenfügen soll „reissverschlussartig“ geschehen: Elemente
aus A und B sollen sich in C abwechseln, beginnend mit einem Element aus A. Betrachten Sie
dazu die Beispiele. Schliesslich soll die Liste C mit print ausgegeben werden.

Beispiel:
verschmelzen([4, 2], [5, 9]) # Ausgabe: [4, 5, 2, 9]
verschmelzen([1, 1, 1], [2, 2, 1]) # Ausgabe: [1, 2, 1, 2, 1, 1]

EDIT Aufgabe 6.19

Gegeben sei eine Liste A von ganzen Zahlen.

Schreiben Sie eine Python-Funktion entferne_duplikate(A), welche systematisch eine Liste
B aufbaut, welche genau die Elemente von A enthält aber ohne Duplikate (mehr als einmal
vorkommende Elemente). Die Liste B soll schliesslich durch einen print-Befehl ausgegeben
werden.

Tipps:

• Verwenden Sie zwei ineinander geschachtelte Schleifen, um zu überprüfen, ob ein Ele-
ment bereits in der Liste B enthalten ist.

• Verwenden Sie eine bool’sche Variable, um zu verfolgen, ob ein Element bereits in der
Liste B vorhanden ist:

ist_vorhanden = False
for element_B in B:

if element_B == A[i]:
ist_vorhanden = True

if not ist_vorhanden:
B.append(A[i])

79

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Trophy Aufgabe (Challenge) 6.20

Probieren Sie weitere Methoden zum Verändern von Listen aus, indem Sie folgende Begrif-
fe verwenden: .extend(...), .remove(...), .sort(), .reverse(). Eine Auflistung aller
möglichen Methoden für ein Objekt der Klasse list finden Sie in der offiziellen Python-
Dokumentation.

6.2 Wörterbücher (dictionaries)
In der Informatik werden Daten oft nicht nur als Listen, sondern auch als sogenannte Dictionaries
(Wörterbücher) gespeichert. Ein Dictionary ist eine Sammlung von Schlüssel-Wert-Paaren. Anders
als bei Listen werden die Werte nicht durch einen Index, sondern durch einen eindeutigen Schlüssel
(key) lokalisiert. Dies ist vielfach praktischer als die Speicherung in Listen, da man direkt mit einem
Begriff auf die Werte zugreifen kann, ohne die Position des Werts in der Liste kennen zu müssen.

Definition 6.3 (Dictionary):
Ein Dictionary ist eine Datenstruktur, die jedem Schlüssel (key) einen Wert (value) zuord-
net. Die Schlüssel müssen eindeutig sein und können z.B. Zahlen oder Zeichenketten sein.

Beispiel 6.10 (Dictionary für Kontaktdaten):
Ein typisches Beispiel für ein Dictionary ist ein Adressbuch, in dem zu jedem Namen die
Telefonnummer gespeichert ist:

telefonbuch = {
"Anna": "079 123 45 67",
"Ben": "078 987 65 43",
"Clara": "077 555 44 33"

}
print(telefonbuch["Anna"]) # gibt "079 123 45 67" aus

Beispiel 6.11 (Dictionary für Produktpreise):
Auch in einem Online-Shop werden Produkte oft mit ihren Preisen als Dictionary gespeichert:

preise = {
"Apfel": 0.80,
"Banane": 0.50,
"Brot": 2.50

}
print(preise["Brot"]) # gibt 2.5 aus

Beispiel 6.12 (Werte hinzufügen und ändern):
Sie können einem Dictionary neue Schlüssel-Wert-Paare hinzufügen oder bestehende Werte
ändern:

preise["Milch"] = 1.60 # neues Produkt hinzufügen
preise["Apfel"] = 0.90 # Preis ändern
print(preise)

80

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Beispiel 6.13 (Alle Schlüssel und Werte durchgehen):
Mit einer Schleife können Sie alle Einträge eines Dictionaries durchgehen:

for produkt in preise:
print(produkt, "kostet", preise[produkt], "Franken")

Beispiel 6.14 (Überprüfen, ob ein Schlüssel existiert):
Um zu überprüfen, ob ein Schlüssel in einem Dictionary existiert, können Sie den in-Operator
verwenden:

if "Brot" in preise:
print("Brot ist im Dictionary vorhanden.")

else:
print("Brot ist nicht im Dictionary vorhanden.")

EDIT Aufgabe 6.21

Erstellen Sie ein Dictionary noten, das die Noten von drei Schülern speichert: "Lea" (Note
5.5), "Tim" (Note 4.0), "Sara" (Note 6.0). Geben Sie die Note von "Sara" aus.

EDIT Aufgabe 6.22

Fügen Sie dem Dictionary noten aus der vorherigen Aufgabe einen neuen Schüler „Alex“ mit
der Note 5.0 hinzu. Ändern Sie Tims Note auf 4.5 und geben Sie das gesamte Dictionary aus.

EDIT Aufgabe 6.23

Sie verwalten die Lagerbestände eines kleinen Geschäfts. Erstellen Sie ein Dictionary lager
mit den Produkten "Cola" (10 Stück), "Fanta" (5 Stück) und "Wasser" (20 Stück). Schreiben
Sie ein Programm, das die Anzahl der Flaschen "Fanta" um 2 reduziert (z.B. durch Verkauf)
und das neue Dictionary ausgibt.

EDIT Aufgabe 6.24

Erstellen Sie ein Dictionary, das für verschiedene Länder die jeweilige Hauptstadt speichert:

• Für die Schweiz: "Hier gibt es keine Hauptstadt, nur eine Bundesstadt."
• Für Deutschland: "Berlin"
• Für Frankreich: "Paris"

Lassen Sie den Benutzer mit input() nach einem Land fragen und geben Sie die entspre-
chende Hauptstadt aus dem Dictionary mit print aus.

Falls das eingegebene Land nicht im Dictionary existiert, soll ausgegeben werden:

"Land nicht gefunden."

siehe Beispiel 6.14 für Hinweise dazu, wie dies umgesetzt werden kann.

81

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 6.25

Carlas Englisch ist nicht so gut. Helfen Sie Carla, ein paar Sätze zu übersetzen. Schreiben Sie
in einem Dictionary namens deutsch_zu_englisch die Übersetzung der folgenden Wörter in
Englisch: „Die“, „Der“, „Das“, „Stuhl“, „Sofa“, „Lampe“, „ist“, „rot“, „grün“, „gelb“, „blau“,
„schwarz“, „weiss“.

Implementieren Sie eine Funktion uebersetzen(satz), die eine Liste erstellt, welche die
englische Übersetzung jedes Wortes in der Liste satz enthält. Die Liste soll Wort für Wort
erstellt und am Schluss mit print ausgegeben werden.

Vorlage:

deutsch_zu_englisch = {
...
...
...

}

def uebersetzen(satz):
uebersetzter_satz = []
...
...
print(uebersetzter_satz)

uebersetzen(["Die", "Lampe", "ist", "rot"])

Tipp: Arbeiten Sie sich schrittweise heran!

1. Schreiben Sie nun einen Code, um auf jedes Element (jedes Wort) der Liste satz zu-
zugreifen, speichern Sie das Wort in einer Variable wort.

2. Greifen Sie nun auf das entsprechende englischeWort im Dictionary deutsch_zu_englisch
zu.

3. Fügen Sie das englische Wort der neuen Liste hinzu.

Die Werte eines Dictionaries können selber ebenfalls Listen, Dictionaries oder andere Python-
Objekte sein, was besonders nützlich ist, wenn mehrere Werte zu einem Schlüssel gespeichert werden
sollen.

EDIT Aufgabe 6.26

Erstellen Sie ein Dictionary likes, das für verschiedene Nutzer die Anzahl der Likes auf
einem Social-Media-Post als Liste speichert. Beispiel:

likes = {
"Anna": [5, 8, 12],
"Ben": [3, 7, 9],
"Clara": [10, 15, 20]

}

Schreiben Sie einen Code, die für einen eingegebenen Nutzernamen die durchschnittliche
Anzahl der Likes berechnet und ausgibt.

82

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 6.27

Erstellen Sie ein Dictionary wettervorhersage, das für verschiedene Tage die Wetterdaten
als weiteres Dictionary speichert. Beispiel:

wettervorhersage = {
"Montag": {"Temperatur": 18, "Regen": False},
"Dienstag": {"Temperatur": 21, "Regen": True},
"Mittwoch": {"Temperatur": 17, "Regen": False}

}

Schreiben Sie einen Code, das für einen eingegebenen Tag die Temperatur und ob es regnet
ausgibt. Falls es Regnet oder unter 15 Grad ist, soll zusätzlich die Meldung „Ich gehe mit
dem Bus“ ausgegeben werden, ansonsten „Ich gehe per Fahrrad“.

83

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

6.3 Mengen (sets)
In Python stehen die Mengenoperationen, welche Ihnen aus demMathematikunterricht wohlvertraut
sind, zur Verfügung. Wir werden die drei mengentheoretischen Operationen Vereinigung, Schnitt-
menge und Differenz einführen und mittels Venndiagrammen1 illustrieren.

• A ∪ B, in Python: A | B
A ∪ B := { x ∈ M ; (x ∈ A) ∨ (x ∈ B) }
Die Vereinigung von A und B. Die Vereinigung von A und B enthält genau alle Elemente,
die in A oder B liegen.

A B

A ∪ B

• A ∩ B, in Python: A & B
A ∩ B := { x ∈ M ; (x ∈ A) ∧ (x ∈ B) }
Die Schnittmenge von A und B. Die Schnittmenge von A und B enthält genau alle Elemente,
die in A und in B liegen.

A B

A ∩ B

• A \ B, in Python: A - B
A \ B := { x ∈ M ; (x ∈ A) ∧ (x /∈ B) }
Die Differenz von A und B. Die Differenz von A und B enthält genau alle Elemente, die in
A aber nicht in B liegen.

A B

A \ B

Falls M eine endliche Menge ist (nicht unendlich viele Elemente enthält), dann bezeichnet |M | die
Anzahl der Elemente in M . In Python finden wir die Anzahl der Element in der Menge M mit dem
Befehl len(M).

Beispiel 6.15:
Sets können in Python mit geschweiften Klammern { und } oder mit dem Befehl set() erstellt
werden. Folgender Code zeigt die drei Mengenoperationen an einem Beispiel mit Früchten.

1Benannt nach dem englischen Mathematiker John Venn Junior.

84

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Mengen mit Früchten erstellen
set_1 = {"Apfel", "Banane", "Orange", "Traube"}

Sets können auch aus Listen erstellt werden
liste_2 = ["Banane", "Orange", "Kiwi", "Mango"]
liste_3 = ["Traube", "Kiwi", "Melone"]
Listen zu Sets konvertieren
set_2 = set(liste_2)
set_3 = set(liste_3)

Schnittmenge: Finden Sie die gemeinsamen Früchte
gemeinsame_fruechte = set_1 & set_2
print("Gemeinsame Früchte zwischen set_1 und set_2:", gemeinsame_fruechte)
print("Anzahl der gemeinsamen Früchte:", len(gemeinsame_fruechte))

Vereinigungsmenge: Kombinieren Sie alle einzigartigen Früchte
alle_fruechte = set_1 | set_2
print("Alle einzigartigen Früchte aus set_1 und set_2:", alle_fruechte)
print("Anzahl aller einzigartigen Früchte:", len(alle_fruechte))

Differenzmenge: Finden Sie die Früchte in set_1, die nicht in set_3 sind
nur_in_set_1 = set_1 - set_3
print("Früchte in set_1, aber nicht in set_3:", nur_in_set_1)
print("Anzahl der nur in set_1 vorhandenen Früchte:", len(nur_in_set_1))

Programm 6.28: example_sets_fruit.py

EDIT Aufgabe 6.28

An einer Schule können Schüler mehrere Kurse wählen. Manche Kurse überschneiden sich,
andere sind Pflicht.

Gegeben:
schueler_a = ["Mathe", "Englisch", "Informatik", "Biologie"]
schueler_b = ["Mathe", "Englisch", "Informatik", "Kunst", "Musik"]
schueler_c = ["Informatik", "Englisch", "Sport", "Geschichte"]

pflichtkurse = ["Mathe", "Englisch"]
wahlkurse = ["Informatik", "Biologie", "Kunst", "Musik", "Sport", "

Geschichte"]

1. Finden Sie alle Kurse, die mindestens einer der Schüler belegt.
2. Finden Sie alle Kurse, die von allen drei Schülern gemeinsam belegt werden.
3. Bestimmen Sie alle Kurse, die exklusiv nur Schüler A hat.
4. Ermitteln Sie die Pflichtkurse, die zwar existieren, aber von mindestens einem Schüler

nicht gewählt wurden.
5. Stellen Sie eine Liste aller Wahlkurse zusammen, die alle drei Schüler gemeinsam

gewählt haben.

Tipp: Mit dem Befehl set(liste) können Sie eine Liste in eine Menge umwandeln. Mit dem

85

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Befehl list(menge) können Sie eine Menge wieder in eine Liste umwandeln.

Beispiel-Ausgabe:
Alle belegten Kurse: {'Biologie', 'Kunst', 'Musik', 'Sport', 'Mathe', '

Englisch', 'Geschichte', 'Informatik'}
Gemeinsame Kurse aller: {'Englisch', 'Informatik'}
Exklusiv nur Schüler A: {'Biologie'}
Pflichtkurse, die fehlen: {'Mathe'}
Gemeinsame Wahlkurse: {'Informatik'}

6.4 Tupel
Tupel sind eine weitere grundlegende Datenstruktur in Python, die Ähnlichkeiten mit Listen auf-
weisen, sich aber in einem entscheidenden Punkt unterscheiden: ihrer Unveränderlichkeit.

Definition 6.4:
Ein Tupel in Python ist eine geordnete, unveränderliche Sammlung von Elementen. Tupel
sind ähnlich wie Listen, können aber nach ihrer Erstellung nicht mehr verändert werden. Man
erstellt sie, indem man Elemente in runde Klammern setzt, getrennt durch Kommas.

Tupel in Python haben die folgenden Eigenschaften:

• Unveränderlichkeit (Immutability): Versucht man, ein Element zu ändern, erhält man
eine Fehlermeldung. Zum Beispiel würde koordinaten[0] = 5 einen Fehler verursachen.

• Geordnetheit: Die Reihenfolge der Elemente bleibt erhalten.
• Heterogenität: Ein Tupel kann verschiedene Datentypen enthalten, wie ganze Zahlen, Zei-

chenketten oder sogar andere Tupel. Zum Beispiel: person = ('Anna', 30, True).
• Anwendungsbereiche: Tupel werden oft verwendet, wenn man sicherstellen will, dass Daten

nicht versehentlich geändert werden, wie z. B. bei Datenbankkoordinaten, Rückgabewerten von
Funktionen oder als Schlüssel in einem Wörterbuch.

Beispiel 6.16:

ein Tupel (für 2D-Koordinaten) erstellen
koordinaten = (10, 20)

das Tupel mit print ausgeben
print(koordinaten)

das erste Element des Tupels ausgeben (Index 0)
print(koordinaten[0])

das zweite Element des Tupels ausgeben (Index 1)
print(koordinaten[1])

Error! Tupel sind unveränderlich!
koordinaten[0] = 5

86

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

6.5 Weitere Aufgaben

EDIT Aufgabe 6.29 Notenspiegel für mehrere Personen

Sie möchten ein Programm schreiben, das für mehrere Personen in Ihrer Klasse den Noten-
schnitt berechnet und prüft, ob jede Person ihr Ziel erreicht hat.

• Teilaufgabe 1: Schreiben Sie die Funktion schnitt(punkte_dict).
– Der Parameter punkte_dict ist ein Dictionary, in dem jeder Schlüssel ein Name

ist und jeder Wert eine Liste von Noten für die jeweilige Person (oder Punkten).
– Die Funktion berechnet für jede Person den Durchschnitt und gibt ein Dictionary

zurück, in dem die Namen den berechneten Schnitten zugeordnet sind.
– Beispiel: schnitt({"Anna":[5.0,5.5,4.5,6.0],"Ben":[4.0,3.5,4.5]})

Rückgabe: {"Anna":5.25,"Ben":4.0}
• Teilaufgabe 2: Schreiben Sie die Funktion ziel_erreicht(schnitte, zielnote).

