IS
'S}

;’ 00 %
mw o ©
= & |
. i
~— | l
i
||
° I - -
v I -l
| i iy T
I = m =
I
A 1520
152)
() ﬂ 1521
Y i8] » Kantonsschule Im Lee = o
i (] I - -
] 1991 ol - '
& I . - T
[lool) Informatik . - II —
5. - Programmieren n om0 @
.... ~— /
| Skript - -
o . 1 a
) Hauptautor Ko-Autor - = 7 [
. Cyril Wendl ~ Thomas Graf =
s O Winterthur, 14. Januar 2026 =
700
-

mailto:cyril.wendl@edu.zh.ch
mailto:thomas.graf@edu.zh.ch

Inhaltsverzeichnis

1 Getting Started 4
1.1 Imstallation von Python und VS Code 4
1.1.1 Anleitung fiir MacOS L 4

1.1.2 Anleitung fiir Windows 5

1.2 VS Code fiir Python konfigurieren (MacOS und Windows) 6
1.3 Ordner / Verzeichnis fiir meine Programme 7
1.4 Erstes Python-Programm schreiben und ausfithren 7
1.5 Installation von NumPy und Matplotlib 8

2 Einfiihrung in Python und erste Schleifen 9
2.1 Einige grundlegende Befehle und Operationen 9
2.1.1 print-Funktion und built-in Funktionen 9

2.1.2 Python-Kommentare L 10

2.1.3 Einfache Arithmetik 11

2.2 Erste Zeichnungen mit der Python-Turtle 12
2.3 Schleifen 14

3 Variablen, Datentypen & Debugging 19
3.1 Variablen L 19

3.2 Teilen mit Rest o o o o o 22
3.3 Zusammengesetzte Zuweisungsoperatoreno oL 23
3.4 Arbeiten mit Text (Strings) 25
3.4.1 Verkettung und Vervielfachung von Strings 25

3.5 Datentypen L e 26
3.6 Textinput e e e e e 29
3.7 Debugging L e 30
3.7.1 Syntaxfehler 30

3.7.2 Laufzeitfehler 30

3.7.3 Semantische Fehler o o 31

3.7.4 Debugging-Strategien e 31

3.8 Weitere Aufgaben L L 32

4 Funktionen 33
4.1 Eigene Funktionen in Python definieren 33
4.2 Parameter oL e e e e e 36
4.2.1 Lebensdauer (scope) einer Variable 39

4.3 Werte zurlickgeben mit return Lo oo 40
4.3.1 Einzelne Funktionen Lo o o 40

4.3.2 Mehrere Funktionen o o 42

4.4 Weitere Aufgaben L L 47

[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

5 Verzweigungen und bedingte Schleifen 49
5.1 Verzweigungen mit if, elif und else 49
5.1.1 Verzweigungen mit ifo o 49

5.1.2 Verzweigungen mit if und elseo Lo o1

5.1.3 Verzweigungen mit if, elif undelse 52

5.1.4 Logische Ausdriicke miteinander verbinden: and und or 56

5.1.5 Logische Ausdriicke negieren: not 58

5.2 Fussgesteuerte Schleifen mit break 60
5.3 Kopfgesteuerte Schleifen mit while L L oo 62

6 Datenstrukturen 67
6.1 Listen L e e e e 67
6.1.1 Einfihrung in Listen 67

6.1.2 Algorithmen 72

6.1.3 Listen verdnderno e 78

6.2 Worterbiicher (dictionaries) e 80
6.3 Mengen (sets) 84
6.4 Tupel . . . e 86
6.5 Weitere Aufgabeno 87

7 Objektorientierte Programmierung 89
7.1 Klassen e e e e e e e 89
7.2 Vordefinierte Klassen in Python oo 93
7.3 Klassenmethoden und Attribute oL o o o 94
7.4 Vererbung und Polymorphismus o oo 96
7.4.1 Vererbung Lo e e e e 96

7.4.2 Polymorphismus e 97

7.5 Praktisches Beispiel: Bibliothekssystem o000 98
7.6 Zusammenfassungo 0 Lo e e e e e 101

8 Praktische Anwendungen 102
8.1 Kalorienverbrauch 102
8.2 Bilder Bearbeiten (Anwendung von Listen und Schleifen) 106
8.2.1 Vorbereitung L 106

8.2.2 Aufgaben zur Bearbeitung von Bildern oL oL 106

9 Game 109
9.1 Einfithrung in Pygame L 109
9.2 Game-Auftrag L e 117
9.21 Thema o e e e e 117

9.2.2 Anforderungen L 117

9.23 Bonus e 118

9.3 Bewertung L. e 118
9.3.1 Projektbewertung 118

9.3.2 Gruppen-Besprechung des Spiels oo oL, 118

A Lernziele 120
B Niitzliche Shortcuts 124
C Details 126
C.1 Division mit Rest o e 126

2

[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

C.2 Umrechnung von Basis a zu Basis b in Python. 127

C.3 Python Cheatsheet 131

Literatur 137
3

[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Kapitel 1

Getting Started

1.1 Installation von Python und VS Code

Um mit dem Programmieren loslegen zu kénnen, miissen wir zuerst die Programmiersprache auf un-
serem Computer installieren, sowie einen guten Code-Editor, mit welchem wir Python-Code schrei-
ben und ausfihren kénnen. Ein solches Programm wird typischerweise Integrated Development
Environment (IDE) genannt. In diesem Skript verwenden wir die kostenfreie Programmiersprache
Python, sowie die ebenfalls kostenfreie, weit verbreitete IDE mit dem Namen Visual Studio Code
(VS Code). Der nachfolgende Abschnitt leitet Sie durch die Installation sowohl auf Windows wie
auf MacOS.

1.1.1 Anleitung fiir MacOS

Um VS Code unter MacOS zu installieren, bendtigen Sie zuerst den Paket-Manager brew. Was
macht brew? Laut der offiziellen Webseite: ,,Homebrew installiert Zeug, das du brauchst, das Apple
aber nicht mitliefert.

Falls Sie brew noch nicht auf Threm Mac installiert haben, tun Sie dies wie folgt:

1. Offnen Sie ein neues Terminal-Fenster, indem Sie zunichst die Spotlight-Suche mit [$ |+ |
(%] + Leertaste) 6ffnen. In der Spotlight-Suche miissen Sie nun den Suchbegriff Terminal
eingeben und schliesslich die Suchanfrage mit Driicken der Taste (ENTER-Taste) ausfiihren.

2. Geben Sie folgende Code-Zeile ein und fiihren Sie diese aus (indem Sie mit der [« FTaste
bestéitigen):

/bin/bash -c "$(curl -£fsSL https://raw.githubusercontent.com/Homebrew/install
/HEAD/install.sh)"

Folgen Sie den Instruktionen, welche brew Thnen im Terminal gibt! Sie erhalten einige Befehle,
welche Sie kopieren und in demselben Terminal-Fenster ausfithren miissen.

Fiihren Sie danach folgende Befehle einzeln aus (jeweils durch das Driicken der [<3-Taste), um VS
Code, Python und die Turtle zu installieren.

Installieren des IDE VS Code:
brew install --cask visual-studio-code
Installieren von Python 3 (neuste Version):

brew install python3

4
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://brew.sh/de/

Programmieren O Informatik, 2026

Installieren der Library tkinter, welche fir die turtle-Grafik benétigt wird:
brew install python-tk

Nun sollten sowohl VS Code als auch Python installiert sein. Falls Sie VS Code nicht 6ffnen koén-
nen und stattdessen eine Sicherheits-Warnmeldung erhalten, folgen Sie dieser Anleitung, um das
Programm dennoch zu 6ffnen.

1.1.2 Anleitung fiir Windows

Offnen Sie das Programm PowerShell (Sie kénnen mit der [| Taste danach suchen) als Admi-
nistrator. Bei uns sieht die Situation aus wie in Abbildung 1.1.

Q. powershell

& @ Apps Documents Web Settings Folders Photos » M ,ﬁ
Windows PowerShell

%
- Apps Windows PowerShell
System
EX PowerShell 7 (x64) >
en

E¥ Windows PowerShell ISE o

Best match

EX Windows PowerShell (x86) >

Settings

B windows Powershell ISE
{11 PowerShell Developer Settings > porvsed

Allow local PowerShell scripts to
run without being signed

Search the web
EX PowerShell >

Q. powershell 7 >

@awr deHe®

Abbildung 1.1: PowerShell unter Windows als Administrator 6ffnen.

A Achtung

Wichtiger Hinweis 1.1:

Beim Kopieren und Einfiigen der nachfolgenden Befehle in die PowerShell werden die Leer-
zeichen in den Befehlen entfernt. Diese sind aber wichtig! Sie miissen diese selber ergénzen
(navigieren Sie mithilfe der Pfeiltasten).

In der PowerShell geben Sie folgende Zeile ein, um den Package-Manager winget zu installieren
(bestétigen mit der [«3}-Taste):

winget install -e --id Microsoft.PowerShell

Fiihren Sie danach folgende Befehle einzeln aus (jeweils durch das Driicken der [<3}-Taste), um VS
Code und Python zu installieren:

winget install -e --id Microsoft.VisualStudioCode

5
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://support.apple.com/de-ch/guide/mac-help/mh40616/mac

Programmieren O Informatik, 2026

Der folgende Befehl listet die verfiigharen Python-Versionen auf. Fiithren Sie ihn aus und merken
Sie sich die hochste Versionsnummer (so ist zum Beispiel Python 3.12 > Python 3.11):

winget search --id Python.Python

Installieren Sie nun die neueste (hochste Nummer) Version von Python mit dem nachfolgenden
Befehl. Dabei muss allerdings der Platzhalter .3.__ durch die neueste Versionsnummer von Python
ersetzt werden (e.g. anstelle von .3.__ muss .3.12 stehen).

winget install -e --id Python.Python.3.__ --scope machine

Sie kénnen jetzt mit der | 8 F Taste das Programm-Menu 6ffnen und nach Visual Studio Code suchen,
welches nun installiert sein sollte.

1.2 VS Code fiir Python konfigurieren (MacOS und Windows)

Im Folgenden (falls diese auftauchen) miissen Sie Pop-Ups der Form wie sie in Abbildung 1.2 gezeigt
sind, stets mit Yes, I trust the authors bestatigen.

Do you trust the authors of the files in this folder?

Abbildung 1.2: Meldungen dieser Art konnen Sie mit ,Ja / Yes“ bestatigen.

Offnen Sie zunéichst VS Code und betrachten Sie Abbildung 1.3. Navigieren Sie mit der Maus ganz
links zu den Eztentions (Baustein-Icon) und suchen Sie im Suchfeld nach python. Installieren Sie
die Erweiterung geméss Abbildung 1.3'

!Python language support with extension access points for IntelliSense (Pylance), Debugging (Python Debugger),
linting, formatting, refactoring, unit tests, and more.

6
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

B Extension: Python X

Python

Microsoft # microsoft.com <® 178,509,86

Python language support with extension access points for

Python @ Install |[»+ /' AutoUpdate £8
Python language support with exten:

Microsoft
DETAILS FEATURES

Pylance

Python extension for Visual Studio Code

or all actively st

Install | v tegrate and offer s

Abbildung 1.3: Installation der Python-Extension in VS Code.

1.3 Ordner / Verzeichnis fiir meine Programme

Wir empfehlen Thnen, einen neuen Ordner (ein neues Verzeichnis) zu erstellen. Darin sollten Sie
in Zukunft alle Programme, welche Sie im Grundlagenfach Informatik schreiben, abspeichern und
verwalten. Wir haben das entsprechende Verzeichnis deshalb einfach ,,Grundlagenfach® genannt.
Am besten erstellen Sie Ihren Ordner in einem Cloud-Service, den Sie verwenden (z.B. OneDrive).
Dadurch werden Thre Daten zwischen all Thren Geréten synchronisiert. In diesem Ordner sollten Sie
keine personlichen Daten ablegen.

Nun sind wir bereit, unser erstes Python-Programm zu schreiben und auszufiihren.

1. In VS Code, klicken Sie File und dann Open Folder... und navigieren Sie zu dem Ordner,
den Sie erstellt haben.

2. Erstellen Sie in diesem Ordner ein neues File mit dem Namen hello_world.py. Die Datei-
endung .py gibt an, dass es sich dabei um ein Python-File handelt.

Bei uns sieht die Situation nun aus wie in Abbildung 1.4.

File Edit Selection View Go Run Terminal --- O Programmieren
EXPLORER

v PROGRAMMIEREN
Helloworld.py

Abbildung 1.4: Python-Programm hello_world.py in VS Code erstellen.

1.4 Erstes Python-Programm schreiben und ausfiihren

Jetzt schreiben wir unser erstes Python-Programm! Dieses besteht aus nur einer einzigen Zeile und
lautet:

7
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

print("Hello, World!")
Programm 1.1: hello_world.py

Die kleine Ziffer 1 ist die Zeilennummer (diese wird vom Code-Editor automatisch gesetzt). Wir
fithren nun das Programm aus (,lassen das Programm laufen“), indem wir (oben rechts) auf den

-Knopf klicken. Bei uns sieht die Situation aus wie in Abbildung 1.5.

) File Edit Selectio View Go = - O Programmieren

@ EXPLORER Helloworld.py X

v PROGRAMMIEREN Hell
Helloworld.py 1 p "Hello, World!")

PROBLEMS UTPUT DEBUG CONSOLE TERMINAL PORT®

PS_/home/ionathan/Documents/Programmieren> /bin/python3 HelloWorld.py
Hello, World!
PS /nome/jonathan/Documents/Programmieren> I

Abbildung 1.5: Python-Programm hello_world.py in VS Code ausfiihren.

Programm 1.1, macht nichts weiter, als den Text
Hello, World!

auf im Terminal (Englisch: terminal) auszugeben®.

1.5 Installation von NumPy und Matplotlib
Bitte 6ffnen Sie nochmals ein Terminal-Fenster (MacOS) oder eine PowerShell (Windows) und
installieren NumPy mit dem nachfolgenden Befehl:

fir MacOS:
brew install numpy

fir Windows:
pip install numpy
Installieren Sie bitte auch noch die Matplotlib-Bibliothek mit dem nachfolgenden Befehl:

fir MacOS:
pip3 install matplotlib

fir Windows:
pip install matplotlib

*https://de.wikipedia.org/wiki/Hallo-Welt-Programm

8
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://de.wikipedia.org/wiki/Hallo-Welt-Programm

Kapitel 2

Einfiihrung in Python und erste
Schleifen

Um mit einem Computer zu ,sprechen®, brauchen wir eine Sprache, die er versteht: eine Program-
miersprache. Indem wir Programme schreiben, geben wir dem Computer klare Anweisungen,
welche Aufgaben er erledigen soll. In diesem Skript nutzen wir die neueste Version der Program-
miersprache Python.

Genau wie unsere menschlichen Sprachen haben Programmiersprachen Worter mit einer festen
Bedeutung. Worter, die dem Computer sagen, was er tun soll, nennen wir Befehlsworter oder einfach
Befehle.

Ein Programm ist im Grunde eine Reihe von Befehlen in einer Programmiersprache, die zusam-
men eine bestimmte Aufgabe l6sen. Stell dir ein Programm als eine genaue Anleitung vor, die ein
Computer Schritt fiir Schritt abarbeiten kann.

Das Hauptziel des Programmierens ist die Automatisierung von Abldufen. Wir iibertragen die Aus-
fiihrung einer Aufgabe komplett an den Computer. Deshalb muss ein Programm absolut eindeutig
sein und genau beschreiben, was zu tun ist. Es darf keine Missverstandnisse geben.

In diesem Kapitel schreiben Sie Thre ersten eigenen Programme. Dabei lernen Sie das Konzept
der Schleifen kennen. Schleifen sind unglaublich praktisch, denn sie erméglichen es, wiederkehrende
Aufgaben automatisch mehrfach auszufiihren. Sie werden sehen, wie niitzlich das in vielen Alltags-
situationen ist!

2.1 Einige grundlegende Befehle und Operationen

2.1.1 print-Funktion und built-in Funktionen

In unserem Hello, World!-Programm (Programm 1.1) haben wir bereits die Python-Funktion
print(...) gesehen. Diese Funktion ermoglicht es uns, Dinge (genauer: Python-Objekte) auszu-
geben (,zu printen“) und dadurch fiir den User sichtbar zu machen. Die print-Funktion ist eine
built-in Funktion, das heisst, sie ist direkter Bestandteil der Python-Sprache und ist in Python
standardméssig verfiigbar.

Beispiel 2.1:
Weitere Beispiele von Prints in Python:

9
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

print("Hallo, World!")
print(5 / 2, "ist grésser als", 3 / 2)

print(3 * 15)
Programm 2.1: prints.py

Bemerkung 2.1:
Unter dem Link

https://docs.python.org/3/library/functions.html#print

finden Sie eine Ubersicht aller built-in Funktionen in Python. Wir empfehlen IThnen fiir diesen
Link ein Lesezeichen (Bookmark) in Threm Webbrowser zu erstellen. Einige dieser Funktionen
werden wir im Folgenden gemeinsam kennenlernen.

2.1.2 Python-Kommentare

Kommentare in Python dienen dazu, Programmcode genauer zu beschreiben. Kommentare werden
von Python vollstédndig ignoriert und dienen lediglich dem besseren Verstindnis des (menschlichen)
Lesers.

Beispiel 2.2:
Dieses Beispiel zeigt die Funktionsweise von Zeilenkommentaren und Blockkommentaren.

Dies ist ein Zeilenkommentar.
Ein Zeilenkommentar beginnt mit einem Rautesymbol / Hashtag.
print ("Treffende Kommentare konnen dem Versténdnis dienlich sein.")

Dies ist ein Blockkommentar.
Ein solcher Kommentar darf sich iiber mehrere Zeilen erstrecken.

Ein Blockkommentar beginnt und endet mit jeweils drei Anfihrungszeichen.