– Der Parameter schnitte ist ein Dictionary mit Namen und Schnittwerten (Rück-
gabe von schnitt).

– Der Parameter zielnote ist eine Zahl, z. B. 4.0, die angibt, ab welchem Schnitt
eine Person ihr Ziel erreicht hat.

– Die Funktion gibt ein Dictionary zurück, das für jede Person angibt, ob das Ziel
erreicht wurde (True oder False).

– Beispiel: ziel_erreicht({"Anna":5.25,"Ben":4.0}, 4.5)
Rückgabe: {"Anna":True,"Ben":False}

EDIT Aufgabe 6.30 Mensa-Auswahl und Budgetprüfung

Sie möchten ein Programm schreiben, das Ihnen hilft, passende Gerichte aus der Mensa
auszuwählen und zu prüfen, ob diese Auswahl in Ihr Budget passt.

• Teilaufgabe 1: Schreiben Sie die Funktion filter_menue(menue, max_preis, nur_vegi
).

– Der Parameter menue ist eine Liste von Dictionaries, die jeweils ein Gericht mit
Name, Preis und einem Wahrheitswert vegi enthalten.

– Der Parameter max_preis gibt den maximal erlaubten Preis pro Gericht an.
– Der Parameter nur_vegi gibt an, ob nur vegetarische Gerichte erlaubt sind (mög-

liche Werte: True oder False).
– Die Funktion gibt eine Liste mit den Gerichten (als Dictionaries) zurück, welche

die Bedingungen erfüllen.
– Beispiel: filter_menue([{"name":"Pasta","preis":9.5,"vegi":True},{"name

":"Schnitzel","preis":12.0,"vegi":False}], 10.0, True)
Rückgabe: [{"name":"Pasta","preis":9.5,"vegi":True}]

• Teilaufgabe 2: Schreiben Sie die Funktion budget_check(gerichte, budget, tage
).

– Der Parameter gerichte ist eine Liste der gewählten Gerichte (z.B. Rückgabe von
filter_menue).

– Der Parameter budget ist das verfügbare Budget für die Woche.
– Der Parameter tage ist die Anzahl der Tage, an denen in der Mensa gegessen wird.
– Die Funktion berechnet die Gesamtkosten und prüft, ob das Budget ausreicht. Sie

gibt ein Dictionary zurück mit den Schlüsseln "summe" und "ok".
– Beispiel: budget_check([{"preis":9.5},{"preis":9.5},{"preis":9.5}], 30.0,

87

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

5)
Rückgabe: {"summe":28.5,"ok":True}

88

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Kapitel 7

Objektorientierte Programmierung

7.1 Klassen
Bisher haben wir mit einfachen Variablentypen (integer, string, boolean) und grundlegenden Da-
tenstrukturen wie Listen und Dictionaries gearbeitet. Dabei haben wir bereits gesehen, dass viele
dieser Objekte über sogenannte Methoden verfügen. So konnten wir beispielsweise mit der Me-
thode .append() ein neues Element an eine Liste anhängen. Diese Methoden sind typisch für den
jeweiligen Datentyp und ermöglichen es uns, bequem mit den enthaltenen Daten zu arbeiten.

In Python sind tatsächlich alle Variablen Objekte. Jedes Objekt besitzt bestimmte Eigenschaf-
ten (Attribute) und kann über Methoden manipuliert oder abgefragt werden.

Python erlaubt es uns jedoch nicht nur, bestehende Objekttypen zu verwenden, sondern auch eige-
ne Datentypen zu definieren. Dies geschieht mithilfe von Klassen, einem zentralen Konzept des
Programmierparadigmas der Objektorientierte Programmierung (OOP). Klassen dienen als Bauvor-
lage für komplexe Objekte, die sowohl Daten (Attribute) als auch Verhalten (Methoden) enthal-
ten können. Auf diese Weise können wir reale oder abstrakte Dinge im Programm strukturiert und
nachvollziehbar modellieren.

Definition 7.1:
Eine Klasse ist eine Vorlage oder Schablone für Objekte. Sie fasst Daten (Attribute) und
Funktionen (Methoden) zusammen und beschreibt damit die Eigenschaften und das Ver-
halten einer ganzen Gruppe von Objekten. Ein Objekt ist eine konkrete Instanz (= ein
tatsächlich existierendes Exemplar) einer Klasse.

Die folgenden beiden Analogien verdeutlichen die Beziehung zwischen einer Klasse und ihren Ob-
jekten:

• Eine Klasse ist wie ein Kochrezept. Das Rezept beschreibt, welche Zutaten (Attribute) benö-
tigt werden und welche Schritte (Methoden) ausgeführt werden, um ein Gericht zuzubereiten.
Wenn Sie das Rezept befolgen, entsteht ein konkretes Gericht — das ist das Objekt. Aus
demselben Rezept (Klasse) können Sie beliebig viele Gerichte (Objekte) kochen, die gleich
aufgebaut, aber individuell gewürzt sind (unterschiedliche Attributwerte).

• Eine Klasse kann man sich auch wie eine Charaktervorlage in einem Videospiel vorstel-
len. Die Vorlage Krieger oder Magier definiert allgemeine Eigenschaften (z.B. Lebenspunkte,
Stärke, Intelligenz) und Fähigkeiten (z.B. angreifen, heilen, zaubern). Wenn Sie im Spiel einen
neuen Charakter erstellen, z.B. Irelia die Kriegerin, dann ist das ein Objekt, welches auf der

89

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Vorlage Krieger (der Klasse) basiert. Alle Krieger haben ähnliche Fähigkeiten, aber individu-
elle Werte.

Objekte werden in Games ständig verwendet, beispielsweise um Spieler, Gegner, Tiere, Wolken oder
andere Elemente zu „spawnen“, also um diese mit zufälligen Variationen zu erzeugen. Die Grundidee
von Klassen ist in Abbildung 7.1 dargestellt.

Klasse

class Hund:

Objekte / Instanzen

hund_1 = Hund("Thommy", "Grün", ...)
hund_2 = Hund("Bello", "Gelb", ...)
hund_3 = Hund("Rocky", "Rot", ...)
...

Instanz(en) erzeugen

Attribute
name
farbe
augenfarbe
gewicht
laenge
...

Methoden
gassi_gehen()
belle()
gehe_vorwaerts()
ist_kastriert()
kom_her()
...

Attribute
name: Tommy
farbe: Gruen
augenfarbe: Braun
gewicht: 16
laenge: 89
...

Methoden
gassi_gehen()
belle()
gehe_vorwaert()
ist_kastriert()
komm_her()
...

Abbildung 7.1: Illustration von Klassen und Instanzen in Python: Klassen (links) besitzen Eigen-
schaften und Methoden, welche für jede Instanz dieser Klasse (rechts) definiert und aufgerufen
werden können.

Im Grunde genommen kennen wir Klassen in Python bereits: So erstellen wir beispielsweise jedes
Mal eine Instanz der Klasse list, wenn wir eine Variable des Typs list (eine Liste) erstellen (siehe
Abbildung 7.2).

90

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

LIST-UL
LIST-UL

LIST-UL
LIST-UL

Klasse

class list:

Objekte / Instanzen

liste_1 = [1, 2, 3]
liste_2 = ["a", "b"]
liste_3 = [True, False]
...

Instanz(en) erzeugen

Attribute
elemente
laenge
...

Methoden
append()
remove()
sort()
pop()
count()
...

Attribute
elemente : 1, 2, 3
laenge : 3
...

Methoden
append()
remove()
sort()
pop()
count()
...

Abbildung 7.2: Illustration von Klassen und Instanzen für Listen in Python: Die Klasse list defi-
niert die Struktur und Methoden, während konkrete Listen-Objekte individuelle Inhalte besitzen.

Beispiel 7.1 (Klassen definieren):
Eine Klasse wird mit dem Schlüsselwort class definiert. Im folgenden Beispiel erstellen wir
eine Klasse Person mit den Attributen name und alter sowie zwei Methoden vorstellen
und geburtstag_feiern.
class Person:

def __init__(self, name, alter):
self.name = name
self.alter = alter

def vorstellen(self):
print(f"Hallo, ich heisse {self.name} und bin {self.alter} Jahre

alt.")

def geburtstag_feiern(self):
self.alter += 1
print(f"{self.name} ist jetzt {self.alter} Jahre alt.")

Objekte der Klasse 'Person' erstellen
anna = Person("Anna", 16)
jan = Person("Jan", 17)

Methoden aufrufen
anna.vorstellen() # Ausgabe: Hallo, ich heisse Anna und bin 16 Jahre alt.
jan.vorstellen() # Ausgabe: Hallo, ich heisse Jan und bin 17 Jahre alt.

Geburtstag feiern
anna.geburtstag_feiern() # Ausgabe: Anna ist jetzt 17 Jahre alt.

Programm 7.1: person.py

91

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Beispiel 7.1 führt bereits einige zentrale Konzepte einer Klasse ein:

• Der Konstruktor __init__: Diese spezielle Methode wird automatisch aufgerufen, so-
bald ein neues Objekt erzeugt wird (z.B. bei anna = Person("Anna", 16)). Ihre Hauptaufga-
be besteht darin, das Objekt mit Anfangswerten zu initialisieren. Die Werte in den Klammern
("Anna" und 16) werden dabei als Parameter an die __init__-Methode übergeben.

• Die Instanzvariable self: Das Schlüsselwort self repräsentiert das konkrete Objekt (die
Instanz), mit dem gerade gearbeitet wird. Wird beispielsweise anna.geburtstag_feiern()
aufgerufen, verweist self innerhalb der Methode auf das Objekt anna. Dadurch wird sicher-
gestellt, dass self.alter += 1 das Alter von anna und nicht das eines anderen Objekts
verändert. self muss immer der erste Parameter jeder Methode innerhalb einer Klasse sein.

• Attribute definieren: Innerhalb der Klasse werden Attribute eines Objekts mit self.
attributname = wert erstellt. Im obigen Beispiel weist self.name = name dem Attribut
name des Objekts den übergebenen Wert zu.

• Auf Attribute zugreifen: Um den Wert eines Attributs innerhalb einer Methode zu lesen
oder zu ändern, wird ebenfalls self.attributname verwendet.

• Methoden aufrufen: Nachdem ein Objekt erstellt wurde (z.B. anna = Person("Anna",
16)), können seine Methoden mit der Punkt-Notation aufgerufen werden. Der Aufruf anna.
geburtstag_feiern() führt die Methode für das Objekt anna aus und erhöht dessen Alter.

Beispiel 7.2 (Bankkonto-Klasse):
Ein praktisches Beispiel ist eine Klasse für Bankkonten:
class Bankkonto:

def __init__(self, kontonummer, inhaber, kontostand):
self.kontonummer = kontonummer
self.inhaber = inhaber
self.kontostand = kontostand

def einzahlen(self, betrag):
if betrag > 0:

self.kontostand += betrag
print(f"CHF {betrag} eingezahlt. Neuer Kontostand: CHF {self.kontostand}")

else:
print("Fehler: Betrag muss positiv sein")

def abheben(self, betrag):
if betrag > 0:

if betrag <= self.kontostand:
self.kontostand -= betrag
print(

f"CHF {betrag} abgehoben. Neuer Kontostand: CHF {self.kontostand}"
)

else:
print("Fehler: Nicht genügend Guthaben")

else:
print("Fehler: Betrag muss positiv sein")

def kontoinfo(self):
print(f"Konto {self.kontonummer} ({self.inhaber}): CHF {self.kontostand}")

Objekt erstellen
mein_konto = Bankkonto("CH123456", "Lea Müller", 1000)

Methoden aufrufen
mein_konto.kontoinfo()
mein_konto.einzahlen(500)
mein_konto.abheben(200)
mein_konto.kontoinfo()

Programm 7.2: bankkonto.py

92

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 7.1

Erstellen Sie eine Klasse Buch mit den Attributen titel, autor und seitenzahl. Implemen-
tieren Sie eine Methode info(), die eine Zusammenfassung der Buchinformationen ausgibt.
Erstellen Sie zwei Buchobjekte und rufen Sie die info()-Methode auf.

EDIT Aufgabe 7.2

Erweitern Sie die Bankkonto-Klasse um eine Methode ueberweisen(self, zielkonto,
betrag). Diese Methode soll eine Geldüberweisung von einem Konto auf ein anderes ermög-
lichen.

Anforderungen an die Methode:

1. Guthaben prüfen: Stellen Sie sicher, dass das Guthaben auf dem Quellkonto (self)
für den betrag ausreicht.

2. Überweisung durchführen: Falls das Guthaben ausreicht, ziehen Sie den Betrag vom
aktuellen Konto ab und fügen Sie ihn dem zielkonto hinzu.

3. Feedback geben: Geben Sie eine Erfolgs- oder Fehlermeldung auf der Konsole aus,
um den Benutzer über den Status der Überweisung zu informieren.

Tipp: Sie können die bereits existierenden Methoden abheben() und einzahlen() wieder-
verwenden, um Ihren Code sauber und kurz zu halten!

7.2 Vordefinierte Klassen in Python
Wie bereits erwähnt ist jegliche Variable in Python ein Objekt, das zu einer bestimmten Klasse
gehört. Python bietet eine Vielzahl von vordefinierten Klassen, welche wir in den vorausgehenden
Kapiteln bereits angeschaut haben, beispielsweise Datentypen wie int, float, str (String), list
(Liste) oder dict (Dictionary), sowie weitere Klassen. Diese Klassen haben ihre eigenen Methoden,
die spezifische Operationen auf den Objekten dieser Klassen ermöglichen.

Bemerkung 7.1 (Vordefinierte Klassen in Python):
Eine Auflistung aller vordefinierten Klassen in Python finden Sie in der offiziellen Doku-
mentation unter https://docs.python.org/3/library/stdtypes.html. Dort sind alle Da-
tentypen und deren Methoden beschrieben, die in Python verfügbar sind. Alternativ kann
folgender Code ausgeführt werden, um die Namen aller vordefinierten Klassen in Python zu
erhalten:

import builtins
import inspect

builtin_classes = [name for name, obj in vars(builtins).items() if inspect.
isclass(obj)]

print(builtin_classes)
Programm 7.5: builtin_classes.py

Weshalb kann man in Python eine Variable für gewisse vordefinierte Klassen erstellen, ohne ex-
plizit den Namen der Klasse anzugeben? Hier handelt es sich um etwas „Python-Magie“, bei der
Python den Typ der Variable automatisch erkennt und die entsprechende Klasse verwendet. Wenn

93

https://docs.python.org/3/library/stdtypes.html

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

wir beispielsweise eine Variable x = 5 erstellen, wird x automatisch als Objekt der Klasse int er-
stellt. Python kümmert sich im Hintergrund um die Zuweisung der richtigen Klasse, sodass wir uns
nicht explizit darum kümmern müssen. Wir könnten jedoch die Klasse explizit angeben, indem wir
beispielsweise x = int(5) schreiben, was dasselbe Ergebnis liefert.