Kommentare werden von Python ignoriert.
Diese Eigenschaft kann man sich zu

Nutze machen, um ausgewéhlte Programmteile temporér zu deaktivieren.
nnn

Ware die folgende Zeile nicht kommentiert, wilirden wir
einen Fehler erhalten (Divsion durch Null):
print(7 / 0)

Diese Berechnung ist aber ok:
print(7 / 3)

Kommentare beginnen erst NACH dem Rautesymbol:

10
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://docs.python.org/3/library/functions.html#print

Programmieren O Informatik, 2026

print("Das WIRD geprintet.") # das wird aber ignoriert

Programm 2.2: kommentare.py

2.1.3 Einfache Arithmetik

In Python lassen sich einfache Rechenoperationen dhnlich wie bei einem Taschenrechner angeben.
Dabei halt sich Python an die gewohnten Konventionen wie zum Beispiel ,,Punkt vor Strich“. Sym-
bole géngiger arithmetischer Operationen sind in Tabelle 2.1 zusammengefasst.

mathematische Operation ‘ In Python

Addition | +
Subtraktion ‘ -
Multiplikation ‘ *
Division ‘ /
Potenzieren ‘ *k

Tabelle 2.1: arithmetische Operationen in Python

Ubersicht 2.1 (arithmetische Operationen in Python):

Beispiel 2.3:
Wir haben einige typische Rechenoperationen fiir Sie aufgefiihrt:

berechnet zwar die Summe 9 + 10,
gibt aber keinen Output (fehlender print)
9 + 10

es gilt die Konvention 'Punkt vor Strich':
print(5 + 7 * 3) # &quivalent zu 5 + (7 * 3) = 26

Summe

5 + 503 # 508
Differenz

10 - 24 # -14
Produkt

8 x 5 # 40

Division

10 / 4 # 2.5

Potenz
2xx4 # 16

die Quadratwurzel (English: square root, kurz: sqrt)

11
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

ist nicht direkt Teil von Python, sondern muss durch

Importieren der Library 'math' hinzugefiigt werden.

import math

math.sqrt(2) # 1.4142135623730951

Programm 2.3: basisoperationen.py

2.2 Erste Zeichnungen mit der Python-Turtle

Fiir den Einstieg in das Programmieren ist es didaktisch sinnvoll, mit der Python-Turtle zu starten.
Genau dies werden wir hier tun! Wir werden der Turtle Instruktionen erteilen, damit sie fiir uns
bestimmte Bilder und geometrische Formen zeichnet. Der didaktische Vorteil des Arbeitens mit
der Turtle liegt in dem grafischen Output. Dieser ldsst Sie (meist) sofort selber erkennen, was IThr
Programm macht und auch potenzielle Fehler lassen sich in der Regel recht einfach auffinden.

Um mit der Turtle arbeiten zu kdnnen, miissen Sie das turtle-Modul durch den Befehl import
turtle zu Beginn des Programms (ganz oben) importieren. Ein Modul ist eine ,Erweiterung“ von
Python, so dass wir zuséatzlich zu den built-in functions auch die Befehle des Moduls verwenden
koénnen.

Mit dem Ausdruck import turtle as t sagen wir, dass wir das Modul turtle in unser Programm
importieren und dieses Modul innerhalb des Programms mit dem Ausdruck t benennen werden (wird
konnten auch import turtle as bliblablup schreiben, dies wire jedoch wohl weniger praktisch.

Programm 2.4 lasst die Turtle einen Strich mit einer Lange von 140 zeichnen. Programm 2.5 zeichnet
ein gleichseitiges Dreieck mit Seitenlénge 100.

import turtle as t

Tempo der Turtle festlegen
t.speed(1)

gerade Linie / Strich zeichnen
t.forward(140)

Turtle-Zeichnung stehen lassen
t.done()

Programm 2.4: strich.py

import turtle as t

Tempo der Turtle festlegen
.speed (1)

ct

gleichseitiges Dreieck zeichnen
.forward (100)

.1left (120)

.forward (100)

.1left (120)

.forward (100)

ct o o o o H

12
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

t.1left (120)

Turtle-Zeichnung stehen lassen
t.done ()
Programm 2.5: dreieck.py

Bemerkung 2.2:
Unter dem Link

https://docs.python.org/3/library/turtle.html#module-turtle

finden Sie eine Ubersicht aller Turtle-Funktionen. Wir empfehlen Thnen fiir diesen Link ein
Lesezeichen (Bookmark) in Threm Webbrowser zu erstellen. Einige dieser Funktionen werden
wir im Folgenden gemeinsam kennenlernen.

= Aufgabe 2.1 <

Vervollstdandigen Sie die gegebene Vorlage, um ein Haus d&hnlich dem in Abbildung 2.1 mithilfe
der Turtle zu zeichnen.

Abbildung 2.1: Traumhaus

e Die Langen diirfen Sie selber bestimmen.

e Das Schrigdach soll in roter Farbe gezeichnet werden und muss ein gleichschenkliges
und rechtwinkliges Dreieck sein.

e Das Programm soll die Lange der Kathete dieses rechtwinkligen Dreieckes mit einem
Print ausgeben.

import math
import turtle as t

Tempo der Turtle festlegen
t.speed (1)

Mauern

13
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://docs.python.org/3/library/turtle.html#module-turtle

Programmieren O Informatik, 2026

Dach (rechtwinkliges Dreieck)
t.pencolor("red") # setzte die Stiftfarbe auf rot

Turtle verstecken (damit sie nicht das Haus verdeckt)
t.hideturtle()

Turtle-Zeichnung stehen lassen
t.done()

Programm 2.6: haus_vorlage.py

. J

[# Aufgabe 2.2 .

Schreiben Sie ein Programm um einen Dreizack moglichst dhnlich dem in Abbildung 2.2
mithilfe der Turtle zu zeichnen.

Abbildung 2.2: Poseidons Dreizack

Tipp: Durchsuchen Sie die Turtle-Dokumentation (siehe Bemerkung 2.2) um zu lernen, wie
die Stiftbreite und Stiftfarbe (hier: "gold") angepasst werden kann.

2.3 Schleifen

Schleifen (Englisch: loops) ermoglichen uns, Prozesse zu wiederholen.

14
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Beispiel 2.4:
In Abbildung 2.3 ist eine Treppe gezeigt. Wie kénnen wir diese Treppe mithilfe der Turtle
zeichnen? Mit unserem bisherigen Wissen wére dies sehr mithsam:

1 import turtle as t
3 £.1t(90)

diese 4 Zeilen miissen wir 14 weitere Male Kopieren,
um insgesamt 15 Stufen zu erhalten

.£d(15)

.1t (90)

.£d(25)

.rt(90)

~
ct o o o H H

.hideturtle()
13 t.done()

o
ct

Abbildung 2.3: Stairway to Heaven

Stellen Sie sich vor, Sie miissten eine Treppe mit 10000 Stufen zeichnen 9.

Beispiel 2.4 zeigt auf, dass wir eine praktikable Methode zum héufigen Wiederholen von Mustern
oder Prozessen bendtigen. In Python lassen sich Wiederholungen mit Schleifen realisieren. Die Trep-
pe aus Beispiel 2.4 14sst sich mit einer sogenannten for-Schleife ganz einfach wie in Programm 2.8
realisieren.

import turtle as t

t.1t(90)

for _ in range(6):
.£d(15)
.1t(90)
.£d(25)
.rt(90)

ct ct o |

t.hideturtle()
t.done()

Programm 2.8: treppe.py

15
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Dabei wird folgender Ausdruck:
for _ in range(15):

der Schleifenkopf der Schleife genannt. Die vier Zeilen (6 — 9) werden Schleifenkorper der Schleife
genannt, wie im unten stehenden Code zu sehen ist.

for _ in range(15): Schleifenkopf
t.£fd(15)
t.1t(90) Schleife
t.£d(25)
t.7t(90) J Korper der Schleife

Der Schleifenkorper ist (in Python) daran erkennbar, dass er (relativ zu dem Schleifenkopf) nach
rechts eingeriickt (Englisch: indented) ist. Diese Einriickung erreichen wir in VS Code durch das
einfache Driicken der Tabulator-Taste ((—=]). Wir kénnen Code auch wieder um einen Tab nach
links riicken, indem wir den entsprechenden Code zuerst selektieren (einfirben) und danach die
Shift-Taste sowie die Tabulator-Taste gleichzeitig driicken ([T]+[—]). In anderen Programmen als
VS Code kann es sein, dass die Tastaturkombination dafiir eine andere ist.

= Aufgabe 2.3 .

In Abbildung 2.4 wird gezeigt, wie ein Kreis schrittweise durch regelméssige Polygone® ap-
proximiert (angenihert)

Abbildung 2.4: Schrittweise Annidherung an einen Kreis durch ein- beziehungsweise umbe-
schriebene regelméssige Polygone (links: 5-Ecke, mittels: 6-Ecke, rechts: 8-Ecke).

o Lassen Sie die Turtle in demselben Bild ein regelméssiges 5-Eck, ein regelmassiges 6-Fck
sowie ein regelmassiges 8-Eck zeichnen.

¢ Die Orientierungen und Grossen der Figuren spielen dabei keine Rolle.

o Die Figuren sollen sich nicht {iberschneiden.

e Sie wollen die Turtle bewegen, ohne dabei zu zeichen? Schauen Sie sich die Funktionen
t.penup() und t.pendown() in der turtle-Dokumentation an (suchen Sie nach diesen

Befehlen mit dem Shortcut [ctrl]+| F | (Windows) oder [$ |+[F | (MacOS)).

“https://de.wikipedia.org/wiki/Regelm/C3%A47,C3%9Figes_Polygon

16
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://docs.python.org/3/library/turtle.html
https://de.wikipedia.org/wiki/Regelm%C3%A4%C3%9Figes_Polygon

Programmieren O Informatik, 2026

\

W Aufgabe (Challenge) 2.4

Zeichnen Sie eine Blume, wie unten gezeigt.

4 Aufgabe 2.5 .

1. Zeichnen Sie die quadratische Schweizer Flagge B3 (Tipp: zuerst ohne Farben, danach
farbig). Um eine Form auszufiillen, schauen Sie sich die Funktionen t.fillcolor(),
t.begin_fill() und t.end_£il1() in der turtle-Dokumentation an. Suchen Sie nach

dem Begriff ,£i11" mit dem Shortcut [ctrl]+[F | (Windows) oder [8 |+ F | (MacOS).
2. Zeichnen Sie die Flagge des Kantons Ziirich (quadratisch):

Farbe . Ziiri-Blau®: (0 / 255, 112 / 255, 180 / 255)
3. Zeichnen Sie eine horizontal dreigeteilte, rechteckige Flagge (wie etwa die Flagge Frank-
reichs B B oder Italiens I).

W Aufgabe (Challenge) 2.6

In den folgenden beiden Aufgaben miissen Sie dasselbe tun wie in Teil 3 von Aufgabe 2.5
aber mit den folgenden Ergénzungen:

1. Die Breite jedes einzelnen der drei Rechtecke soll vom Programm bei jeder Ausfiihrung
individuell zufillig gewéhlt werden (das Programm soll zufillig drei Werte wéahlen).

2. Nun sollen zusétzlich zu den Breiten auch noch die Farben jeder der drei Rechtecksfla-
chen zufillig gewdhlt werden.

Ubersicht 2.2 (turtle-Befehle):

17
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

https://docs.python.org/3/library/turtle.html

Programmieren O Informatik, 2026
Kurzform Langform Beschreibung
t.fd(x) t.forward (x) bewegt die Turtle um x Schritte vorwérts
t.bk(x) t .backward(x) bewegt die Turtle um x Schritte riickwérts
t.rt(x) t.right(x) dreht die Turtle um x Grad nach rechts
t.1t(x) t.left(x) dreht die Turtle um x Grad nach links
t.color(c) t.color(c) setzt die Zeichenfarbe auf ¢ (z.B. "red")
t.begin_fill() t.begin_£fill() Start des Fiillbereichs
t.end_fill() t.end_£ill() Ende des Fiillbereichs (fillt Fliche)
t.pu() t.penup () hebt den Stift (es wird nicht mehr gezeichnet)
t.pdO t.pendown () senkt den Stift (es wird wieder gezeichnet)
t.ht() t.hideturtle() versteckt die Turtle
t.stQ) t.showturtle() zeigt die Turtle
t.speed(x) t.speed(x) Geschwindigkeit setzen (0 = schnellste)
t.goto(x, y) t.goto(x, y) bewegt die Turtle zu den Koordinaten (x, y)
t.circle(r) t.circle(r) zeichnet einen Kreis mit Radius r
t.tracer(False) t.tracer(False) zeigt direkt das Resultat (ohne Animation)”
t.teleport(x, y) t.teleport(x, y) teleportiert die Turtle zu (x, y)

Tabelle 2.2: Zusammenfassung niitzlicher turtle-Befehle

“Funktioniert nicht in allen Programmier-Umgebungen

18

[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Kapitel 3

Variablen, Datentypen & Debugging

3.1 Variablen

Beispiel 3.1:

In Aufgabe 2.5 haben Sie bereits die (quadratische) Flagge des Kantons Zirich mithilfe der
Turtle gezeichnet. Ohne Beachtung der Farben kénnte der Code dafiir wie in Programm 3.1
aussehen.

import turtle as t
import math

for _ in range(4):
t.forward(50)
t.left (90)

ct

.forward (50)
.left(135)
.forward(50 * math.sqrt(2))

ct ot

.hideturtle()
.done ()

ct ot

Programm 3.1: ohne_variable.py

Angenommen wir wollten die Grosse der Ziri-Flagge dndern, dann miissten wir den Wert
50 an genau drei Stellen entsprechend anpassen! Dieses Vorgehen ist zum einen Miihsam
und zum Andern héchst fehleranfillig (es kann sehr gut passieren, dass eine Anderung nicht
konsequent an allen Stellen durchgefithrt wird).

Viel besser ist es, wenn wir der Seitenldnge des Quadrats einen Namen geben. Genau dies
haben wir in Programm 3.2 getan: Wir haben der Lénge den Namen laenge gegeben.

import turtle as t

import math

Wir benutzen die Variable 'laenge', um der Laénge einen Namen zu geben:
laenge = 50

19
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

for _ in range(4):
t.forward(laenge)
t.1left(90)

ct

.forward(laenge)
.left (135)
.forward(laenge * math.sqrt(2))

ct ot

.hideturtle()
.done ()

ct ot

Programm 3.2: mit_variable.py

Der Ausdruck laenge ist ein Beispiel einer sogenannten Variable.

Definition 3.1 (Variable in Python):
Eine Variable in Python ist im Wesentlichen ein Name, der auf einen im Speicher (des Com-
puters) abgelegten Wert verweist. Mit der Zuweisung

a = 436 # a verweist auf ein Objekt vom Typ '"ganze Zahl" mit dem Wert 436

wird veranlasst, dass der Variablenname a zu einer Referenz (einem Verweis) auf den Spei-
cherort eines Objekts vom Typ ,,ganze Zahl“ mit dem Wert 436 wird.

Eine Variable wird erstellt, sobald man ihr mit dem Gleichheitszeichen (=) ein Objekt zuweist.
Das Gleichheitszeichen hat allerdings nicht dieselbe Bedeutung wie in der Mathematik! Vielmehr
bedeutet das Gleichheitszeichen in Python: ,die linke Seite ist ein Name fiir das Ding auf der rechten
Seite:

a=10+3
=

Die Erklarung dieser Zeile ist: ,Wir werten den Ausdruck 10 + 3 aus und erhalten die Zahl 13.
Diesen Wert (13) speichern wir nun in der Variable a“

Wir koénnen dies einfach iiberpriifen, indem wir den Wert von a ausgeben:

a=10 + 3
print(a) # gibt 13 aus

a = 25 # der Wert der Variable wurde neu definiert
print(a) # gibt jetzt 25 aus

Variablen sind kurz gesagt ein Wort, das einen verdnderbaren (= variablen) Wert enthélt. Der
Variablenname darf dabei (fast) frei gewéhlt werden, sofern folgende Regeln eingehalten werden:

Ubersicht 3.1 (Benennung von Variablen):
Bei der Wahl eines Variablennamens gibt es einige Punkte zu beachten:
1. Der Name muss mit einem Buchstaben beginnen (nicht: imeinname, _abc).
2. Der Name darf kein von Python reserviertes Wort sein (for, def, if, print, etc.).
3. Der Name sollte sinnvoll und beschreibend (deskriptiv) sein. Wenn Sie beispielsweise
die Hohe eines Hauses in einer Variable speichern, ist es sinnvoll, diese h oder hoehe zu
nennen und nicht etwa x.

20
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://www.programiz.com/python-programming/keyword-list

Programmieren O Informatik, 2026

4. Variablennamen diirfen nur alphanumerische Symbole (a — z, A — Z, 0 — 9) und Unter-
striche enthalten. Insbesondere also weder Leerzeichen noch Umlaute.

5. Da Variablennamen keine Leerzeichen enthalten diirfen, sollten zusammengesetzte Na-
men mithilfe von Unterstrichen (_) gebildet werden:

laenge_rechteck = 100
number_of_occupied_squares = 5

A Achtung

Wichtiger Hinweis 3.1:

In der Mathematik bedeutet das Gleichheitszeichen ,der rechte Teil der Gleichung ist gleich
dem linken® Dies ist in Python nicht so! Hier bedeutet das Gleichheitszeichen: ,werte den
rechten Teil aus und speichere das Resultat im linken Teil*. Es gibt also keine Speicherung
von Werten in Python ohne Verwendung des Gleichheitszeichens.

.

[#' Aufgabe 3.1 \

Berechnen Sie die folgenden Ausdriicke in Python und speichern Sie das Resultat jeweils in
einer Variable:

Berechnung ‘ Name der Variable

17—-3-8 ‘ resl
(5-2)-4+1 | res?
36 ‘ res3
18(2+3) ‘ resé

[#' Aufgabe 3.2 .