Wie wir gesehen haben, beinhalten gewisse Klassen bereits Methoden, wie beispielsweise .append()
für Listen oder .keys() für Dictionaries. Diese Methoden sind spezifisch für die jeweilige Klasse
und ermöglichen es uns, auf einfache Weise mit den Objekten dieser Klassen zu interagieren. Falls
wir wissen möchten, welche Methoden eine bestimmte Klasse hat, können wir die Funktion dir()
verwenden, um eine Liste aller verfügbaren Methoden und Attribute zu erhalten. Zum Beispiel:

Beispiel 7.3 (Verfügbare Methoden einer Klasse):
Folgendes Beispiel zeigt, wie wir die verfügbaren Methoden für eine Liste und einen String
abfragen können. Dies kann sowohl für eine konkrete Instanz wie auch für den Klassennamen
selbst erfolgen:

Zeige verfügbare Methoden für eingebaute Typen mit dir()

Für eine konkrete Instanz
x = [1, 2, 3]
print("Methoden für die Instanz x (Liste):")
print(dir(x))

Für den Klassennamen selbst
print("Methoden für die Klasse 'list':")
print(dir(list)) # gibt dasselbe Ergebnis wie dir(x) aus

Beispiel für einen anderen Typ (str)
s = "hallo"
print("Methoden für die Instanz s (String):")
print(dir(s))

print("Methoden für die Klasse 'str':")
print(dir(str)) # gibt dasselbe Ergebnis wie dir(s) aus

Programm 7.6: verfuegbare_methoden.py

7.3 Klassenmethoden und Attribute
Neben den Instanzattributen (die zu jedem Objekt gehören) können Klassen auch Klassenattribute
haben, die für alle Instanzen gleich sind.

Beispiel 7.4 (Klassenattribute):
Folgendes Beispiel zeigt, wie Klassenattribute definiert und verwendet werden können, bei-
spielsweise um SchülerInnen mit Attributen wie Name und Klasse zu erstellen:

class Schueler:
schule = "Kantonsschule im Lee" # Klassenattribut

def __init__(self, name, klasse):

94

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

self.name = name # Instanzattribut
self.klasse = klasse # Instanzattribut

def info(self):
return f"{self.name}, Klasse {self.klasse}, {self.schule}"

Objekte erstellen
s_1 = Schueler("Lisa", "3a")
s_2 = Schueler("Tim", "4b")

print(s_1.info()) # Lisa, Klasse 3a, Kantonsschule im Lee
print(s_2.info()) # Tim, Klasse 4b, Kantonsschule im Lee

Klassenattribut über die Klasse ändern
Schueler.schule = "KLW"

Änderung wirkt sich auf alle Instanzen aus
print(s_1.info()) # Lisa, Klasse 3a, KLW
print(s_2.info()) # Tim, Klasse 4b, KLW

Programm 7.7: klassenattribute.py

Beispiel 7.5 (Instanzzähler):
Ein häufiger Anwendungsfall für Klassenattribute ist das Zählen von Instanzen:

class Produkt:
anzahl_produkte = 0 # Klassenattribut für alle Produkte

def __init__(self, name, preis):
self.name = name
self.preis = preis
Produkt.anzahl_produkte += 1 # Erhöhe bei jeder neuen Instanz

@classmethod
def get_anzahl_produkte(cls):

print("Anzahl Produkte:", cls.anzahl_produkte)

Objekte erstellen
p_1 = Produkt("Laptop", 1200)
p_2 = Produkt("Smartphone", 800)
p_3 = Produkt("Maus", 30)

Produkt.get_anzahl_produkte() # Anzahl Produkte: 3
Programm 7.8: instanzzaehler.py

95

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 7.3

Erstellen Sie eine Klasse Auto mit den Instanzattributen marke, modell und baujahr. Fügen
Sie ein Klassenattribut anzahl_autos hinzu, das die Gesamtzahl der erstellten Auto-Objekte
zählt. Implementieren Sie eine Klassenmethode get_statistik(), die die Anzahl der Autos
zurückgibt.

7.4 Vererbung und Polymorphismus

7.4.1 Vererbung

Ein mächtiges Konzept der Objektorientierung ist die Vererbung. Sie ermöglicht es, eine neue Klasse
basierend auf einer vorhandenen Klasse zu erstellen und deren Eigenschaften und Methoden zu
übernehmen.

Definition 7.2:
Bei der Vererbung erbt eine Kindklasse (Subklasse) Attribute und Methoden von einer
Elternklasse (Superklasse). Die Kindklasse kann zusätzliche Attribute und Methoden haben
oder vorhandene überschreiben. Die Vererbung geschieht mithilfe des Schlüsselworts class
Kindklasse(Elternklasse): sowie der Verwendung von super(), um auf die Elternklasse
zuzugreifen. Dabei wird zuerst eine Instanz der Elternklasse erstellt, bevor die Kindklasse
ihre eigenen Attribute und Methoden hinzufügt oder überschreibt.

Beispiel 7.6 (Vererbung):
Elternklasse

class Fahrzeug:
def __init__(self, marke, modell, baujahr):

self.marke = marke
self.modell = modell
self.baujahr = baujahr
self.km_stand = 0

def fahren(self, strecke):
self.km_stand += strecke
print(f"Fahre {strecke} km. Neuer Kilometerstand: {self.km_stand} km")

def info(self):
return f"{self.marke} {self.modell} ({self.baujahr}), {self.km_stand} km"

Kindklasse
class ElektroAuto(Fahrzeug):

def __init__(self, marke, modell, baujahr, batterie_kapazitaet):
super().__init__(marke, modell, baujahr) # Elternklassen-Konstruktor aufrufen
self.batterie_kapazitaet = batterie_kapazitaet
self.ladezustand = 100 # Prozent

def laden(self):
self.ladezustand = 100
print(f"{self.marke} {self.modell} wurde vollständig geladen.")

def fahren(self, strecke):
verbrauch = strecke * 0.2 # 20% Verbrauch pro 100 km
if self.ladezustand - verbrauch >= 0:

self.km_stand += strecke
self.ladezustand -= verbrauch
print(

f"Fahre {strecke} km elektrisch. Ladezustand: {self.ladezustand:.1f}%"

96

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

)
else:

print("Nicht genug Batterieladung für diese Strecke!")

def info(self):
basis_info = super().info() # Methode der Elternklasse aufrufen
return f"{basis_info}, Batterie: {self.batterie_kapazitaet} kWh, Ladung: {self.ladezustand:.1f

}%"

Objekte erstellen
normales_auto = Fahrzeug("VW", "Golf", 2020)
elektro_auto = ElektroAuto("Tesla", "Model 3", 2021, 75)

Methoden testen
normales_auto.fahren(100)
print(normales_auto.info())

elektro_auto.fahren(200)
print(elektro_auto.info())
elektro_auto.laden()
print(elektro_auto.info())

Programm 7.10: elektroauto.py

In diesem Beispiel:

• ElektroAuto erbt von Fahrzeug und erhält alle seine Attribute und Methoden.
• Mit super().__init__(...) rufen wir den Konstruktor der Elternklasse auf.
• Die Methode fahren() wird in der Kindklasse überschrieben, um die spezifische Funktionalität

eines Elektroautos zu implementieren.
• Mit super().info() greifen wir auf die Methode der Elternklasse zu.

EDIT Aufgabe 7.4

Erstellen Sie eine Elternklasse Person mit den Attributen name und alter sowie einer Metho-
de geburtstag_feiern(). Erstellen Sie dann eine Kindklasse Schueler mit einem zusätzli-
chen Attribut schulklasse und einer überschriebenen Methode vorstellen(), die auch die
besuchte Schulklasse ausgibt.Implementieren Sie eine zusätzliche Methode, welches es erlaubt,
dem Schüler eine neue Schulklasse zuzuweisen.

EDIT Aufgabe 7.5

Erstellen Sie eine Basisklasse Bankkonto wie im vorherigen Beispiel. Dann erstellen Sie eine
Unterklasse Sparkonto, die eine zusätzliche Methode zinsen_gutschreiben(zinssatz) hat,
die Zinsen basierend auf dem aktuellen Kontostand gutschreibt.

7.4.2 Polymorphismus

Unterschiedliche Klassen können Methoden mit denselben Namen haben, aber jede Klasse hat ihre
eigene Implementierung. Dies wird als Polymorphismus bezeichnet. Das Wort Polymorphismus
stammt aus dem Griechischen und bedeutet soviel wie ”viele Formen”, von griechisch poly = viel
und morphos = Form. Polymorphismus ermöglicht, dass verschiedene Klassen auf die gleiche Weise
angesprochen werden können, obwohl sich die Methoden unterscheiden. Dies ist insbesondere bei
Kindesklassen von Bedeutung, die die Methoden der Elternklasse überschreiben oder auf unter-
schiedliche Weise implementieren können.

97

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Beispiel 7.7 (Polymorphismus):
Folgendes Beispiel zeigt, wie verschiedene Klassen die gleiche Methode geraeusch() imple-
mentieren können:

class Tier:
def geraeusch(self):

return "Ein Tier macht ein Geräusch"

class Hund(Tier):
def geraeusch(self):

return "Wuff"

class Katze(Tier):
def geraeusch(self):

return "Miau"

tiere = [Tier(), Hund(), Katze()]
for tier in tiere:

print(tier.geraeusch())

Ausgabe:
Ein Tier macht ein Geräusch
Wuff
Miau

Programm 7.13: polymorphism.py

7.5 Praktisches Beispiel: Bibliothekssystem
Als umfassenderes Beispiel implementieren wir ein einfaches Bibliothekssystem mit mehreren Klas-
sen, die verschiedene Aspekte einer Bibliothek modellieren.

Beispiel 7.8 (Bibliothekssystem):
Folgendes Beispiel zeigt, wie wir Klassen für Bücher, Autoren usw. für eine eine Bibliothek
erstellen können:
class Buch:

def __init__(self, titel, autor, isbn):
self.titel = titel
self.autor = autor
self.isbn = isbn
self.ausgeliehen = False

def info(self):
status = "ausgeliehen" if self.ausgeliehen else "verfügbar"
return f'"{self.titel}" von {self.autor} (ISBN: {self.isbn}) - {status}'

class Bibliotheksmitglied:
def __init__(self, name, mitgliedsnummer):

self.name = name
self.mitgliedsnummer = mitgliedsnummer

98

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

self.ausgeliehene_buecher = []

def buch_ausleihen(self, buch):
if not buch.ausgeliehen:

self.ausgeliehene_buecher.append(buch)
buch.ausgeliehen = True
print(f"{self.name} hat '{buch.titel}' ausgeliehen.")
return True

else:
print(f"Fehler: '{buch.titel}' ist bereits ausgeliehen.")
return False

def buch_zurueckgeben(self, buch):
if buch in self.ausgeliehene_buecher:

self.ausgeliehene_buecher.remove(buch)
buch.ausgeliehen = False
print(f"{self.name} hat '{buch.titel}' zurückgegeben.")
return True

else:
print(f"Fehler: {self.name} hat '{buch.titel}' nicht ausgeliehen.")
return False

def info(self):
anzahl = len(self.ausgeliehene_buecher)
info = f"{self.name} (Nr. {self.mitgliedsnummer}) - {anzahl} Bücher ausgeliehen"
if anzahl > 0:

info += ":\n"
for buch in self.ausgeliehene_buecher:

info += f"- {buch.titel}\n"
return info

class Bibliothek:
def __init__(self, name):

self.name = name
self.buecher = []
self.mitglieder = []

def buch_hinzufuegen(self, buch):
self.buecher.append(buch)
print(f"Buch '{buch.titel}' wurde zur Bibliothek hinzugefügt.")

def mitglied_registrieren(self, mitglied):
self.mitglieder.append(mitglied)
print(f"{mitglied.name} wurde als Mitglied registriert.")

def buch_suchen(self, suchbegriff):
ergebnisse = []
for buch in self.buecher:

if (
suchbegriff.lower() in buch.titel.lower()
or suchbegriff.lower() in buch.autor.lower()
or suchbegriff in buch.isbn

):
ergebnisse.append(buch)

return ergebnisse

def verfuegbare_buecher(self):
return [buch for buch in self.buecher if not buch.ausgeliehen]

def statistik(self):
verfuegbar = len(self.verfuegbare_buecher())
ausgeliehen = len(self.buecher) - verfuegbar
return (

f"Bibliothek {self.name}:\n"
f"- Gesamtzahl Bücher: {len(self.buecher)}\n"
f"- Verfügbare Bücher: {verfuegbar}\n"
f"- Ausgeliehene Bücher: {ausgeliehen}\n"
f"- Anzahl Mitglieder: {len(self.mitglieder)}"

)

99

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Beispielverwendung
bibliothek = Bibliothek("Stadtbibliothek Winterthur")

Bücher erstellen und hinzufügen
buch_1 = Buch("Harry Potter und der Stein der Weisen", "J.K. Rowling", "9783551557414")
buch_2 = Buch("Der Herr der Ringe", "J.R.R. Tolkien", "9783608939842")
buch_3 = Buch("Die unendliche Geschichte", "Michael Ende", "9783522202664")

bibliothek.buch_hinzufuegen(buch_1)
bibliothek.buch_hinzufuegen(buch_2)
bibliothek.buch_hinzufuegen(buch_3)

Mitglieder erstellen und registrieren
mitglied_1 = Bibliotheksmitglied("Lisa Müller", "M001")
mitglied_2 = Bibliotheksmitglied("Tom Schneider", "M002")

bibliothek.mitglied_registrieren(mitglied_1)
bibliothek.mitglied_registrieren(mitglied_2)

Bücher ausleihen
mitglied_1.buch_ausleihen(buch_1)
mitglied_2.buch_ausleihen(buch_3)

Suche durchführen
print("\nSuchergebnisse für 'Harry':")
ergebnisse = bibliothek.buch_suchen("Harry")
for buch in ergebnisse:

print(buch.info())

Statistik anzeigen
print("\n" + bibliothek.statistik())

Infos zu Mitgliedern anzeigen
print("\nMitgliederinformationen:")
print(mitglied_1.info())
print(mitglied_2.info())

Buch zurückgeben
mitglied_1.buch_zurueckgeben(buch_1)

Aktualisierte Statistik
print("\n" + bibliothek.statistik())

Programm 7.14: library_system.py

EDIT Aufgabe 7.6

Erweitern Sie das Bibliothekssystem um eine neue Klasse Zeitschrift, die von Buch erbt,
aber zusätzlich eine ausgabe (z.B. „Mai 2024“) hat. Überschreiben Sie die info()-Methode
entsprechend, und fügen Sie mindestens eine Zeitschrift zur Bibliothek hinzu.

100

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Trophy Aufgabe (Challenge) 7.7

Entwickeln Sie ein vollständiges Lagerverwaltungssystem mit folgenden Klassen:

• Produkt (Basisklasse mit Name, Artikelnummer, Preis)
• Elektronikprodukt (erbt von Produkt, zusätzlich mit Garantiedauer)
• Lebensmittel (erbt von Produkt, zusätzlich mit Haltbarkeitsdatum)
• Lager (verwaltet Produkte, mit Methoden zum Hinzufügen, Entfernen, Suchen und

Bestandsanzeige)
• Bestellung (enthält Produkte und Mengen, berechnet Gesamtpreis)

Implementieren Sie auch eine Methode, die abgelaufene Lebensmittel identifiziert und aus
dem Lager entfernt.

7.6 Zusammenfassung
Die objektorientierte Programmierung mit Klassen ist ein mächtiges Werkzeug zur Strukturierung
von Code und Modellierung realer Objekte. Wichtige Konzepte sind:

• Klassen definieren Vorlagen für Objekte mit Attributen und Methoden
• Objekte sind konkrete Instanzen von Klassen
• Methoden ermöglichen es, auf Attribute zuzugreifen und diese zu verändern.
• Vererbung ermöglicht die Wiederverwendung und Erweiterung von Code in Form von Kind-

klassen, die ihre Attribute von Elternklassen erben und gegebenenfalls überschreiben.
• Polymorphismus ermöglicht es, Methoden mit denselben Namen in verschiedenen Klassen zu

verwenden, wobei jede Klasse ihre eigene, unabhängige Implementierung hat.

Durch die Verwendung von Klassen können komplexe Systeme modelliert und implementiert wer-
den, wodurch der Code besser strukturiert, lesbarer und wartbarer wird. Insbesondere in Games sind
Klassen ein zentrales Konzept, um verschiedene Spielobjekte (wie Spieler, Gegner, Items) zu mo-
dellieren und deren Verhalten zu steuern. In der Praxis werden Klassen häufig in Kombination mit
anderen Konzepten wie Vererbung und Polymorphismus verwendet, um flexible und erweiterbare
Softwarearchitekturen zu schaffen.

101

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Kapitel 8

Praktische Anwendungen

8.1 Kalorienverbrauch
Folgende Beispiele sollen die meisten der bisher gelernten Programmier-Konzepte konkret veran-
schaulichen. Stellen Sie sich vor, Sie sind SportlerIn und möchten Ihren Kalorienbedarf berechnen,
um sich für auf einen kommenden Wettkampf optimal zu ernähren. Hierzu wollen Sie zunächst
Ihren theoretischen täglichen Kalorienbedarf berechnen. Der theoretische tägliche Kalorienbedarf
berechnet sich wie folgt:

1. Ihr Grundumsatz (englisch Base Metabolic Rate (BMR)): Dies ist ihr Grundbedarf, also die
Anzahl Kilokalorien, welche Sie theoretisch benötigen, falls Sie sich gar nicht bewegen.

2. Ihr Leistungsumsatz, d.h., zusätzliche Energie, die Sie bei Aktivitäten wie Spazieren, Rad-
fahren, Joggen usw. verbrennen.

Beide Komponenten sind schwierig abzuschätzen. Sie möchten jedoch eine erste Einschätzung Ihrer
BMR haben, indem sie einige bekannte Formeln auf sich selber anwenden und diese vergleichen.

EDIT Aufgabe 8.1

Schreiben Sie eine Python-Funktion, um den Grundumsatz anhand der Harris-Benedict-
Formel zu berechnen und geben Sie das Resultat per return zurück.

1. Für Männer:

BMR =88.362+
(13.397 × Gewicht in kg)+
(4.799 × Körpergrösse in cm)−
(5.677 × Alter in Jahren)

2. Für Frauen:

BMR =447.593+
(9.247 × Gewicht in kg)+
(3.098 × Körpergrösse in cm)−
(4.330 × Alter in Jahren)

Wir haben nun eine erste, grobe Einschätzung des BMR. Allerdings gibt es auch noch weitere

102

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

mögliche Formeln, mithilfe denen der BMR berechnet werden kann. Diese möchten wir nun ebenfalls
berechnen, um die unterschiedlichen Schätzungen des BMR anhand der verschiedenen Methoden zu
vergleichen.

EDIT Aufgabe 8.2

Schreiben Sie zwei weitere Funktionen, um den BMR anhand der Mifflin-St-Jeor-Gleichung
sowie der Katch-McArdle-Formel zurückzugeben und berechnen Sie den Durchschnitt al-
ler drei Formeln in einer weiteren Funktion.

1. Mifflin-St-Jeor-Gleichung:
(a) Männer:

BMR = 10 × Gewicht (kg)
+ 6.25 × Grösse (cm)
− 5 × Alter (Jahre)
+ 5

(b) Frauen:

BMR = 10 × Gewicht (kg)
+ 6.25 × Grösse (cm)
− 5 × Alter (Jahre)
− 161

2. Katch-McArdle-Formel (gleich für Männer sowie Frauen):

BMR = 370
+ (21.6 × FFM in kg)

Wobei die fettfreie Masse (FFM) zuerst berechnet werden muss:

FFM = Körpergewicht (kg)
× (1 − Körperfettanteil)

Nun haben wir eine etwas verlässlichere Einschätzung unseres Grundumsatzes. Zum Grundumsatz
können wir nun auch noch den Leistungsumsatz hinzufügen, um den gesamten theoretischen tägli-
chen Energieumsatz in Kilokalorien zu berechnen.

103

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 8.3

Berechnen Sie Ihren Leistungsumsatz (durch Leistung benötigte Energie) anhand der Tabelle
8.1.

Gewicht (kg) 60 65 70 75 80 85 90 95 100 105

Spazieren 4.5 5.1 5.4 5.7 6.0 6.4 6.7 7.3 8.0 9.0

Schnelles Gehen 5.5 6.3 7.0 7.5 8.0 8.6 9.5 10.0 10.6 11.3

Fahrradfahren 6.5 7.5 8.0 9.0 9.5 10.3 11.0 11.7 12.5 13.6

Schwimmen 8.0 9.2 10.0 10.8 11.5 12.5 13.7 14.4 15.4 16.5

Rudern 11.0 13.0 14.3 15.0 16.5 17.5 19.0 20.5 21.8 23.5

Jogging 13.0 14.5 16.0 17.5 19.0 20.0 22.0 23.5 24.5 26.5

Laufen 16.0 18.5 20.0 22.0 23.5 25.0 27.5 29.0 31.0 33.5

Sprint 19.0 21.5 24.0 26.0 28.0 30.0 32.5 34.7 35.6 39.0

Tabelle 8.1: Kalorienverbrauch für unterschiedliche Aktivitäten, pro Minute, in Abhängigkeit
des Körpergewichts

Wenn z.B. eine 80 kg schwere Person 1 Stunde lang rudert und 20 Minuten spaziert wären
die Listen wie folgt:

l_zeit = [60, 20] # Zeit in Minuten
l_kcal = [16.5, 6] # Kalorien pro Aktivität

Erstellen Sie zwei Listen:

1. Eine Liste für die Zeit, während der Sie täglich einer Aktivität nachgehen
2. Eine Liste mit dem Kalorienverbrauch pro Minute für jede dieser Aktivitäten

Schreiben Sie eine Python-Funktion berechne_leistungsumsatz, um Ihren Leistungsum-
satz zu berechnen. Das erwartete Resultat für das Beispiel hier wäre: 1110 (= Summe von
[990, 120]). Das Resultat soll an das Hauptprogramm zurückgegeben und in einer Variable
kalorienverbrauch gespeichert werden.

EDIT Aufgabe 8.4

Schreiben Sie nun eine weitere Funktion, die Ihren gesamten Energieumsatz berechnet, als
Summe der folgender Teile:

• BMR, den Sie in Aufgabe 8.2 berechnet haben (Durchschnitt der drei Formeln)
• Leistungsumsatz, den Sie in Aufgabe 8.3 berechnet haben

Diese Funktion ist extrem kurz und umfässt nur eine einzige (neue) Zeile.

104

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Exclamation-Triangle Achtung

Die Zahlen zu Energiebedarf und Kalorien, die Sie im Rahmen dieser Übungen berechnet
haben, sollten Sie mit Vorsicht geniessen, aus folgenden Gründen:

• Ihr realer Energiebedarf kann signifikant von Ihrem berechneten Energiebedarf abwei-
chen. Viele weitere Faktoren, die nicht in den Formeln enthalten sind, können diesen
beeinflussen, beispielsweise Ihre Köpertemperatur, Ihre Fitness, Ihre Muskelmasse, so-
wie Ihre Non-Exercise Activity Thermogenesis (NEAT), wobei Letzteres Energie be-
zeichnet, die Sie durch Bewegungen, die nicht Sport sind, verbrauchen (beispielsweise
durch „Zappeln“ aber auch kurze Spaziergänge und alltägliche Aktivitäten).

• Sie sollten sich bezüglich konsumierter Kalorien vor Augen halten, dass „zu viele“ kon-
sumierte Kalorien nicht automatisch mit einer Gewichtszunahme verbunden sind. In
einem Kilo Körperfett stecken ca. 8000 Kilokalorien, wobei der Köper über verschiede-
ne Mechanismen verfügt, um ein stabiles Körpergewicht zu halten, etwa die Erhöhung
oder Senkung der Körpertemperatur im Falle eines kurzfristigen Kalorien-Überschusses,
respektive -Defizits. Allerdings kann es interessant sein, zu wissen, dass einige, nicht
sehr sättigende Lebensmittel besonders viele Kalorien enthalten ––- wie beispielsweise
hochverarbeitete Snacks oder Süssgetränke.

105

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

8.2 Bilder Bearbeiten (Anwendung von Listen und Schleifen)
In diesem Abschnitt werden wir uns mit der Bearbeitung von Bildern in Python beschäftigen. Sie
lernen, wie Sie auf einzelne Bildpunkte (Pixel) zugreifen und deren Farbwerte gezielt verändern kön-
nen. Schritt für Schritt werden Sie verschiedene Effekte wie Invertierungen, Filter oder das Erzeugen
von Mustern für Schwarz-Weiss-, Graustufen- und Farbbilder programmieren. Diese Übungen bie-
ten eine praktische Anwendung für viele der bisher gelernten Konzepte wie Schleifen und Listen in
einem visuell ansprechenden Kontext.

8.2.1 Vorbereitung
1. Bitte Installieren Sie das Python-Paket Pillow wie folgt:

für MacOS (Bash):
python3 -m pip install --upgrade pip
python3 -m pip install pillow

für Windows (PowerShell):
py -m pip install --upgrade pip
py -m pip install pillow

2. Erstellen Sie auf Ihrem eigenen Rechner einen neuen Ordner mit dem Namen Bilder_Bearbeiten.
3. Laden Sie die Datei dateien.zip von Moodle herunter, und zwar so, dass die Datei dateien.zip

in dem neu angelegten Ordner Bilder_Bearbeiten abgespeichert ist.
4. Die Datei dateien.zip ist komprimiert und muss zuerst entpackt werden. Entpacken geht

ganz einfach so:
Windows: Rechtsklick auf dateien.zip und dann Alle extrahieren.
macOS: Doppelklick auf datein.zip

5. Öffnen Sie das Python-File bilder_template.py in VS Code.
6. In diesem Python-File bilder_template.py ist eine Vorlage (Template) zu allen nachfolgen-

den Aufgaben bereits gegeben. Bitte lösen Sie die Aufgaben, indem Sie diese Vorlage Schritt
für Schritt durch Ihren Python-Code ergänzen.

8.2.2 Aufgaben zur Bearbeitung von Bildern

8.2.2.1 Schwarz-Weiss-Bilder

EDIT Aufgabe 8.5 Anzahl der schwarzen Pixel in einem gegeben Bild zählen

Schreiben Sie eine Python-Funktion count_black_pixels(filename), welche das ein Schwarz-
Weiss-Bild mit dem Dateinamen filename als Argument erhält und die Anzahl der schwarzen
Pixel in diesem Bild zählt und diese Anzahl mit return zurück gibt. Betrachten Sie dazu
unbedingt die Vorlage.

EDIT Aufgabe 8.6 Schwarz-Weiss-Bild invertieren

Schreiben Sie eine Python-Funktion invert_black_white_image(filename), welche ein Schwarz-
Weiss-Bild mit dem Dateinamen filename als Argument erhält und dieses Bild invertiert:
Alle weissen Pixel (Pixel mit Wert 1) sollen schwarz werden und alle schwarzen Pixel (Pixel
mit Wert 0) sollen weiss werden.

Stellen Sie schliesslich das originale Bild und das invertierte Bild nebeneinander dar.

106

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 8.7 Bild von zufällig gewählten (schwarz-weiss) Pixeln

Schreiben Sie eine Python-Funktion random_black_white_image(width, height), welche
ein Schwarz-Weiss-Bild mit den gegebenen Dimensionen (Breite / Höhe) erzeugt. Jeder Pixel
soll dabei zufällig entweder schwarz (0) oder weiss (1) gewählt werden. Der Aufruf

random_black_white_image(400, 600)

sollte dann beispielsweise ein Schwarz-Weiss-Bild der Breite 400 Pixel und Höhe 600 Pixel
generieren, wobei jeder Pixelwert (0 oder 1) zufällig gewählt wurde.

8.2.2.2 Graustufenbilder

EDIT Aufgabe 8.8 Graustufen invertieren

Schreiben Sie eine Python-Funktion invert_grayscale_image(filename), welche ein Grau-
stufenbild (256 Stufen) mit dem Dateinamen filename als Argument erhält und dieses Bild
invertiert: Aus dem hellen (weissen) Pixel mit Wert 255 soll der dunkle (schwarze) Pixel mit
Wert 0 werden, der dunkle Pixel mit Werte 1 soll zum hellen Pixel mit Wert 254 werden und
so weiter.

Stellen Sie das originale Bild und das invertierte Bild nebeneinander dar.

EDIT Aufgabe 8.9 Nur 8 verschiedene Graustufen

Schreiben Sie eine Python-Funktion only_8_shades_of_gray(filename), welche ein Grau-
stufenbild (256 Stufen) mit dem Dateinamen filename als Argument erhält und mit nur 8
(anstelle von 256) verschiedenen Graustufen darstellt: Die Pixel mit Werten in {0, 1, 2, . . . , 31}
sollen alle durch den Graustufenwert 0 (schwarz) dargestellt werden, die Pixel mit Werten in
{32, 33, 34, . . . , 63} durch den Wert 32 und so weiter. Es ergeben sich also 8 Gruppen (Men-
gen), welche je 32 verschiedene Graustufenwerte durch denselben Graustufenwert darstellen.

Stellen Sie das originale Bild und das transformierte Bild nebeneinander dar.

EDIT Aufgabe 8.10 Vertikale Streifen

Schreiben Sie ein Python-Funktion vertical_stripes(filename), welche ein Graustufen-
bild mit dem Dateinamen filename als Argument erhält. Die Funktion soll „vertikale Strei-
fen“ in gleichmässigen Abständen durch das Bild legen.

107

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

8.2.2.3 RGB-Bilder

EDIT Aufgabe 8.11 Grünanteil erhöhen

Schreiben Sie ein Python-Funktion increase_green(filename), welche ein RGB-Bild mit
dem Dateinamen filename als Argument erhält und den Grünanteil dieses RGB-Bilds um 20
Prozent verstärkt / erhöht. Es ist kein Problem, wenn ein Wert bei der Erhöhung den Wert
255 übersteigt: Die Image-Library interpretiert jeden Wert ≥ 255 als 255.

Stellen Sie das originale Bild und das transformierte Bild nebeneinander dar.

(Bei Bildern mit Grünanteil von > 212 wird die Erhöhung natürlich de facto weniger als 20
Prozent betragen.)

EDIT Aufgabe 8.12 Sepia-Filter

In dieser Aufgabe wollen wir einen Sepia-Filter (Sepia-Effekt) erstellen. Wie dieser Filter de-
finiert ist, können Sie unter https://de.wikipedia.org/wiki/Sepia_(Fotografie) nach-
lesen. Der Sepia-Filter findet häufige Anwendung in den sozialen Medien (e.g. Instagram).

Schreiben Sie ein Python-Funktion sepia_filter(filename), welche ein RGB-Bild mit dem
Dateinamen filename als Argument erhält und den Sepia-Effekt auf das Bild anwendet.

Stellen Sie das originale Bild und das transformierte Bild nebeneinander dar.

8.2.2.4 Weitere Aufgaben

EDIT Aufgabe 8.13 Primzahlen als Pixel

Schreiben Sie eine Python-Funktion is_prime(number), welche für eine gegebene natürliche
Zahl number entscheidet, ob number eine Primzahl ist (return True) oder nicht (return
False).

Testfälle:

is_prime(0) # return False
is_prime(23) # return True
is_prime(97) # return True
is_prime(91) # return False

Erstellen Sie nun eine leere Liste. Diese Liste soll am Ende ein Schwarz-Weiss-Bild von 200 ×
200 Pixeln kodieren und somit eine Länge von 40000 haben. Der k-te Eintrag der Liste für

k ∈ {0, 1, 2, . . . , 39999}

soll 0 (schwarz) sein, falls k eine Primzahl ist und 1 (weiss) sonst.

EDIT Aufgabe 8.14 Eigene Aufgaben

Erstellen Sie eigene interessante Aufgaben. Falls Sie eine besonders kreative Aufgabe entwi-
ckelt haben, senden Sie mir diese bitte per Mail.

108

https://de.wikipedia.org/wiki/Sepia_(Fotografie)

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Kapitel 9

Game

9.1 Einführung in Pygame
In diesem Kapitel entwickeln wir Schritt für Schritt ein eigenes 2D-Game mit pygame-ce. pygame-ce
ist eine moderne, Community-gepflegte Variante von Pygame und wird genau gleich importiert mit
import pygame as pg. Sie eignet sich hervorragend, um in Python Grafiken, Animationen, Sound
und Interaktionen umzusetzen.