Gegeben sind zwei Variablen x und y. Sie mochten die Werte dieser zwei Variablen austau-
schen, so dass danach x den urspriinglichen Wert von y enthélt und umgekehrt. Sie experi-
mentieren zunéchst mit folgendem Vorgehen:

anféngliche Werte fir x und y:
x =5
y =11

Versuch die Werte von x und y zu tauschen:

Xx=y

y = X

Fithren Sie das Programm aus und geben Sie die Werte von x und y auf der Konsole aus.
Funktioniert das Programm wie erwartet? Weshalb (nicht)?

21
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 3.3

Wie konnte der Code aus Aufgabe 3.2 angepasst werden, sodass der Tausch korrekt vollzogen
wird?

Tipp: Verwenden Sie neben x und y noch eine dritte Variable.

W Aufgabe (Challenge) 3.4

In den Variablen x und y sei jeweils eine ganze Zahl gespeichert. Schreiben Sie ein Programm,
welches die Werte von x und y tauscht, ohne eine weitere ,Hilfsvariable® wie in Aufgabe 3.3
zu verwenden.

Tipp: Definieren Sie zuerst x = x + y

3.2 Teilen mit Rest

In diesem Abschnitt werden wir einige Uberlegungen anstellen, welche Sie vielleicht an Thre Zeit in
der Primarschule zuriickerinnern werden.

Beispiel 3.2:

e Angenommen seit einem gewissen Zeitpunkt seien 23 Tage vergangen. Der Zeitpunkt
liegt also 3 ganze Wochen zuriick und in der vierten Woche sind bereits 2 Tage vergan-
gen. Wir kénnen die Zahl 23 darstellen als 23 = 7 - 3 + 2. Dabei ist 3 (der Quotient)
das Resultat der ganzzahligen Division von 23 (Dividend) geteilt durch 7 (Divisor).
Dabei bleibt ein Rest von 2.

e Bei der ganzzahligen Division 23 geteilt durch 7 bestimmen wir also, wie héufig 7
vollsténdig (ganz) in 23 ,passt*.

e Nehmen wir weiter an, der Tag 0 sei ein Montag. Dann war auch schon Tag —7 ein
Montag und ebenso Tag +7. Offensichtlich entsprechen zwei Tage genau dann demselben
Wochentag, wenn ihre Differenz (die Differenz ihrer Nummern) durch 7 teilbar ist”. So
sind beispielsweise die Tage 23 und 37 beide Mittwoche.

“Mit anderen Worten: Thre Differenz ist ein ganzzahliges Vielfaches von 7.

Definition 3.2 (ganzzahlige Divsion und Modulo-Operation (informell)):
Es seien a und b natiirliche Zahlen und b # 0.

e Wir bezeichnen in Python mit a // b das Resultat der ganzzahligen Division von a
geteilt durch b (wie oft hat b ganz in a Platz).
Beispiel: 23 // 7 ist 3.

e Mit a % b (sprich: a modulo b) bezeichnen wir den Rest, welcher bei der ganzzahligen
Division von a geteilt durch b bleibt. Wir nennen % die Modulo-Operation.
Beispiel: 23 %, 7 ist 2.

Fiir mehr Details zur Division mit Rest siehe Abschnitt C.1.

22
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Beispiel 3.3:
Beispiele fiir die ganzzahlige Division in Python:

20 // 3 # ist 6
80 // 4 # ist 20
37 // 5 # ist 7

Beispiel 3.4:
Beispiele fiir Modulo-Berechnungen (Rest der ganzzahligen Division) in Python:

8 % 3 # ist 2
8 % 4 # ist O
9 9% 5 # ist 4
5% 9 # ist 5

[#' Aufgabe 3.5 |

Fiillen Sie die zweite Spalte von Hand aus, berechnen Sie danach (zur Kontrolle) die Werte
in Python.

Code ‘ Resultat

1%3| 7

2%3| 7

3%3| 7

4%3| 7

5%3| 7

6%3] 7

@ Aufgabe 3.6

Es nehmen p > 0 Personen an einem Fest teil. Fiir das Fest wurden liebevoll m viele Muffins
gebacken. Jede Person soll genau gleich viele Muffins erhalten. Berechnen Sie, wie viele Muffins
nach dieser gerechten Verteilung auf p Personen iibrig bleiben werden. Verwenden Sie dazu
den Modulo-Operator.

Beispiel 3.5:
Offensichtlich ist eine natiirliche Zahl n genau dann gerade, wenn die Gleichheit n % 2 = 0
gilt, also n beim Teilen durch 2 den Rest 0 hat.

3.3 Zusammengesetzte Zuweisungsoperatoren

Wir haben bislang schon mehrfach Werte von Variablen verdndert. In diesem Abschnitt fiihren wir
einige gebrauchliche Python-Operatoren ein. Betrachten Sie das folgende Programm:

23
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

alter = 11

print(alter) # alter hat den Wert 10

alter = alter + 1 # alter hat neu den Wert 11

print(alter) # printet 11

alter + 5 # berechnet die Summe alter + 5, Inhalt von alter bleibt unverédndert
print(alter) # printet 11

z = alter + 5 # Inhalt von alter bleibt unverédndert

print(alter) # printet 11

alter += 7 # alter hat neu den Wert 18

print(alter) # printet 18

Es existiert ein fundamentaler Unterschied zwischen den beiden Ausdriicken x + 5 (Wert von x
bleibt unverédndert) und x += 5 beziechungsweise x = x + 5 (Wert von x wird tberschrieben).
Anstelle von x = x + y werden wir hdufig den zusammengesetzten Operator += in der Form x +=
y verwenden. Analoge zusammengesetzte Operatoren fiir weitere mathematische Operatoren sind
in Tabelle 3.1 aufgefiihrt.

zusammengesetzte Zuweisungsoperation ‘ Bedeutung
X +=y ‘ speichere x + y in x
X -=y ‘ speichere x - y in x
X *=y ‘ speichere x * y in x
x /=y ‘ speichere x / y in x
x//=y ‘ speichere x // y in x
x \lh=y ‘ speichere x \% y in x

Tabelle 3.1: hdufig verwendete zusammengesetzte Operatoren

= Aufgabe 3.7 <

Zeichnen Sie eine Spirale der Form:

Die kiirzeste Seitenldnge der Spirale ist 10 und nach jeder 90-Grad-Rotation soll die Seiten-
lénge um 10 langer werden.

24
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 3.8

Die Kubikzahl einer Zahl z ist gleich der Zahl hoch 3, also x3. Verwenden Sie eine Schleife
um die 10 Kubikzahlen 13,23, ...,10% auszugeben. Beginnen Sie mit einer Variablen x = 1
und erhohen Sie den Wert von x in jedem Durchgang der Schleife um 1.

3.4 Arbeiten mit Text (Strings)

In Python kann man nicht nur arithmetische Operationen mit Zahlen durchfithren, sondern auch mit
Text arbeiten. In der Informatik verstehen wir unter einem Text jede endliche Folge von Symbolen
der Tastatur. Eine solche Folge von Symbolen bezeichnet man auch als Zeichenkette (Englisch:
string). Beispiele von Strings haben wir bereits in Beispiel 2.1 gesehen. Wir kénnen Strings, ebenso
wie Zahlen, in Variablen speichern.

Beispiel 3.6:
Folgendes Beispiel speichert den Text "Hello, World!" in der Variable a, der Wert der
Variable wird danach auf der Konsole ausgegeben:

a = "Hello, World!"
print(a) # printet den String "Hallo, World!" in der Konsole

anstelle von doppelten Anfihrungszeichen "...
dirfen auch einfache Anfihrungszeichen '...' verwendet werden:
b = 'Kantonsschule'

aber auch sowas ist ein String:
c = "23adsf34# 2 @!''30y"

3.4.1 Verkettung und Vervielfachung von Strings
Zeichenketten konnen verkettet, also aneinandergehéngt werden:

wort = "Kan" + "tons" + "schule"
print (wort) # Kantonsschule

Die ,,Addition* von Strings wird Konkatenation (Englisch: concatenation) genannt.
Strings kénnen mithilfe des *-Operators vervielfacht werden:

wort = "abc"
print (4 * wort) # abcabcabcabc

Falls Sie also Wiederholungen einer Zeichenkette wiinschen, kénnen Sie diese mit einer ganzen Zahl
multiplizieren. Diese Zahl bestimmt die Anzahl der Wiederholungen der Zeichenkette. So entspricht
der Ausdruck "a" * 3 beispielsweise dem String "aaa".

25
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

@ Aufgabe 3.9 .

Fiihren Sie das nachfolgende Programm aus und erkldren Sie, was das Programm tut:

print(" " * 3 + "X" * 1)
print(" " * 2 + "X" * 3)
print(" " *x 1 + "X" % 5)
print(" " *x 0 + "X" * 7)
print(" " *x 3 + "X" *x 1)
print(" " * 3 + "X" * 1)

g Aufgabe 3.10 .

Erstellen Sie nun ein Programm, das (analog zu Aufgabe 3.9) lediglich mit prints und
Stringoperationen ein ,,Herz* @ zeichnet.

W Aufgabe (Challenge) 3.11

Schreiben Sie ein Programm, welches die Form einer Banane auf der Konsole ausgibt, indem
Sie die Stringoperationen * und + verwenden.