Essentielle Bausteine eines Games sind:

• Fenster (Auflösung, Titel) und Zeichenfläche („screen“)
• Game-Schleife mit Ereignissen (Tastatur, Maus) und Zeitsteuerung (Frames Per Second

(FPS) / „refresh rate“)
• Zeichnen: Hintergrund, Farben, geometrische Figuren, Bilder („Sprites“)
• Zustände und Objekte (z.B. Spieler als Rect), Bewegungen und Kollisionen
• Medien: Bilder, Icon, Schrift, Sound / Musik

Definition 9.1 (Game-Schleife):
Ein Game läuft in einer Endlosschleife, bis das Programm beendet wird. In jeder Runde
werden der Eingabestatus gelesen („Events“), der interne Zustand aktualisiert („Update“)
und die Szene gezeichnet („Render“). Eine Clock (= Uhr) begrenzt die Bildwiederholrate
(FPS), sodass das Game stabil und gleichmässig läuft.

Um pygame-ce in VS Code zu installieren, gehen Sie wie folgt vor:

1. Öffnen Sie ein Terminal-Fenster in VS Code („Terminal“ → „New Terminal“).
2. Installieren Sie pygame-ce mit pip:

pip install pygame-ce
3. Überprüfen Sie die Installation, indem Sie eine neue Python-Datei game_test.py mit folgen-

dem Code ausführen:

import pygame as pg
print(pg.ver)
Dieser Code sollte, sofern pygame-ce korrekt installiert ist, die Versionsnummer von pygame-
ce ausgeben. Damit ist pygame-ce einsatzbereit und Sie können mit den unten stehenden
Übungen starten.

109

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Exclamation-Triangle Achtung

Wichtiger Hinweis 9.1:
Falls die Installation nicht funktioniert, erstellen Sie zuerst ein virtuelles Umfeld (venv) in
VS Code und installieren Sie pygame-ce darin:

• Öffnen Sie ein Terminal-Fenster in VS Code („Terminal“ → „New Terminal“).
• Erstellen Sie ein virtuelles Environment:

python3 -m venv venv
Aktivieren Sie das venv:
Windows: venv\Scripts\activate
macOS: source venv/bin/activate

• Führen Sie nun nochmals die obigen Schritte zur Installation von pygame-ce durch.

Beispiel 9.1 (Minimale Game-Schleife):
Folgender Code zeigt den minimalen Aufbau eines Pygame-Programms mit Fenster, Game-
Schleife und Ereignisverarbeitung. Kopieren Sie den Code in eine Datei game_intro.py und
führen Sie ihn in VS Code aus.

import pygame as pg

pg.init() # Pygame initialisieren (starten)
HEIGHT = 600 # Höhe des Fensters
WIDTH = 800 # Breite des Fensters
WINDOW = (WIDTH, HEIGHT) # Fenstergrösse (als Tuple gespeichert)
screen = pg.display.set_mode(WINDOW) # Fenster erstellen
pg.display.set_caption("Mein erstes Game") # Fenstertitel setzen
clock = pg.time.Clock() # Clock für Zeitsteuerung erstellen

running = True # Hauptschleife
while running:

--- Events ---
for event in pg.event.get():

if event.type == pg.QUIT:
running = False

--- Update --- (Spielzustand aktualisieren)

--- render (zeichnen) ---
screen.fill((30, 30, 40))
pg.display.flip()

--- Zeitsteuerung ---
clock.tick(60) # 60 FPS

pg.quit()

Ein schwarzes Fenster sollte erscheinen, das Sie mit dem Schliessen-Knopf beenden können.

110

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 9.1 Fenster-Titel setzen

Setzen Sie einen passenden Fenstertitel, indem Sie folgende Zeile abändern:

pg.display.set_caption("IHR TITEL HIER...")

Trophy Aufgabe (Challenge) 9.2

Laden Sie ein Fenster-Icon (.png oder .jpg): Laden Sie ein beliebiges Bild aus dem Internet
herunter, speichern Sie es unter den Downloads und ziehen Sie es in Ihren Projektordner
in VS Code (dort wo auch Ihre Python-Datei ist). Fügen Sie nun diese beiden Zeilen nach
pg.display.set_mode(...) ein:

icon = pg.image.load("path/to/icon.png")
pg.display.set_icon(icon)

Wenn Ihr Ordner beispielsweise Informatik/ heisst und das Bild unter

Informatik/Game/icon.png

gespeichert ist, dann verwenden Sie

pg.image.load("Game/icon.png").

Bei Windows ändert sich nur das Fenster-Icon, bei macOS wird das Icon nur im Dock ange-
zeigt.

EDIT Aufgabe 9.3 Hintergrund zeichnen

Füllen Sie den Hintergrund pro Frame mit einer Farbe mittels screen.fill((R,G,B)). Ex-
perimentieren Sie mit zufällig generierten Farbtönen:

import random
...
In der Game-Schleife, im Render-Abschnitt:
r = random.randint(0, 255)
g = random.randint(0, 255)
b = random.randint(0, 255)
screen.fill((r, g, b))

Die Farbe muss in der Hauptschleife, aber noch vor pg.display.flip(), gesetzt werden.

• Was ändert sich, wenn Sie die drei Zeilen für die Farbwerte r, g, b vor die Haupt-
schleife setzen?

• Schreiben Sie den Code so um, dass die Farbe nur alle 10 Frames geändert wird.

111

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 9.4 Geometrische Figuren

Zeichnen Sie geometrische Formen: Rechteck, Kreis, Linie. Nutzen Sie dafür pg.draw.rect,
pg.draw.circle und pg.draw.line. Achten Sie darauf, nach dem Zeichnen pg.display.
flip() aufzurufen. Versuchen Sie, mittels folgender Befehle einen Apfel zu zeichnen: Ver-
wenden Sie folgende Befehle:

pg.draw.rect(screen, rect_color, pg.Rect(rect_x, rect_y, rect_width,
rect_height))

pg.draw.circle(screen, circle_color, (circle_x, circle_y), circle_radius)
pg.draw.line(screen, line_color, (start_x, start_y), (end_x, end_y),

line_width)

Dabei bezeichnen die Parameter Folgendes:

• screen: die Zeichenfläche
• rect_color, circle_color, line_color: Farbe als RGB-Tupel, z. B. (255, 0, 0)

für Rot
• pg.Rect(...): Rechteck-Objekt mit Position (x,y) und Grösse (width,height)
• (circle_x, circle_y): Mittelpunkt des Kreises
• circle_radius: Radius des Kreises
• (start_x, start_y), (end_x, end_y): Start- und Endpunkt der Linie
• line_width: Dicke der Linie in Pixeln (optional)

EDIT Aufgabe 9.5 Sonnenuntergang erstellen

Erzeugen Sie eine einfache Szene mit Himmel, Sonne und Meer. Tipp: Zeichnen Sie einen
Farbverlauf am Himmel, indem Sie in einer Schleife schmale horizontale Rechtecke in leicht
unterschiedlichen Farbtönen zeichnen. Die Sonne ist ein Kreis; das Meer ein Rechteck in der
unteren Hälfte. Das Meer sollte ebenfalls einen Farbverlauf haben (von hellblau zu dunkel-
blau). Verwenden Sie folgenden Code als Vorlage:

Himmel (einfacher Gradient)
for y in range(0, HEIGHT//2):

red = 100 + int(155 * (y / (HEIGHT//2))) # 100 ... 255
pg.draw.rect(screen, (red, 120, 180), (0, y, WIDTH, 1))

Sonne
IHR CODE HIER...

Meer
IHR CODE HIER...

Optional: Lassen Sie die Sonne langsam sinken (Animation über mehrere Frames).

112

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 9.6 Bewegungen (Tastatur)

Erstellen Sie ein Spieler-Rect (z. B. 50 x 50) und bewegen Sie es mit den Pfeiltasten. Nut-
zen Sie pg.key.get_pressed() und begrenzen Sie die Bewegung auf das Fenster („Screen
Bounds“). Verwenden Sie folgende Code-Vorlage:

Vor der Game-Schleife:
player = pg.Rect(100, 100, 50, 50) # Spieler-Rechteck erstellen
speed = 5 # Bewegungsgeschwindigkeit

In der Game-Schleife:
keys = pg.key.get_pressed() # alle gedrückten Tasten abfragen
if keys[pg.K_LEFT]:

player.x -= speed
if keys[pg.K_RIGHT]:

player.x += speed
if keys[pg.K_UP]:

player.y -= speed
if keys[pg.K_DOWN]:

player.y += speed
player.clamp_ip(screen.get_rect()) # Rechteck innerhalb des Fensters halten

pg.draw.rect(screen, (0,0,0), player) # Spieler (Rechteckt) zeichnen

EDIT Aufgabe 9.7 Kollisionen

Legen Sie ein Rect als „Ziel/Item“ an (z. B. kleiner Kreis oder Block). Prüfen Sie eine Kollision
mit player.colliderect(item). Bei Kollision: Position des Items neu zufällig setzen und
optional Punkte zählen.

import random
...
Vor der Game-Schleife:
item = pg.Rect(400, 300, 30, 30) # dieses Item soll gesammelt werden

...
In der Game-Schleife, nach der Spieler-Bewegung:
if player.colliderect(item):

item.topleft = (random.randint(0, WIDTH-30), random.randint(0, HEIGHT
-30))

pg.draw.rect(screen, (255, 0, 0), item) # Item zeichnen

113

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 9.8 Highscore anzeigen

Erstellen Sie eine Variable score, die bei jeder Kollision um 1 erhöht wird. Zeichnen Sie
den aktuellen Punktestand mit font.render(...) oben links im Fenster. Verwenden Sie
folgenden Code, um Text zu zeichnen:

Vor der Game-Schleife:
font = pg.font.Font(None, 36) # Schriftart und -grösse
...
In der Game-Schleife, im Render-Abschnitt:
score_text = font.render(f"Score: {score}", True, (0, 0, 0))
screen.blit(score_text, (10, 10)) # Text oben links zeichnen

EDIT Aufgabe 9.9 Ereignisse (Keyboard / Maus)

Reagieren Sie auf KEYDOWN- und MOUSEBUTTONDOWN-Events. Beispiel: Bei Mausklick wird an
der Klickposition ein kleiner Kreis gezeichnet (oder eine Partikelspur gestartet). Bei ESC
beendet sich das Game. Da die Kreise jedes Frame neu gezeichnet werden müssen, speichern
Sie die Positionen in einer Liste.

Um Ereignisse wie etwa einen Maus-Klick zu verarbeiten, verwenden Sie folgenden Code:

Vor der Game-Schleife:
mouse_positions = [] # Liste für Maus-Klick-Positionen

In der Game-Schleife, im Event-Abschnitt:
for event in pg.event.get():

if event.type == pg.QUIT:
running = False

elif event.type == pg.KEYDOWN and event.key == pg.K_ESCAPE:
running = False

elif event.type == pg.MOUSEBUTTONDOWN:
x, y = event.pos
mouse_positions.append((x, y)) # Position speichern

In der Game-Schleife, im Render-Abschnitt:
for pos in mouse_positions:

pg.draw.circle(screen, (255, 100, 100), pos, 10)

EDIT Aufgabe 9.10 Medien: Bild und Sound

Laden Sie ein Bild (.png /.jpg) und zeichnen Sie es mit screen.blit(...). Skalieren/ro-
tieren Sie es optional. Laden Sie einen Sound (.wav/ .ogg / .mp3) mit pg.mixer.Sound
und spielen Sie ihn bei einer Kollision ab.

Für Bilder:

Vor der Game-Schleife:
img = pg.image.load("assets/player.jpeg") # Bild laden
img = pg.transform.scale(img, (64, 64)) # optional: skalieren

114

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

In der Game-Schleife, im Render-Abschnitt:
screen.blit(img, player) # Bild an Spieler-Position zeichnen

Für Sounds:

Vor der Game-Schleife:
pg.mixer.init() # Mixer initialisieren (ist nötig für Sound)
motor = pg.mixer.Sound("assets/motor.wav") # Sound laden

In der Game-Schleife, bei Kollision:
if player.colliderect(item):

motor.play() # Sound abspielen

Hinweis: Legen Sie die Medien in einem Ordner (z. B. assets/) ab und achten Sie auf relative
Pfade. Die Dateien player.jpeg und motor.mp3 finden Sie auf Moodle.

Optional: Skalieren Sie das Bild auf eine bestimmte Höhe, wobei das Seitenverhältnis bei-
behalten wird, indem Sie das Seitenverhältnis mit den Befehlen img.get_width() und img.
get_height() berechnen.

Tipp: Viele kostenlose Soundeffekte finden Sie unter https://pixabay.com/sound-effects.

Trophy Aufgabe (Challenge) 9.11 Bonus: Kleines Sammelspiel

Verbinden Sie die vorherigen Bausteine: Bewegen Sie den Spieler, sammeln Sie Items (Punkte
zählen), spielen Sie dabei einen Sound ab und zeichnen Sie im Hintergrund Ihren Sonnenun-
tergang. Begrenzen Sie die Spielzeit auf 60 Sekunden und zeigen Sie die verbleibende Zeit im
Fenstertitel an.

EDIT Aufgabe 9.12 Pong-Spiel

Erstellen Sie das klassische Pong-Spiel mit zwei Paddles und einem Ball.

Das folgende Video zeigt das fertige Pong-Spiel: https://youtu.be/vCoBgJlUg_c

Die Paddles werden mit den Tasten W/S (links) und UP/DOWN (rechts) gesteuert. Der Ball
bewegt sich automatisch und prallt von den Paddles und den oberen/unteren Bildschirmrän-
dern ab. Zählen Sie die Punkte, wenn ein Spieler den Ball am Gegner vorbei spielt. Gehen
Sie Schritt für Schritt vor, indem Sie folgende Elemente umsetzen:

1. Rechtecke für Paddles und Ball zeichnen
2. Mittellinie zeichnen
3. Tastatur-Eingaben für Paddle-Bewegung (W/S und UP/DOWN)
4. Ball von der Mitte aus in eine zufällige Richtung starten lassen
5. Kollisionserkennung für Ball und Paddles, Richtung von Ball umkehren bei Kollision

oder sofern der Ball die oberen/unteren Ränder berührt
6. Punkte zählen und anzeigen
7. Soundeffekte bei Kollisionen und Punkten

115

https://pixabay.com/sound-effects
https://youtu.be/vCoBgJlUg_c

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Exclamation-Triangle Achtung

Wichtiger Hinweis 9.2 (Hinweise zu Pong):
Die folgende Sammlung von Hinweisen zeigt kleine Bausteine, die im Pong-Beispiel verwendet
werden und Ihnen beim Verständnis oder bei eigenen Varianten helfen.

• Zufällige Start-Richtung für den Ball:

import random
...
ball_speed = 5
Geschwindigkeit als separate Variablen
ball_speed_x = random.choice((-1, 1)) * ball_speed
ball_speed_y = random.choice((-1, 1)) * ball_speed

In der Game-Schleife:
ball.x += ball_speed_x
ball.y += ball_speed_y

• Rect-Ränder nutzen und Kollisionen „sauber“ auflösen:

if ball.colliderect(left_paddle):
ball_speed_x *= -1 # x-Richtung umkehren (Abprall)

• Abprall oben/unten (Wände):

if ball.top <= 0 or ball.bottom >= HEIGHT:
ball_speed_y *= -1

• Trefferwinkel variieren: Je weiter oben/unten am Paddle getroffen wird, desto mehr
vertikale Geschwindigkeit.

offset = (ball.centery - left_paddle.centery) / (paddle_h / 2) #
-1..+1

ball_speed_y = ball_speed * offset
• Ball nach Punkt neu zentrieren (als Funktion):

def reset_ball(direction): # direction: -1 nach links, +1 nach rechts
ball.center = (WIDTH // 2, HEIGHT // 2)
global ball_speed_x, ball_speed_y # Zugriff auf globale Variablen
ball_speed_x = direction * ball_speed
ball_speed_y = random.choice((-1, 1)) * ball_speed

• Nützliche Rect-Eigenschaften: left, right, top, bottom, center, centery hel-
fen bei Ausrichtung und Kollisionen.

Trophy Aufgabe (Challenge) 9.13 Pong-Bonus

Fügen Sie dem Pong-Spiel folgende Features hinzu:

• Soundeffekte bei Paddle-Kollision und Punktgewinn
• Startbildschirm mit Anweisungen
• Game-Over-Bildschirm nach einer bestimmten Punktzahl (z. B. 10 Punkte)
• Paddle-Geschwindigkeit erhöhen, wenn der Ball getroffen wird
• Hintergrundmusik während des Spiels

116

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

EDIT Aufgabe 9.14 Videoaufnahme des Spiels

Nehmen Sie ein kurzes Video (ca. 1-2 Minuten) auf, das das Gameplay Ihres Spiels zeigt.
Laden Sie das Video auf eine Plattform (z. B. YouTube, Vimeo) hoch und fügen Sie den Link
auf Moodle ein. Für die Bildschirmaufnahme können Sie folgende Tools verwenden:

• Windows: Verwenden Sie die Bildschirmaufnahme-Funktion von PowerPoint (unter
„Einfügen“ → „Bildschirmaufnahme“) oder die Xbox Game Bar (WINDOWS + G), beenden
Sie die Aufnahme mit + WINDOWS + R

• macOS: Verwenden Sie die integrierte Bildschirmaufnahme (+ + 5), beenden
Sie die Aufnahme mit + ctrl + Esc

9.2 Game-Auftrag

9.2.1 Thema

Im Folgenden wählen Sie in Zweier- bis Dreier-Gruppen ein Game-Thema aus und entwickeln ein
kleines 2D-Game mit pygame-ce. Mögliche Themen sind:

• Sammelspiel: Bewegen Sie eine Spielfigur (z. B. Auto, Raumschiff) und sammeln Sie Items
ein (z. B. Treibstoff, Sterne). Jedes eingesammelte Item gibt Punkte.

• Endlos-Runner: Steuern Sie eine Spielfigur (z. B. Läufer, Auto) und weichen Sie Hindernissen
aus (z. B. Mauern, andere Autos). Jedes überstandene Hindernis gibt Punkte.

• Fangspiel: Steuern Sie eine Spielfigur (z. B. Katze, Netz) und fangen Sie herumspringende
Objekte (z. B. Mäuse, Schmetterlinge). Jedes gefangene Objekt gibt Punkte.

• Shooter (z.B. Space Invader): Steuern Sie ein Raumschiff und schiessen Sie auf heranna-
hende Gegner. Jeder abgeschossene Gegner gibt Punkte.

Weitere Themen können in Absprache mit der Lehrperson gewählt werden. Wichtig ist, dass das
Spiel die geforderten Python-Konzepte sinnvoll einsetzt (siehe Anforderungen) und die Komplexität
angemessen ist (nicht zu einfach, aber auch nicht zu komplex).

9.2.2 Anforderungen

Ihr Projekt sollte folgende, essentielle Python-Konzepte sinnvoll einsetzen

� Verwendung von pygame-ce für Fenster, Game-Schleife, Ereignisse, Zeichnen, Kollisionen und
Medien (Bilder, Sound), Steuerung mit Tastatur und/oder Maus

� Verwendung physikalischer Formeln für Bewegungen (z. B. Geschwindigkeit, Beschleunigung,
Schwerkraft)

� Verwendung von Variablen zur Speicherung von Spielzuständen (z. B. Spielerposition, Punk-
testand, verbleibende Zeit)

� Verwendung von Funktionen zur Strukturierung des Codes (z. B. draw_player(), update_game
(), handle_input()), mit sowie ohne return-Wert

� Verwendung von logischen Ausdrücken und Schleifen zur Steuerung des Spielablaufs (z. B.
Kollisionserkennung, Punkte zählen, Spielzeit)

� Verwendung von Datenstrukturen (Listen, Dictionaries) zur Verwaltung von mehreren Spiel-
objekten (z. B. Liste von Items, Liste von Hindernissen)

� Verwendung von Klassen zur Modellierung von Spielobjekten (z. B. class Player, class
Item, class Obstacle)

� Verwendung mehrerer Python-Unterdateien zur besseren Strukturierung des Codes (z. B. game
.py, player.py, item.py)

117

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Ihr Game muss Kommentare enthalten, die den Code erklären und die Struktur des Programms
verdeutlichen. Verwenden Sie sowohl einzeilige Kommentare (mit #) als auch mehrzeilige Kom-
mentare (mit "...") für Funktionen und Klassen. Schauen Sie sich die detaillierten Bewer-
tungskriterien auf Moodle an, um sicherzustellen, dass Ihr Code den Anforderungen
entspricht.

9.2.3 Bonus
� Python-spezifisch:

� Verwendung von try/except zur Behandlung von Fehlern (z. B. Laden von Medien,
Division durch Null)

� Verwendung von with-Anweisung zum sicheren Öffnen und Schliessen von Dateien (z. B.
Highscore speichern)

� Wenn Sie ein Punktesystem mit Highscore (gespeichert in einer Datei) implementieren.
� Game-spezifisch:

� Wenn Sie viele Power-Ups (z. B. temporäre Unverwundbarkeit, Doppelte Punkte) ein-
bauen.

� Wenn Sie viele eigens erstellte Hintergrundmusik und/oder Soundeffekte (z. B. bei Kolli-
sion, Item-Sammlung) einbauen.

� Wenn Sie das Spiel mit einem Gamepad/Controller steuern können.
� Wenn Sie einen Online-Multiplayer-Modus (z. B. über LAN) implementieren.

� Weitere Ideen für Bonus:
� Wenn Sie das Spiel mit einem Level-Editor (zum Erstellen eigener Level) erweitern kön-

nen.
� Wenn Sie das Spiel mit einem Story-Modus (mit Handlung und Charakteren) erweitern

können.
� Wenn Sie das Spiel mit einem besonders raffinierten Achievements-System (Erfolge) er-

weitern können.
� Wenn Sie das Spiel mit einem Debug-Modus (zum Testen und Entwickeln) erweitern

können.

9.3 Bewertung

9.3.1 Projektbewertung

Die Bewertung Ihres Projekts erfolgt anhand der auf Moodle aufgelisteten Kriterien. Die maximale
Punktzahl beträgt 100 Punkte.

9.3.2 Gruppen-Besprechung des Spiels

Im Anschluss an Ihre Abgabe findet eine Besprechung Ihres Spiels in Gruppen mit der Lehrper-
son statt (ca. 15 Minuten pro Gruppe). Dabei werden Ihnen Fragen zu Ihrem Spiel gestellt, um
Ihr Verständnis und Ihre Reflexion zu überprüfen. Achten Sie darauf, in Ihrem Schlussbereicht zu
erwähnen, wer für welche Teile zuständig war – das Verständnis von jedem Gruppenmitglied wird
speziell überprüft. Die Besprechung resultiert in einer individuellen Verständnis-Prozentzahl von
0%–100% Punkten, welche mit Ihrer Endnote multiplizipert wird.

Ihre Endnote wird wie folgt berechnet:

Endnote = 5 ·
(
Projekt-Punkte ·

(Verständnis-Prozentzahl
100

))
+ 1

118

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Exclamation-Triangle Achtung

Wichtiger Hinweis 9.3 (KI-Tools):
Es wird von Ihnen erwartet, dass Sie sich aktiv an der Entwicklung des Spiels beteiligen und
die geforderten Python-Konzepte verstehen und anwenden können. ChatGPT oder andere KI-
Tools dürfen Sie verwenden, solange Sie Ihren gesamten Code verstehen und erklären können.
Wie Sie im obigen Benotungsschema erkennen können, kann Ihre Note durch mangelndes
Verständnis stark beeinträchtigt werden (bis zur Note 1). Falls Sie ChatGPT oder andere KI-
Tools verwenden, müssen Sie dies im Code klar dokumentieren (z.B. mit Kommentaren oder
in einer Begleit-Dokumentation). Jede Zeile Code muss mindestens einer Person zugeordnet
sein!

119

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Anhang A

Lernziele

Die folgenden Lernziele geben Ihnen einen Überblick über die zentralen Konzepte und Fähigkeiten,
die in den Kapiteln behandelt werden. Sie dienen Ihrer Orientierung und unterstützen Sie dabei,
Ihren Lernfortschritt zu verfolgen. Bitte beachten Sie, dass diese Auflistung nicht abschliessend ist
und das Lösen der Übungsaufgaben sowie das Verständnis der behandelten Konzepte im Skript
entscheidend für Ihren Lernerfolg sind.

Lernziele Kapitel 2: Einführung in Python und erste Schleifen
� Ich kann mit der Turtle einfache Formen zeichnen (Dreiecke, Rechtecke, Blitz, etc.)
� Ich kann mit einem breiten Stift ausgefüllte Rechtecke zeichnen (Türe beim Haus)
� Ich setze die for _ in range(zahl)-Schleife ein, um sich wiederholende Tätigkeiten auszu-

führen.
� Ich kann mit der Turtle regelmässige Vielecke (Vierecke, Fünfecke, Sechsecke etc.) zeichnen.
� Ich kann „Kreise“ als Vielecke mit grosser Eckenzahl zeichnen.
� Ich kann verschachtelte Schleifen verwenden (for _ in range(zahl)-Schleifen innerhalb von

for _ in range(zahl)-Schleifen).
� Ich kann Text in der Konsole mit print("...") ausgeben.
� Ich setze die Operationen + und *, um komplizierte Texte (Zeichenketten) zu erzeugen.
� Ich kenne die Operationen auf Zahlen, die auf Seite 19 oben aufgelistet sind, und kann diese

auch einsetzen.
� Ich kann innerhalb eines Programms eine Streckenlänge mit Pythagoras berechnen.
� Ich kann die Farbe und Breite des Turtle-Stifts verändern (t.color("..."), t.width(...))
� Ich kann die Turtle bewegen, ohne zu zeichnen, indem ich den „Stift“ ab- sowie aufsetze

(t.pu(), t.pd())

Lernziele Kapitel 3: Variablen, Datentypen & Debugging
� Ich kann neue Variablen erstellen, um die Resultate einfacher Berechnungen zu speichern
� Ich kann mit dem Gleich-Operator (=) eine neue Variable erstellen und kann diese in einem

Code sinnvoll verwenden.
� Ich kann Speicherinhalte ändern, indem ich die Befehle +=, -=, *= und /= nutze.
� Ich kann mithilfe des input-Befehls neue Variablen während der Ausführung des Codes er-

stellen.
� Ich kenne den Unterschied zwischen der Division (/) und der Ganzzahl-Division (//) und kann

beide Operatoren in geeigneten Situationen anwenden.

120

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

� Ich kann den Modulo-Operator % verwenden, um den Rest einer Ganzzahl-Division zu berech-
nen.

� Ich kann Variablen nutzen, um eine Spirale oder ähnliche, sich stetig vergrössernde oder ver-
kleinernde Formen zu zeichnen.

� Ich kann Zahlenfolgen (z.B. alle Quadratzahlen bis zu einem bestimmten Wert) mit Python
erstellen.

Lernziele Kapitel 4: Funktionen
� Ich kann eigene Befehle in Python definieren und einsetzen.
� Ich verstehe den Unterschied zwischen Haupt- und Unterprogramm.
� Ich kann Befehle mit Parameter definieren und einsetzen, wie z.B. quadrat(seite).
� Ich kann die Lebensdauer von Variablen (inkl. Parametern) beschreiben (lokal oder global).
� Ich kann beschreiben, wie sich ein Parameter von andern Variablen unterscheidet.
� Ich kann Befehle mit mehreren Parameter definieren und einsetzen, wie z.B. vieleck(ecken

, laenge, farbe).
� Ich kann einen Befehl innerhalb eines anderen Befehls aufrufen und dabei Variablenwerte

übergeben.
� Ich kann Speicherinhalte ändern, indem ich den Inhalt durch den Wert eines Ausdrucks über-

schreibe, z.B. seite = seite * 2 + 1
� Ich kann einfache Befehle kombinieren, um komplexe Probleme zu lösen (Beispiel Häuserreihe).
� Ich kann Funktionen erstellen, die einen oder mehrere Parameter sowie einen return-Wert

haben.
� Ich verstehe den Unterschied zwischen einem print-Befehl und einem return-Befehl
� Ich kann das Resultat einer Funktion mit return in einer Variable im Hauptprogramm spei-

chern und diese weiterverwenden
� Ich kann Funktionen mit einem return-Ausdruck erstellen, den Rückgabewert der Funktion

im Hauptprogramm als Variable speichern und den Wert der Variable mit print anzeigen
lassen.

� Ich kann eine (Unter-)Funktion innerhalb einer anderen (Haupt-)Funktion aufrufen, und den
Rückgabewert der Unterfunktion in der Hauptfunktion weiterverwenden.

� Ich nutze den modularen Programmentwurf, um komplexe Probleme in Teilprobleme aufzu-
teilen.

� Ich kann den return-Wert einer Funktion direkt und ohne Zwischenspeicherung in einem
Ausdruck verwenden, z.B. if rechteck_flaeche(19, 12) < 100:

Lernziele Kapitel 5: Verzweigungen und Logische Ausdrücke
� Ich kann die if-Anweisung einsetzen und verwende dabei die Vergleichsoperatoren ==, !=, >,

<, <= und >=.
� Ich kann die if-else-Struktur für Verzweigungen mit zwei Fällen verwenden.
� Ich kann die if-elif-else-Anweisung für Verzweigungen mit beliebig vielen Fällen verwenden.
� Ich kenne den Unterschied im Programmablauf zwischen der if-elif-else- und der if-if

-else-Struktur.
� Ich kann die logischen Operatoren and, or sowie not einsetzen, um boolsche Ausdrucke zu

kombinieren.
� Ich kann die break-Anweisung einsetzen, um Schleifen unter bestimmten Bedingungen abzu-

brechen.
� Ich kann while-Schleifen einsetzen, um eine Schleife solange auszuführen wie eine Bedingung

wahr ist.

121

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

� Ich kann erklären, weshalb ein Code der nach einem ausgeführten for _ in range(zahl)-
Ausdruck steht, nicht mehr ausgeführt wird.

� Ich kann für ein einfaches, gegebenes Code-Beispiel bestimmen, wie häufig eine bestimmte
while-Schleife ausgeführt wird.

� ich kann die geeignetste Schleifenart auswählen, um ein bestimmtes Problem zu lösen (for _
in range(zahl) mit break oder while).