3.5 Datentypen

Bisher haben wir zwei Arten, oder Typen von Variablen gesehen: Zahlen und Text (Strings).

x =2+ 3 # x ist eine Variable vom Typ "ganze Zahl"
y = "Hallo Welt!" # y ist eine Variable vom Typ "Text"
z = 'Donald Knuth' # ebenfalls eine Variable vom Typ "Text"

Variablen vom Typ , Text* werden gut daran erkannt, dass der Wert der Variable (also der Text)
in Anfiihrungszeichen steht.

Bei Zahlen gilt es in Python zwischen der Darstellung einer ganzen Zahl (Englisch: integer number
— int) und der Darstellung einer Dezimalzahl (Englisch: floating point number — float) zu unter-
scheiden, siehe Tabelle 3.2. Bitte beachten Sie, dass Dezimalzahlen immer mit Dezimalpunkt und
nicht etwa mit einem Komma geschrieben werden, also 2.75 und nicht etwa 2,75. Kommas werden
in Python als Trennzeichen in Auflistungen verwendet.

Beispiel ‘ Datentyp (englische, Abk.) ‘ Datentyp (Deutsch)
"Hallo Welt", 'abc', "42" ‘ string (str) ‘ Zeichenkette

15, 45, -5, 0 ‘ integer (int) ‘ ganze Zahl

12.23, -5.33, 23.0 | float (float) | Kommazahl

Tabelle 3.2: Auswahl elementarer Datentypen in Python und Beispiele

Folgendes Beispiel illustriert, wie wichtig es ist, sich des Datentyps einer Variable bewusst zu sein.
Das Plus-Symbol kann fiir zwei unterschiedliche Dinge verwendet werden:

1. Zahlen addieren: print(2 + 3) # gibt 5 aus
2. Strings verketten: print ("Hallo" + " " + "Welt") # gibt "Hallo Welt" aus

26
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Wichtig dabei ist, dass auf beiden Seiten des Plus-Zeichens (+) Werte desselben Datentyps stehen,
da Python ansonsten nicht weiss, ob es addieren oder verketten soll. Daher ist es in gewissen Féllen
notig, eine Zahl in einen Text umzuwandeln, beispielsweise dann, wenn eine Zahl und ein Text im
gleichen Print ausgegeben werden sollen. Hierzu verwenden wir den Befehl str (). Beispielsweise
gibt uns str(15) die Zeichenkette "15".

Beispiel 3.7:
Fiithren Sie folgenden Code in VS Code aus und beobachten Sie das Resultat in der Konsole:

n = 20

m = 30

prod = n * m

print(str(n) + " mal " + str(m) + " ist " + str(prod))

Fine etwas elegantere Art, Variablen in einem print mit Text zu verbinden ist, die Python-Schreibweise
print(£f"...") zu verwenden.

Beispiel 3.8:
Fiithren Sie folgenden Code in VS Code aus und beobachten Sie das Resultat in der Konsole:

n = 20

m = 30

quot =n / m

print(£"{n} durch {m} ist {quotl}")

Diese Schreibweise erlaubt es uns, Variablen innerhalb der geschweiften Klammern zu ver-
wenden, ohne sie vorher in Strings umwandeln zu miissen. Wir beobachten allerdings, dass
der Quotient nicht sehr schén formatiert wird. Wir kénnen die Anzahl der Dezimalstellen mit
der Formatierung :.2f anpassen. Dabei bezeichnet :.2f eine Dezimalzahl mit 2 Nachkom-
mastellen. Fiithren Sie folgenden Code aus:

n = 20

m = 30

quot =n / m

print(£"{n} durch {m} ist {quot:.2f}")

@ Aufgabe 3.12 .

Schreiben Sie ein Python-Programm, welches in einer Schleife die Quotienten von 2/3, 3/3,
4/3, etc. bis 11/3 berechnet und auf der Konsole ausgibt, z.B.:"4 durch 3 ist 1.333".
Verwenden Sie dazu die £'"-Schreibweise und formatieren Sie die Quotienten so, dass immer
3 Nachkommastellen angezeigt werden.

27
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 3.13 .

Eine Dame verrdt uns die dreistellige Vorwahl 079 ihrer 10-stelligen Mobiltelefonnummer.
Zudem verrat sie uns auch, dass die letzten drei Ziffern eine gerade Zahl zwischen 0 und 200
darstellen (also eine der Zahlen 000,002,004, ..., 200).

Schreiben Sie ein Python-Programm, welches alle méglichen Nummern auflistet. Die erste
Nummer sollte 0790000000 sein, die letzte 0790000200. Das Programm soll die Telefonnum-
mern als Zeichenkette (eine Nummer pro Zeile) ausgeben.

Tipps:

e Mit str(num) wird aus der Zahl num eine Zeichenkette.
e Erinnern Sie sich, was die Operation + in dem Ausdruck "In" + "form" + "atik"
macht?

\ J

A Acht ung

Wichtiger Hinweis 3.2 (Quotienten ganzer Zahlen sind in Python floats):

Im Allgemeinen ist der Quotient n/m von zwei ganzen Zahlen n,m keine ganze Zahl. In
Python wird deshalb das Resultat einer Division immer als Dezimalzahl (float) angeschaut,
auch wenn n durch m ohne Rest teilbar ist®:

bruch = 6 / 2 # bruch ist ein float und kein int

print(bruch) # gibt 3.0 und nicht etwa 3 aus

bruch = int(bruch) # explizite Typenumwandlung von float zu int
print (bruch) # gibt 3 aus

5.999999
int(x) # Weglassen von Dezimalstellen
print(x) # gibt 5 aus

X

X

Die folgende Schleife erzeugt einen Fehler (TypeError):

das ist nicht ok:
for _ in range(6 / 2):
print("hallo")

TypeError: 'float' object cannot be interpreted as an integer

das ist ok:
for _ in range(int(6 / 2)):
print("hallo")

da eine Schleife nur , ganzzahlig-viele“ Durchgédnge durchfithren kann, doch 6 / 3 ist 3.0,
also vom Typ float und nicht int.

“Das Konzept von Teilbarkeit ergibt in den reellen oder rationalen Zahlen keinen Sinn.

28
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

W Aufgabe (Challenge) 3.14

Schreiben Sie ein Programm, welches 123456789 Sekunden in Jahre (& 365 Tage), Tage, Stun-
den, Minuten und Sekunden umrechnet. Das Programm soll den folgenden Text ausgeben,
wobei alle Zahlen (ausser 123456789) im Programm berechnet werden: ,,123456789 Sekunden
sind 3 Jahre, 333 Tage, 21 Stunden, 33 Minuten, 9 Sekunden!“

[#' Aufgabe 3.15

Mit welchen Datentypen wiirden Sie folgende Informationen tber sich selbst in Python spei-
chern?

e Thr Vorname
e Thr Alter in Jahren
e Thre Grosse in Metern

3.6 Textinput

Mithilfe der input-Funktion kann der User wiahrend der Programmausfithrung zu einer Eingabe

aufgefordert werden.

Beispiel 3.9:
Mit der Funktion input ("Hilfstext...") kénnen wir eine Variable wihrend der Programm-
ausfithrung erstellen:

Folgender Befehl druckt den Hilfstext
'Was ist ihr Name?' auf der Konsole.

Die Antwort kann auf der Konsole eingetippt
werden und wird danach in der Variable name gespeichert.

Mit der letzten Zeile wird der eingegeben Name
danach 5-mal gedruckt.

nnn
name = input("Was ist ihr Name?")
print(name * 5)

Fihren Sie diesen Code in VS Code aus und beobachten Sie das Resultat.

@ Aufgabe 3.16

Schreiben Sie ein Programm, das Sie nach Threm Namen fragt, indem der Hilfstext "Wie
heissen Sie?" auf der Konsole ausgegeben wird. Verwenden Sie dazu die Funktion name =

input ("Hilfstext hier..."). Danach soll Sie das Programm neunmal begriissen, indem
es auf 3 Zeilen je dreimal den Text Hallo [Ihr Name] druckt.

29
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Bemerkung 3.1 (Input erwartet immer einen String):

Bitte beachten Sie, dass die Input-Funktion in Python den Tastaturinput immer als String
auffasst. Falls Thr Input als Zahl angesehen werden soll, dann miissen Sie den Input x mit
int (x) beziehungsweise float (x) konvertieren:

alter = input("Wie alt bist du?") # alter ist vom Typ 'String'
print("In einem Jahr wirst du", int(alter) + 1, "Jahre alt sein.")
andere, moégliche Schreibweise mit f"...:

print(£"In einem Jahr wirst du {int(alter) + 1} Jahre alt sein.")

dies wiirde einen Fehler geben, da wir hier die Summe eines Strings (alter)
und einer ganzen Zahl zu berechnen versuchen:
print("In einem Jahr wirst du", alter + 1, "Jahre alt sein.")