� Ich kann unterschiedliche Schleifen-Typen mit einem Flussdiagramm modellieren.
� Ich kann den return-Wert einer Funktion direkt und ohne Zwischenspeicherung in einem

Ausdruck verwenden, z.B. if rechteck_flaeche(19, 12) < 100:

Lernziele Kapitel 6: Datenstrukturen (Listen, Dictionaries)
� Listen: Grundlagen

� Ich kann Listen in Python erstellen.
� Ich kann mit dem Index einzelne Elemente der Liste abrufen und verändern.
� Ich kann die Anzahl Elemente einer Liste in Python mit len(liste) berechnen lassen.
� Ich kann die Elemente einer Liste in einer Schleife (for _ in range(zahl), while oder

for...in) durchlaufen.
� Ich kann ein Programm schreiben, das in einer Liste die Elemente mit bestimmten Ei-

genschaften findet (z.B. das Maximum oder alle ungeraden Zahlen).
� Ich kann die Elemente einer Liste auf einen Wert reduzieren (z.B. die Summe der Lis-

tenelemente berechnen).
� Ich kann Listen als Parameter an Funktionen übergeben und innerhalb der Funktion

verarbeiten.
� Algorithmen

� Ich kann bubble sort in Python programmieren und verstehe den Algorithmus im Detail.
� Ich kann die binäre Suche in Python programmieren und verstehe den Algorithmus im

Detail.
� Dynamische Listen

� Ich kann Listen mit dem Befehl .append(...) erweitern.
� Ich kann Listen mit dem Befehl .pop() kürzen.
� Ich kann Listen mit dem Befehl .insert(position, wert) an einer bestimmten Position

erweitern.
� Dictionaries

� Ich kann Dictionaries (Wörterbücher) in Python erstellen und verwenden.
� Ich kann die Struktur von Schlüssel-Wert-Paaren in Dictionaries erklären und verstehe

den Unterschied zu listenbasierten Datenstrukturen.
� Ich kann mit Schlüsseln auf die Werte in einem Dictionary zugreifen.
� Ich kann neue Schlüssel-Wert-Paare zu einem Dictionary hinzufügen.
� Ich kann bestehende Werte in einem Dictionary ändern.
� Ich kann über alle Schlüssel eines Dictionaries mit einer for-Schleife iterieren.
� Ich kann prüfen, ob ein bestimmter Schlüssel in einem Dictionary vorhanden ist (mit

if key in dictionary:).
� Ich kann Dictionaries als Parameter an Funktionen übergeben und innerhalb der Funk-

tion verarbeiten.
� Ich kann komplexere Datenstrukturen erstellen, indem ich Listen und Dictionaries kom-

biniere (z.B. Liste von Dictionaries, Dictionary von Listen).
� Ich kann alltägliche Anwendungsfälle für Dictionaries identifizieren (z.B. Telefonbuch,

Lagerbestand, Preisliste).
� Ich kann die Länge eines Dictionaries, also die Anzahl der Schlüssel-Wert-Paare, mit dem

122

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Befehl len(dictionary) bestimmen.
� Ich kann einen Schlüssel-Wert-Paar aus einem Dictionary entfernen.
� Ich verstehe, dass Dictionaries ungeordnet sind und die Reihenfolge der Elemente keine

Rolle spielt.
� Mengen (Sets)

� Ich kann Mengen in Python erstellen und verwenden.
� Ich kann die grundlegenden Operationen auf Mengen durchführen, wie z.B. Vereinigung,

Schnittmenge und Differenz.
� Ich kann die grundlegenden Operationen kombinieren, um komplexere Mengenoperatio-

nen durchzuführen.
� Ich kann typische Anwendungsfälle für Mengen nennen, wie z.B. das Entfernen von Du-

plikaten aus einer Liste oder das Überprüfen von Mitgliedschaften.
� Tupel

� Ich kann Tupel in Python erstellen und auf ihre Elemente zugreifen.
� Ich kann den Hauptunterschied zwischen Tupeln und Listen erklären, nämlich die Un-

veränderlichkeit (Immutability) von Tupeln.
� Ich kann die wesentlichen Eigenschaften von Tupeln (geordnet, heterogen) beschreiben.
� Ich kann typische Anwendungsfälle für Tupel nennen, wie z.B. die Rückgabe mehrerer

Werte aus einer Funktion oder die Verwendung als Schlüssel in einem Dictionary.

Lernziele Kapitel 7: Klassen und Objektorientierte Programmie-
rung

� Ich kann erklären, was eine Klasse ist und wie sie sich von einem Objekt unterscheidet.
� Ich kann eine einfache Klasse mit Attributen und Methoden definieren.
� Ich verstehe den Zweck und die Funktionsweise des Konstruktors (__init__).
� Ich kann erklären, was der Parameter self in Methoden bedeutet und wie er verwendet wird.
� Ich kann Objekte (Instanzen) einer Klasse erstellen und verwenden.
� Ich kann auf Attribute und Methoden eines Objekts zugreifen.
� Ich verstehe den Unterschied zwischen Klassenattributen und Instanzattributen.
� Ich kann das Konzept der Vererbung erklären und einfache Vererbungshierarchien erstellen.
� Ich kann Methoden in einer Kindklasse überschreiben und dabei die Methoden der Elternklasse

mit super() aufrufen.
� Ich kann reale Probleme mit Hilfe objektorientierter Programmierung modellieren.
� Ich kann die Vorteile der objektorientierten Programmierung für komplexe Anwendungen

erklären.

123

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Anhang B

Nützliche Shortcuts

124

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Mit Shortcuts können Sie Ihre Produktivität in vielen Bereichen boosten, daher empfiehlt es sich, diese zu ler-
nen, ebenso wie das Zehn-Finger-System. Falls Sie letzteres noch nicht beherrschen, sollten Sie dieses zuerst auf
tipp10.com trainieren.

Folgende Shortcut-Liste erhebt keinen Anspruch auf Vollständigkeit. Falls Sie weitere hilfreiche Shortcuts kennen,
können Sie diese gerne an Cyril Wendl senden. Sie dürfen die Übersicht der Shortcuts an jeder Prüfung verwenden.

Aktion WINDOWS Windows � MacOS

Cursor bewI-cursoreI-cursorgen , ,

Cursor I-cursorbewegenI-cursor (Wörter)
ctrl +

ctrl +

+

+

WörterI-cursor markieren
ctrl + +

ctrl + +

+ +

+ +

I-cursorZum Anfang /
Ende der Zeile gehenI-cursor

Home
End

+

+

Ganze Zeile markierenI-cursor
+ Home
+ End

+ +

+ +

Gesamten Text
markieren

ctrl + A + A

Emoji einfügen WINDOWS + . fn + E

COPY Datei/Text kopieren ctrl + C + C

CUT Datei/Text ausschneiden
(= kopieren + löschen)

ctrl + X
+ X
+ C a

Paste Datei/Text einfügen ctrl + V + V

SEARCH Text suchen ctrl + F + F

SAVE Datei speichern ctrl + S + S

UNDO Rückgängig („undo“) ctrl + Z + Z

REDO Vorwärts („redo“) ctrl + + Z + + Z

ARROW-RIGHT Fenster wechseln
ARROW-LEFT Fenster zurückwechseln

ctrl +

ctrl + +

+

+ + b

Window-Close Programm schliessen + F4 + Q

LOCK Computer sperren WINDOWS + L + ctrl + Q
Caret-Left Fenster links anordnen
Caret-right Fenster rechts anordnen

WINDOWS +

WINDOWS +
Nicht möglichc

a Um Dateien auf MacOS zu verschieben (nicht kopieren): +

C , danach + + V
b Um auf MacOS zwischen mehreren Fenstern derselben Anwen-

dung wechseln: + <
c Keine native Unterstützung durch MacOS, allerdings möglich

mit Drittanbieter-Apps wie z.B. dieser Link (Windows), bzw.
+ C (MacOS)

Tabelle B.1: Allgemeine Shortcuts

Aktion WINDOWS Windows � MacOS

Caret-rightAlign-left Code Einrückena

Align-leftCaret-Left Code Ausrücken + +

a Klappt auch, wenn die einzurückenden / auszurü-
ckenden Zeilen nur teilweise markiert sind

Tabelle B.2: Shortcuts für Code

Aktion WINDOWS Windows � MacOS

ARROW-RIGHT Zu Tab rechts
ARROW-LEFT Zu Tab links

ctrl +

ctrl + +

+ +

+ +

ARROWS-ALT-H Zu Tab 1, 2, ... gehen ctrl + zahl + zahl

Window-Close Tab schliessen ctrl + W + W

+ Neuer Tab ctrl + T + T

Window-restore Geschlossenen Tab
wieder öffnen

ctrl + + T + + T

REDO Seite neu laden ctrl + R + R

Tabelle B.3: Browser-Shortcuts

Zeichen WINDOWS Windows � MacOS

[Alt Gr + ü + 5

] Alt Gr + ! + 6

{ Alt Gr + ä + 8

} Alt Gr + $ + 9

\ Alt Gr + \ + + 7

| Alt Gr + 7 + 7

& + 6 + 6

% + 5 + 5

Tabelle B.4: Spezial-Zeichen

Viele weitere Shortcuts können durch Ausprobieren er-
raten werden: Häufig steht der Anfangs-Buchstabe des
englischen Wortes für die Aktion. So kann man beispiels-
weise aus den meisten Programmen drucken (en. print),
indem man die Abkürzung ctrl + P (Windows) bzw.

+ P (MacOS) verwendet. Bei MacOS können zu-
dem viele Abkürzungen über das Programm-Menu (Me-
nuleiste oben am Bildschirm) eingesehen werden:

125

https://www.tipp10.com/de/
mailto:cyril.wendl@edu.zh.ch
https://rectangleapp.com

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Anhang C

Details

C.1 Division mit Rest

Definition C.1 (Kongruenz ganzer Zahlen):
Sei m > 0 eine fest gewählte natürliche Zahl. Seien a und b ganze Zahlen. Dann heissen a
und b kongruent modulo m, geschrieben

a ≡ b (mod m),

falls m die Differenz (a − b) teilt.

Definition C.2 (Modulo-Operation):
Sei m ≥ 2 eine fest gewählte ganze Zahl und a eine ganze Zahl. Dann ist a kongruent modulo
m zu genau einer Zahl b ∈ {0, 1, . . . , m − 1}. Diese Zahl b bezeichnen wir mit dem Ausdruck
a % m.

Beispiel C.1:
Auf dem Planeten Vulcan dauert ein Tag nur 5 Stunden. Deshalb verwenden die Vulcanians
Uhren der unten abgebildeten Form. Diese Uhren verfügt lediglich über einen Stundenzeiger.

1

23

4

0

Abbildung C.1: Uhr der Vulcanians

126

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

vergangene Zeit T in Stunden: -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
T % 5: 4 0 1 2 3 4 0 1 2 3 4 0 1

Tabelle C.1: Es sei die T die ganzzahlige Anzahl der vergangenen Stunden. Dann ist T % 5
die Uhrzeit, welche auf der Uhr abgelesen werden kann.

Beispiel C.2 (Modulo-Operation):
Wir geben hier einige Beispiele an:

10 % 7 = 3
−3 % 5 = 2

−17 % 3 = 1
−7 % 3 = 2

Falls Sie noch mehr über modulare Arithmetik (und ihre weitreichende Bedeutung) erfahren möch-
ten, empfehlen wir Ihnen wärmstens, das Buch [1] zu studieren.

C.2 Umrechnung von Basis a zu Basis b in Python
Es sei

x = xnxn−1 . . . x2x1x0 = xnan + xn−1an−1 + . . . + x2a2 + x1a1 + x0a0

die Darstellung der Zahl x in Basis a ≥ 2. Wir wollen die Darstellung

x = x′
mx′

m−1 . . . x′
2x′

1x′
0 = x′

mbm + x′
m−1bm−1 + . . . + x′

2b2 + x′
1b1 + x′

0b0

von x in Basis b ≥ 2 finden. Die Ziffern x′
m, . . . , x′

1, x′
0 sind gesucht.

Wir berechnen

x % b = (x′
mbm + x′

m−1bm−1 + . . . + x′
2b2 + x′

1b1 + x′
0b0) % b =

= (x′
mbm % b + x′

m−1bm−1 % b + . . . + x′
2b2 % b + x′

1b1 % b + x′
0b0 % b) % b =

= (0 + 0 + . . . + 0 + x′
0 % b) % b = (x′

0) % b = x′
0,

wobei wir die Formel (x + y) % a = (x % a + y % a) % a ohne Beweis verwendet haben. Somit ist
x % b = x′

0 die Ziffer (das Gewicht) des kleinsten Stellenwerts der Zahl x in Basis b.

Nun berechnen wir

x(1) := x//b = (x′
mbm + x′

m−1bm−1 + . . . + x′
2b2 + x′

1b1 + x′
0b0)//b =

= x′
mbm//b + x′

m−1bm−1//b + . . . + x′
2b2//b + x′

1b1//b + x′
0b0//b =

= x′
mbm−1 + x′

m−1bm−2 + . . . + x′
2b1 + x′

1b0.

Danach erhalten wir die zweithinterste Ziffer x′
1 durch x(1) % b und so weiter. In Programm C.1 ist

eine Python-Funktion gegeben, welche die Umrechnung von Basis a in Basis b berechnet.

127

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

def base_a_to_base_b(number_a, a, b):
der String number_a ist eine Zahlendarstellung in Basis a
if number_a == "0":

return "0"

number_10 = 0
k = 0
n = len(number_a)
while k < len(number_a):

number_10 += int(number_a[k]) * a ** (n - 1 - k)
k += 1

number_b = "" # leerer String
while number_10 > 0:

number_b += str(number_10 % b)
number_10 //= b

return number_b[::-1]

Beispiel
print(base_a_to_base_b("2310213647", 8, 9))

Programm C.1: base_a_to_base_b.py

GitHub-Tutorial
In diesem Tutorial lernen Sie Schritt für Schritt, wie Sie:

• einen GitHub-Account erstellen,
• ein neues Repository anlegen,
• Ihren Rechner via SSH mit GitHub verbinden,
• und ein bestehendes Python-Projekt mit Git (add, commit, push) hochladen.

Git bietet folgende Haupt-Vorteile gegenüber dem Arbeiten auf dem lokalen Computer:

• Versionskontrolle: Änderungen werden protokolliert, und frühere Versionen können leicht
wiederhergestellt werden.

• Zusammenarbeit: Mehrere Personen können gleichzeitig an einem Projekt arbeiten, ohne
sich gegenseitig zu stören.

• Backup: Der Code ist sicher in der Cloud gespeichert und kann von überall abgerufen werden.
• Automatisierte Pipelines: Möglichkeit, bei jeder neuen Version einen automatischen Test-

und Deployment-Prozess zu starten, beispielsweise, um eine Dash-App auf einem Server zu
aktualisieren.

Git und VS Code vorbereiten

Installieren Sie Git mit folgendem Befehl:
macOS
brew install git

Linux (Ubuntu/Debian)
sudo apt install git

128

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Für Windows: Laden Sie Git von https://git-scm.com/download/win herunter und installieren
Sie es.

GitHub-Account erstellen

Öffnen Sie https://github.com und klicken Sie auf Sign up. Folgen Sie den Schritten, um einen
Account anzulegen.

SSH-Schlüssel erstellen und hinterlegen

Erzeugen Sie ein Schlüsselpaar, laden Sie es in den SSH-Agent und fügen Sie den Public Key bei
GitHub ein.

Führen Sie folgenden Code auf Ihrem Computer aus (Terminal auf macOS oder Linux, bzw. Git
Bash auf Windows):

ssh-keygen -t ed25519 -C "ihre_email@schule.ch"
eval "$(ssh-agent -s)"
ssh-add ~/.ssh/id_ed25519
pbcopy < ~/.ssh/id_ed25519.pub # Public Key in Zwischenablage kopieren

Auf GitHub: Settings → SSH and GPG keys → New SSH key.

Testen Sie die Verbindung:

ssh -T git@github.com

Git konfigurieren

Damit bei jedem commit auf Git die richtigen Angaben verwendet werden, konfigurieren Sie Git
mit Ihrem Namen und Ihrer E-Mail-Adresse. Zusätzlich stellen Sie den Standard-Branch auf main
ein:

git config --global user.name "Vorname Nachname"
git config --global user.email "vorname.nachname@stud.edu.zh.ch"
git config --global init.defaultBranch main

Neues Repository auf GitHub

Erstellen Sie über das „+“ oben rechts ein New repository, geben Sie einen Namen (z. B. mein-
python-projekt) und wählen Sie „Public“.

Projekt vorbereiten

Wechseln Sie in den Ordner Ihres Projekts:

cd /pfad/zu/projekt

Erstellen Sie eine .gitignore-Datei für Python:

__pycache__/
*.pyc
.venv/
.DS_Store
.vscode/

129

https://git-scm.com/download/win
https://github.com

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Programmieren « Informatik, 2026

Initialisieren, Committen, Pushen
git init
git add .
git commit -m "Erster commit!"

git remote add origin git@github.com:<user>/<repo>.git
git push -u origin main

Arbeiten mit VS Code

Öffnen Sie den Projektordner in VS Code. Verwenden Sie die Source Control-Ansicht (Git-Symbol
links), um Änderungen zu stagen, zu committen und zu pushen.

Nützliche Befehle
Änderungen abrufen
git pull

Remote-URL prüfen
git remote -v

130

[git]•
Branch:(N

one)@
8aff860

•
Release:

(2026-01-14)

C.3 Python Cheatsheet

Einführung
Python-Grundgerüst

Ein einfaches Python-Programm:

Dies ist ein Kommentar
print("Hallo Welt!") # Ausgabe

von Text

Grundrechenarten

Addition
3 + 5 # ergibt 8

Subtraktion
10 - 4 # ergibt 6

Multiplikation
3 * 7 # ergibt 21

Division
10 / 3 # ergibt 3.3333...