3.7 Debugging

Hé&ufig kommt es beim Schreiben von Code zu ,unerklarlichen* Fehlern: Der Code macht nicht,
was man will, stiirzt ab oder liefert nicht das gewiinschte Resultat. Wir sprechen dabei von bugs
(englisches Wort fiir Kdfer), womit allgemein Fehler beziehungsweise unerwiinschtes Verhalten oder
unerwiinschte Resultate gemeint sind. Daher ist es wichtig, zu lernen, wie man einem Problem auf
die Schliche kommt. Darum handelt es sich beim sogenannten debugging um das Beheben unter-
schiedlicher Fehlerarten, welche in den folgenden Abschnitten kurz erklart werden.

3.7.1 Syntaxfehler

Syntax-Fehler (Englisch: syntaz error) sind in Programmiersprache vergleichbar mit Rechtschreib-
fehlern in Aufsitzen: Es handelt sich um Schreibweisen, die nicht erlaubt sind. Beispielsweise wiirde
folgender Code eine Fehlermeldung geben:

print "Hello World" # Fehler!

Der Fehler tritt aufgrund der Tatsache auf, dass nach dem Befehl print Klammern stehen miissen.
Der korrekte Code wiirde wie folgt geschrieben:

print("Hello World")

Syntax-Fehler, also Fehler in der grammatikalischen Struktur einer Programmiersprache, fithren
dazu, dass der Code nicht richtig ausgefithrt werden kann.

Weitere, dhnliche Fehler konnen etwa auftreten, weil die Klammern nicht geschlossen wurden oder
weil die Anfithrungszeichen bei Texten vergessen wurden:

print ("Hello World" # Fehler (Klammer nicht geschlossen) !
print(Hello World) # Fehler (keine Anfiithrungszeichen)!

3.7.2 Laufzeitfehler

Laufzeitfehler (Englisch: runtime error) werden erst bei der Ausfithrung des Programms erkannt.
Dabei stimmt die grammatikalische Struktur (Syntax) des Codes zwar, der Code ergibt aber keinen
Sinn: Beispielsweise wird versucht, auf Variablen zuzugreifen, welche es gar nicht gibt. Fehler konnen
beispielsweise aufgrund von Gross- und Kleinschreibung auftreten:

X=10+5
print(x) # Fehler: kleines "x" gibt es nicht!

30
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Ein weiterer Laufzeitfehler konnte wie folgt aussehen
print(Hello, World)

In diesem Fall wollte der Autor des Codes den Text "Hello, World" auf die Konsole drucken, hat
jedoch die Anfiihrungszeichen vergessen. Dies fiihrt dazu, dass der Code die Variablen Hello und
World drucken will, die es jedoch nicht gibt.

[# Aufgabe 3.17

Fiithren Sie alle obigen Beispiele in VS Code aus und beobachten Sie die Fehlermeldungen.
Verstehen Sie, was mit den Fehlermeldungen gemeint ist?

3.7.3 Semantische Fehler

Semantische Fehler sind Logik-Fehler, also Fehler aufgrund der Tatsache, dass die Programmiererin
Denkfehler beim Schreiben gemacht hat. In diesem Fall gibt der Code zwar keine Fehlermeldung
aus, die Ausgabe des Codes entspricht jedoch nicht dem erwarteten Resultat. Beispielsweise kdnnte
folgender Code zu einem unerwarteten Resultat fithren:

mittelwert = 3 + 13 / 2
print(mittelwert) # 9.5

Das Resultat sollte 8 sein, denn der Mittelwert von 3 und 13 ist (3 4+ 13)/2 = 8 und nicht etwa
34 13/2 = 9.5. Der Fehler hat damit zu tun, dass der Programmierer vergessen hat, Klammern zu
setzen. Korrekt wére folgendes Beispiel:

mittelwert = (3 + 13) / 2
print (mittelwert) # 8

3.7.4 Debugging-Strategien
Einige Strategien, um fehlerhaften Code zu beheben, sind:

1. Lesen Sie Fehlermeldungen aufmerksam und versuchen sie zu verstehen, woher diese stammen
konnten. Auch die Zeilenangaben sind dabei sehr hilfreich.

2. Brechen Sie ihren Code in einzelne Teile auf. Geben Sie Zwischenresultate auf der Konsole
aus, indem Sie print-Befehle verwenden — dies kostet Sie nichts.

3. Rechnen Sie einige Beispiele von Hand aus, sofern der Code etwas Komplexeres berechnet.

4. Testen Sie IThren Code mit (extremen oder besonderen) Testfdllen, also anderen Werten fiir
Thre Variablen.

= Aufgabe 3.18

Um welche Art von Fehler handelt es sich im Code aus Aufgabe 3.27

31
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

3.8 Weitere Aufgaben

W Aufgabe (Challenge) 3.19

Berechnen Sie die ersten 8 Zahlen der Fibonacci-Zahlenserie, welche wie folgt aussieht:

0,1,1,2,3,5,8,13,...

Dabei ist jede Zahl die Summe ihrer beiden Vorgénger in der Folge. Die ersten zwei Glieder
0 und 1 der Folge sind vorgegeben.

Verwenden Sie dazu eine for-Schleife sowie drei Variablen.

Zeichnen Sie danach mit der Turtle eine Spirale, bestehend aus 8 Viertelkreisen, welche als
Radius” jeweils das Zehnfache der zuletzt berechneten Fibonacci-Zahl 1,2,3,5,8,13, ... ha-
ben.

Die Spirale sollte folgendermassen aussehen:

Abbildung 3.1: Fibonacci-Spirale

“Natiirlich zeichnen wir hier regelméssige Polygone und keine Kreise.

32
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Kapitel 4

Funktionen

4.1 Eigene Funktionen in Python definieren

Sie kenne bereits die Funktionen print sowie t.forward und haben diese auch schon mehrmals
selbst verwendet. In diesem Kapitel werden Sie lernen, wie Sie eigene Funktionen in Python de-
finieren und schliesslich sinnvoll verwenden koénnen. Funktionen helfen enorm dabei, Programme
leserlicher, kiirzer, effizienter und wartbarer zu machen. Funktionen sind deshalb aus modernen
Programmen kaum wegzudenken sind.

Beispiel 4.1:
Wir betrachten nochmals den Code aus Challenge 2.4:

import turtle as t

for _ in range(10):
zeichne ein Viereck
for _ in range(4):
t.£d(100)
t.rt (360 / 4)
leichte Rechtsdrehung
t.rt(360 / 10)

Turtle-Zeichnung stehen lassen
t.done ()

Programm 4.1: blume.py

Die Blume entsteht durch das wiederholte Zeichnen eines Quadrats, wobei sich die Turtle
nach jedem gezeichneten Quadrat um 36 Grad rotiert. Wir konnten den Code leserlicher
machen, indem wir zunéchst eine Funktion quadrat () definieren, welche lediglich ein Quadrat
zeichnet. Danach definieren wir eine weitere Funktion quadrat_blume, welche die Funktion
quadrat insgesamt 10 Mal aufrufen wird:

33
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

1 import turtle as t

5 def |quadrat():

4 for _ in range(4):

5 t.£d(100)

6 t.rt(360/4) =

s def quadratiblumeQl:

9 for _ in range(10): \\\

10 quadrat ()
- Aufruf

15 t.done()

Die Erstellung der Definitionen einer Funktion ist vergleichbar mit dem Verfassen eines Koch-
rezepts (oder eines Bauplans). Die Funktion beschreibt dabei einen Programmablauf, also
ein ,Rezept“. Die alleinige Existenz eines Kochrezepts fiithrt natiirlich nicht zu einem fertigen
Gericht. Dieses entsteht erst bei der Ausfiihrung des Rezepts. Genauso hat in Python die
Definition noch keinen Effekt. Der Effekt (die Wirkung der Funktion) erfolgt erst bei ihrem
Aufruf (in dem obigen Beispiel erfolgen solche Funktionsaufrufe in den Zeile 10 und 13).

Ubersicht 4.1:

Innerhalb des eingeriickten Bereichs unter def wird eine Wirkung definiert. Diese Wirkung
wird aber erst ausgelost, wenn die Funktion aufgerufen (und somit der Code ausgefiihrt)
wird!

Das Schreiben von Definitionen hat mehrere Vorteile:

e Der Code wird modular: Man kann nun einfachere Funktionen schreiben, wie bei-
spielsweise quadrat (), und komplexere Funktionen, die Unter-Funktionen aufrufen, wie
beispielsweise quadrat_blume (). Auf diese Weise wird ein komplexer Code in einzelne,
einfachere Teile (Module) unterteilt.

¢ Der Code wird iibersichtlicher: Jede Teil-Aktivitét ist eine Funktion

o Falls das komplexere Programm nicht das gewiinschte Resultat liefert, kénnen wir es
debuggen, indem wir die einfacheren Funktionen zuerst aufrufen und sicherstellen, dass
diese richtig funktionieren.