Ganzzahldivision
10 // 3 # ergibt 3

Modulo (Rest)
10 % 3 # ergibt 1

Potenz
2 ** 3 # ergibt 8

String-Operationen

Strings verknüpfen
"Hallo" + " " + "Welt" # "Hallo

Welt"

String wiederholen
"Ha" * 3 # "HaHaHa"

Länge eines Strings
len("Python") # 6

Zeichen an Position (Index)
"Python"[0] # "P"
"Python"[1] # "y"
"Python"[-1] # "n"

Teilstring
"Python"[0:2] # "Py"
"Python"[2:] # "thon"

Einfache Schleifen mit for

N-mal wiederholen
for _ in range(5):

print("Hallo") # Gibt 5x "
Hallo" aus

Durch Zahlenbereich iterieren
for i in range(1, 6): # 1, 2, 3,

4, 5
print(i)

Variablen
Variablen deklarieren

Variable erstellen und Wert
zuweisen

name = "Max"
alter = 25
pi = 3.14159
ist_student = True

Mehrere Zuweisungen
a, b, c = 1, 2, 3

Eingabe und Ausgabe

Eingabe vom Benutzer
name = input("Gib deinen Namen ein

: ")

Umwandlung in Zahl
alter = int(input("Gib dein Alter

ein: "))
gewicht = float(input("Gewicht in

kg: "))

Ausgabe mit print()
print("Hallo", name)
print("Du bist", alter, "Jahre alt

")

Formatierte Ausgabe
print(f"Hallo {name}, du bist {

alter} Jahre alt")

Wert verändern

Neuen Wert zuweisen
zahl = 10
zahl = 20 # zahl ist jetzt 20

Wert erhöhen/verringern
zahl = zahl + 5 # zahl ist jetzt

25
zahl += 5 # zahl ist jetzt

30
zahl -= 10 # zahl ist jetzt

20
zahl *= 2 # zahl ist jetzt

40
zahl //= 4 # zahl ist jetzt

10

[git]•
Branch:(N

one)@
8aff860

•
Release:

(2026-01-14)

Funktionen
Funktionen definieren

Einfache Funktion ohne Parameter
def begrüssung():

print("Hallo!")

Funktion mit Parametern
def begrüsse_person(name):

print(f"Hallo {name}!")

Funktion mit Rückgabewert
def quadrat(zahl):

return zahl * zahl

Funktion mit mehreren Parametern
def rechteck_fläche(länge, breite)

:
return länge * breite

Funktion mit Standardwert
def potenz(basis, exponent=2):

return basis ** exponent

Funktionen aufrufen

Funktion aufrufen
begrüssung() #

Hallo!

Mit Parameter
begrüsse_person("Lea") #

Hallo Lea!

Rückgabewert verwenden
ergebnis = quadrat(5) #

ergebnis = 25
print(ergebnis)

Mehrere Parameter
fläche = rechteck_fläche(4, 5) #

20

Mit Standardwert
potenz(3) # 9 (3²)
potenz(2, 3) # 8 (2³)

Verzweigungen und Bedingungen
Vergleichsoperatoren

Gleichheit
a == b # Ist a gleich b?

Ungleichheit
a != b # Ist a ungleich b?

Grösser/Kleiner
a > b # Ist a grösser als b?
a < b # Ist a kleiner als b?
a >= b # Ist a grösser oder

gleich b?
a <= b # Ist a kleiner oder

gleich b?

if, elif, else

Einfaches if
if alter >= 18:

print("Volljährig")

if-else
if punkte >= 50:

print("Bestanden")
else:

print("Nicht bestanden")

if-elif-else
if note == 6:

print("Sehr gut")
elif note >= 5:

print("Gut")
elif note >= 4:

print("Genügend")
else:

print("Ungenügend")

Logische Operatoren

UND: Beide Bedingungen müssen
wahr sein

if alter >= 18 and
hat_führerschein:
print("Darf Auto fahren")

ODER: Mindestens eine der
Bedingungen muss wahr sein

if hat_mitgliedskarte or ist_gast:
print("Zutritt erlaubt")

NICHT: Negiert die Bedingung
if not ist_gesperrt:

print("Zugriff möglich")

while-Schleife

Zähler mit while
zähler = 0
while zähler < 5:

print(zähler)
zähler += 1

Abbruch mit break
while True:

eingabe = input("Weiter? (j/n)
: ")
if eingabe == "n":

break

[git]•
Branch:(N

one)@
8aff860

•
Release:

(2026-01-14)

Listen
Listen erstellen

Leere Liste
meine_liste = []

Liste mit Werten
zahlen = [1, 2, 3, 4, 5]
namen = ["Anna", "Ben", "Carla"]
gemischt = [1, "Hallo", True,

3.14]

Auf Listen zugreifen

Element an Position
zahlen = [10, 20, 30, 40, 50]
zahlen[0] # 10 (erstes Element)
zahlen[2] # 30 (drittes Element

)
zahlen[-1] # 50 (letztes Element

)

Teilbereich
zahlen[1:3] # [20, 30]
zahlen[:2] # [10, 20]
zahlen[3:] # [40, 50]

Element ändern
zahlen[0] = 15 # [15, 20, 30, 40,

50]

Listen verarbeiten

Länge einer Liste
len(zahlen) # 5

Durch Liste iterieren
for zahl in zahlen:

print(zahl)

Mit Index iterieren
for i in range(len(zahlen)):

print(f"Position {i}: {zahlen[
i]}")

Listen-Methoden
zahlen.append(60) #

[15,20,30,40,50,60]

Wert 25 an Position 1 einfügen
zahlen.insert(1, 25) #

[15,25,20,30,40,50,60]
letzter = zahlen.pop() # entfernt

60
zahlen.remove(30) # entfernt

ersten Wert 30

Algorithmen mit Listen

Maximum finden
def finde_maximum(liste):

maximum = liste[0]
for zahl in liste:

if zahl > maximum:
maximum = zahl

return maximum

Summe berechnen
def summe_berechnen(liste):

summe = 0
for zahl in liste:

summe += zahl
return summe

Dictionaries
Dictionary erstellen

Leeres Dictionary
mein_dict = {}

Dictionary mit Werten
person = {

"name": "Anna",
"alter": 25,
"stadt": "Zürich"

}

Verschachtelte Dictionaries
schüler = {

"max": {
"alter": 16,
"note": 5.5

},
"lisa": {

"alter": 17,
"note": 6.0

}
}

Auf Dictionary zugreifen

Wert abfragen
person["name"] # "Anna"
person.get("name") # "Anna"

Wert ändern
person["alter"] = 26

neuen Schlüssel hinzufügen
person["beruf"] = "Informatikerin"

Schlüssel entfernen
del person["stadt"]

prüfen, ob Schlüssel existiert
if "name" in person:

print(person["name"])

Dictionary durchlaufen

alle Schlüssel durchlaufen
for schluessel in person:

print(schluessel + ": " + str(
person[schluessel]))

Schlüssel und Werte
for schluessel, wert in person.

items():
print(f"{schluessel}: {wert}")

nur Werte
for wert in person.values():

print(wert)

nur Schlüssel
for schluessel in person.keys():

print(schluessel)

[git]•
Branch:(N

one)@
8aff860

•
Release:

(2026-01-14)

Mengen (Sets)

Mengen (Sets)

liste_a = ["Anna", "Ben", "Clara",
"Anna"]

liste_b = ["Ben", "David", "Eva"]

Listen zu Mengen umwandeln
set_a = set(liste_a)
set_b = set(liste_b)

Mengenoperationen
Elemente, die in mindestens in

einer der beiden Mengen sind:
vereinigung = set_a | set_b

Elemente, welche sowohl in set_a
als auch in set_b sind:

schnittmenge = set_a & set_b

Elemente, welche zwar in set_a
aber nicht auch in set_b sind:

differenz = set_a - set_b

print("Vereinigung:", vereinigung)
print("Schnittmenge:",

schnittmenge)
print("Differenz:", differenz)
print("Anzahl der Elemente in

set_a:", len(set_a))

Objektorientierte
Programmierung

Klassen definieren

class Person:
Konstruktor
def __init__(self, name, alter
):

self.name = name
self.alter = alter

Methode
def vorstellen(self):

print(f"Ich bin {self.name
}, {self.alter} Jahre alt.")

Methode mit Rückgabewert
def ist_volljährig(self):

return self.alter >= 18

Objekte erstellen und verwenden

Objekt erstellen
bob = Person("Bob", 17)
anna = Person("Anna", 25)

Methoden aufrufen
bob.vorstellen() # Ich bin Bob,

17 Jahre alt.
anna.vorstellen() # Ich bin Anna,

25 Jahre alt.

Attribute verwenden
print(bob.name) # Bob
bob.alter = 18 # Alter ändern

Methode mit Rückgabewert
if anna.ist_volljährig():

print("Anna ist volljährig")

Klassenattribute

class Schüler:
Klassenattribut (für alle
Instanzen gleich)
schule = "Kantonsschule im Lee
"
anzahl = 0

def __init__(self, name,
klasse):

self.name = name
self.klasse = klasse
Schüler.anzahl += 1

Klassenmethode
@classmethod
def get_anzahl(cls):

return cls.anzahl

Vererbung

class Fahrzeug:
def __init__(self, marke,
modell):

self.marke = marke
self.modell = modell

def info(self):
return f"{self.marke} {

self.modell}"

class Auto(Fahrzeug):
def __init__(self, marke,
modell, türen):

super().__init__(marke,
modell)

self.türen = türen

def info(self):
basis_info = super().info

()
return f"{basis_info} mit

{self.türen} Türen"

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Tabellenverzeichnis

2.1 arithmetische Operationen in Python . 11
2.2 Zusammenfassung nützlicher turtle-Befehle . 18

3.1 häufig verwendete zusammengesetzte Operatoren . 24
3.2 Auswahl elementarer Datentypen in Python und Beispiele . 26

5.1 Logische Relationen und Schreibweise in Python . 50

6.1 Beispielhafte Zeit-Tabelle für die binäre Suche (zum Ausfüllen), jeweils nach Zeile 9 77
6.2 Beispielhafte Zeit-Tabelle für die binäre Suche, jeweils nach Zeile 9 evaluiert 77

8.1 Kalorienverbrauch für unterschiedliche Aktivitäten, pro Minute, in Abhängigkeit des Körpergewichts 104

B.1 Allgemeine Shortcuts . 125
B.2 Shortcuts für Code . 125
B.3 Browser-Shortcuts . 125
B.4 Spezial-Zeichen . 125

C.1 Es sei die T die ganzzahlige Anzahl der vergangenen Stunden. Dann ist T % 5 die Uhrzeit, welche
auf der Uhr abgelesen werden kann. 127

135

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Abbildungsverzeichnis

1.1 PowerShell unter Windows als Administrator öffnen. 5
1.2 Meldungen dieser Art können Sie mit „Ja / Yes“ bestätigen. 6
1.3 Installation der Python-Extension in VS Code. 7
1.4 Python-Programm hello_world.py in VS Code erstellen. 7
1.5 Python-Programm hello_world.py in VS Code ausführen. 8

2.1 Traumhaus . 13
2.2 Poseidons Dreizack . 14
2.3 Stairway to Heaven . 15
2.4 Schrittweise Annäherung an einen Kreis durch ein- beziehungsweise umbeschriebene regelmässige Po-

lygone (links: 5-Ecke, mittels: 6-Ecke, rechts: 8-Ecke). 16

3.1 Fibonacci-Spirale . 32

4.1 Vergleich von Schleifen mit Funktionsdefinitionen . 35
4.2 Illustration einer Funktion mit Inputs (Parametern) und Outputs (return-Wert) 41
4.3 Illustration einer Code-Struktur, bei welcher mehrere Funktionen zusammenarbeiten 43

5.1 Flussdiagrammm für den Code aus Beispiel 5.1 . 50
5.3 Bild einer Spirale, deren grösste Seitenlänge max_seite lang ist . 60

6.1 Mittagessen und dazugehörige Kalorien-Informationen . 72
6.2 Bubble-Sort-Algorithmus (erste 8 Schritte) . 73
6.3 Unordentlich gepackter Koffer vs. ordentlich gepackter Koffer . 75

7.1 Illustration von Klassen und Instanzen in Python: Klassen (links) besitzen Eigenschaften und Metho-
den, welche für jede Instanz dieser Klasse (rechts) definiert und aufgerufen werden können. 90

7.2 Illustration von Klassen und Instanzen für Listen in Python: Die Klasse list definiert die Struktur
und Methoden, während konkrete Listen-Objekte individuelle Inhalte besitzen. 91

C.1 Uhr der Vulcanians . 126

136

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Literatur

[1] Joseph J. Rotman Albert Cuoco. Learning Modern Algebra: From Early Attempts to Prove
Fermat’s Last Theorem. English. 08. January 2015. Cambridge University Press, 2015. isbn:
978-1939512017.

137

[git] • Branch: (None) @ 8aff860 • Release: (2026-01-14)

Glossar

BMR Base Metabolic Rate. 100–102

FPS Frames Per Second. 107

IDE Integrated Development Environment. 2

NEAT Non-Exercise Activity Thermogenesis. 103

OOP Objektorientierte Programmierung. 87

138

	Getting Started
	Installation von Python und VS Code
	Anleitung für MacOS
	Anleitung für Windows

	VS Code für Python konfigurieren (MacOS und Windows)
	Ordner / Verzeichnis für meine Programme
	Erstes Python-Programm schreiben und ausführen
	Installation von NumPy und Matplotlib

	Einführung in Python und erste Schleifen
	Einige grundlegende Befehle und Operationen
	print-Funktion und built-in Funktionen
	Python-Kommentare
	Einfache Arithmetik

	Erste Zeichnungen mit der Python-Turtle
	Schleifen

	Variablen, Datentypen & Debugging
	Variablen
	Teilen mit Rest
	Zusammengesetzte Zuweisungsoperatoren
	Arbeiten mit Text (Strings)
	Verkettung und Vervielfachung von Strings

	Datentypen
	Textinput
	Debugging
	Syntaxfehler
	Laufzeitfehler
	Semantische Fehler
	Debugging-Strategien

	Weitere Aufgaben

	Funktionen
	Eigene Funktionen in Python definieren
	Parameter
	Lebensdauer (scope) einer Variable

	Werte zurückgeben mit return
	Einzelne Funktionen
	Mehrere Funktionen

	Weitere Aufgaben

	Verzweigungen und bedingte Schleifen
	Verzweigungen mit if, elif und else
	Verzweigungen mit if
	Verzweigungen mit if und else
	Verzweigungen mit if, elif und else
	Logische Ausdrücke miteinander verbinden: and und or
	Logische Ausdrücke negieren: not

	Fussgesteuerte Schleifen mit break
	Kopfgesteuerte Schleifen mit while

	Datenstrukturen
	Listen
	Einführung in Listen
	Algorithmen
	Listen verändern

	Wörterbücher (dictionaries)
	Mengen (sets)
	Tupel
	Weitere Aufgaben

	Objektorientierte Programmierung
	Klassen
	Vordefinierte Klassen in Python
	Klassenmethoden und Attribute
	Vererbung und Polymorphismus
	Vererbung
	Polymorphismus

	Praktisches Beispiel: Bibliothekssystem
	Zusammenfassung

	Praktische Anwendungen
	Kalorienverbrauch
	Bilder Bearbeiten (Anwendung von Listen und Schleifen)
	Vorbereitung
	Aufgaben zur Bearbeitung von Bildern

	Game
	Einführung in Pygame
	Game-Auftrag
	Thema
	Anforderungen
	Bonus

	Bewertung
	Projektbewertung
	Gruppen-Besprechung des Spiels

	Lernziele
	Nützliche Shortcuts
	Details
	Division mit Rest
	Umrechnung von Basis a zu Basis b in Python
	Python Cheatsheet

	Literatur