Beispiel 4.2:
Die folgende Gegeniiberstellung illustriert, wie Funktionen dabei helfen, Programme iiber-
sichtlicher zu machen und Struktur in den Code zu bringen:

34
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

import turtle as t

def quadrat():
for _ in range(4):
t.£d(100)
t.rt (360 / 4)

import turtle as t 3

for _ in range(10):

for _ in range(4):
t£.£d(100) (def quadrat_blume() :

4 . .
£ .rt(360 / 4) - for _ in range(10):

t.£d(360 / 10) quadrat ()
t.rt(360/10)

t.done()
quadrat_blume ()

t.done()

Abbildung 4.1: Vergleich von Schleifen mit Funktionsdefinitionen

Tipps fiir das Schreiben von Funktionen:

e Der Name einer Funktion sollte selbsterkldrend und beschreibend sein. Im Idealfall lasst der
Name der Funktion schon viel iiber ihren Effekt erahnen. Beispielsweise ist der Funktionsname
quadrat viel beschreibender als ein nichtssagender Name wie zum Beispiel £.

o Etwas komplexere Téatigkeiten sollten jeweils als eine Funktion definiert werden und damit
einen Namen erhalten. So kann beispielsweise das Zeichnen eines Quadrats in einer Funktion
quadrat definiert werden, wahrend das Zeichnen einer Blume in der Funktion quadrat_blume
definiert wird. Diese Funktion kann dann wiederum die Funktion quadrat aufrufen.

[#" Aufgabe 4.1 <

Fithren Sie den folgenden Code zuerst aus und betrachten Sie das Resultat. Schreiben Sie
den Code um, indem Sie zwei Funktionen schreiben:

1. viertelkreis
2. abgerundetes_quadrat

import turtle as t

for _ in range(4):
for _ in range(9):
t.fd(4)
t.1t(10)
t.£d(100)

35
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 4.2 .

Packen Sie Ihre Losung aus Aufgabe 2.1 in eine Funktion mit dem Namen haus. Testen
Sie zunéchst, ob die Funktion wirklich das gewiinschte Resultat liefert (ein einzelnes Haus),
indem Sie die Funktion aufrufen. Schreiben Sie dann eine zweite Funktion haeuserreihe,
welche eine Hauserreihe aus 5 Hausern zeichnet, indem haus fiinfmal aufgerufen wird.

Thr Code sollte folgendes Bild ausgeben:

4.2 Parameter

Stellen Sie sich vor, sie wollen drei unterschiedlich grosse Quadrate zeichnen. Sie kénnten folgender-
massen vorgehen:

import turtle as t

def quadrat50():
for _ in range(4):

t.£d(50)

t.rt(90)

def quadrat100(Q):
for _ in range(4):

t.£d4(100)

t.rt(90)

def quadrat150():
for _ in range(4):

t.£d(150)

t.rt(90)

quadrat50()
quadrat100()
quadrat150()

Programm 4.2: squares_noparams.py

Das ging gerade noch! Was jedoch, wenn Sie 20 unterschiedlich grosse Quadrate zeichnen wollen?
Brauchen Sie dann 20 Definitionen? Zum Gliick nicht, wie Beispiel Beispiel 4.3 zeigt.

Beispiel 4.3:
Folgendes Beispiel verwendet einen Parameter laenge, um die Lénge des Quadrats jedes Mal

36
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

anzupassen:

1 import turtle as t

6 t.rt(90)
7 " Ubergaben
s quadrat (50)
9 quadrat (100)
quadrat (

o

\. J

Funktionen kénnen mehrere (oder auch gar keine) Parameter haben. Ersteres ist besonders niitzlich,
wenn Sie eine Funktion schreiben wollen, die mehrere Werte benotigt, um ihre Aufgabe zu erfiillen.
Zum Beispiel konnte eine Funktion, die ein Vieleck zeichnet, sowohl die Anzahl der Ecken als auch
die Farbe des Vielecks benotigen.

Beispiel 4.4:
In folgendem Beispiel kann nicht nur die Anzahl Ecken, sondern auch die Farbe eines Vielecks
iibergeben werden.

import turtle as t

def farb_vieleck(ecken, farbe):
t.color(farbe)
for _ in range(ecken):
t.£d(50)
t.rt (360 / ecken)

farb_vieleck(3, "red")
farb_vieleck(6, "green")
farb_vieleck(4, "blue")

t.done()
Programm 4.3: farb_vieleck.py

37
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Ubersicht 4.2 (Nomenklatur bei Python-Funktionen):

Wir haben in diesem Kapitel mehrere wichtige Begriffe im Zusammenhang mit Funktionen
in Python kennengelernt. Diese Begriffe wollen wir hier anhand eines Beispiels iibersichtlich
darstellen:

def produkt(x, y):
print(x * y)

produkt (5, 3)

Name der Funktion : produkt
Das ist der Name (Bezeichner) der Funktion, mit dem sie definiert und aufgerufen wird.
Parameter der Funktion : x, y
Das sind die Platzhalter in der Funktionsdefinition, die beim Aufruf der Funktion mit
Werten (Argumenten) belegt werden.
Argumente der Funktion : 5, 3
Das sind die tatsdchlichen Werte, die beim Aufruf an die Funktion iibergeben werden.
Funktionsaufruf : produkt (5, 3)
Das ist der Ausdruck, mit dem die Funktion ausgefiihrt wird.
Funktionssignatur : produkt(x, y)
Das ist die Kombination aus dem Funktionsnamen und der Parameterliste, also wie die
Funktion definiert ist und wie sie verwendet werden soll.
Korper der Funktion : print(x * y)
Der Anweisungsblock innerhalb der Funktion. Er definiert, was die Funktion macht.

Die allgemeine Form einer Funktion in Python sieht also so aus:

Definition einer Funktion
def funktionsname(parameterl, parameter2, ...):
Koérper der Funktion

Funktionsaufruf
funktionsname (argumentl, argument2, ...)

= Aufgabe 4.3

Andern Sie den Code aus Beispiel 4.4 so ab, dass zusétzlich zur Farbe und der Anzahl Ecken
auch noch die Stiftdicke fiir jedes Vieleck verindert werden kann. Verwenden Sie dazu einen
weiteren Parameter sowie die Funktion t.width.

38
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 4.4 .

Erstellen Sie die Funktionen mit den folgenden Signaturen:

e def summiere(x1l, x2): Berechnet die Summe der zwei Parameter x1 und x2 und gibt
das Resultat mittels print auf der Konsole aus.

o def summe_quadrate(x, y): Berechnet die Summe 22452 und gibt diese mittels print
auf der Konsole aus.

. J

4.2.1 Lebensdauer (scope) einer Variable

Im Code aus Beispiel 4.3 wird bei jedem Aufruf der Definition quadrat eine neue Variable laenge
erstellt, welche nur innerhalb der Funktion existiert und welche jedes Mal einen anderen Wert hat.
Den Wert erhélt die Variable zum Zeitpunkt des Aufrufs der Funktion, also auf den Zeilen 8, 9 und
10!

Die Variable laenge existiert also nur innerhalb der Definition quadrat. Wenn wir nach Zeile 6
im Hauptprogramm (nicht eingertickt) den Befehl print(laenge) eingeben wiirden, wiirden wir
eine Fehlermeldung erhalten, da es die Variable nicht mehr gibt. Parameter sind also immer lokale
Variablen, ebenso wie Variablen, welche wir innerhalb von Funktion erstellen. Diese Variablen
»sterben“ nach Ausfiihrung der Definition, daher spricht man auch von der Lebensdauer einer
Variable, bzw. von deren Reichweite (Englisch: scope)

Variablen, welche im Hauptprogramm (nicht eingertickt) erstellt werden, sind sogenannte globale
Variablen.

@ Aufgabe 4.5 .

Beschreiben Sie, welche der Variablen im unten stehenden Code lokal oder global sind, und
welche Variablen auch Parameter sind. Sie sollten insgesamt 5 Variablen finden!

import turtle as t
import math

def haus(laenge):
anzahl _mauern = 4
Mauern
for _ in range(anzahl_mauern):
t.fd(laenge)
t.1t(90)

Bewegung zu Dach hin
.1t (90)
.fd(laenge)

ct ct

Dach

.rt(45)

.fd(laenge / math.sqrt(2))
.rt(90)

.fd(laenge / math.sqrt(2))
.rt(45)

¢ o o o o =

39
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

t.fd(laenge)
t.1t(90)

def haeuserreihe(laenge_pro_haus):
anzahl_haeuser = 5
for _ in range(anzahl_haeuser):
haus(laenge_pro_haus)

seitenlaenge = 50
haeuserreihe(seitenlaenge)

Zeichnung stehen lassen
t.done ()

Programm 4.4: houses.py

\. J

= Aufgabe 4.6 \

Was konnte der Vorteil von lokalen Variablen sein?

4.3 Werte zuriickgeben mit return

4.3.1 Einzelne Funktionen

Wie Sie bereits wissen, konnen Definitionen mit Kochrezepten verglichen werden: Sie beschreiben
einen Ablauf, ohne diesen auszufithren. Damit der Code einer Funktion ausgefithrt wird, miissen Sie
die Definition aufrufen: In Beispiel 4.4 wurde dies beispielsweise mit farb_vieleck(3, "red")
gemacht. Erst aufgrund dieser Zeile wurde etwas gezeichnet!

Dies kann niitzlich sein, wenn sie eine Aufgabe mehrmals und in unterschiedlichen Varianten aus-
flihren wollen, wie beispielsweise in Beispiel 4.4.

Eine wichtige Limitation von Definitionen war bisher, dass Sie zwar Dinge berechnen und auf der
Konsole drucken konnten, allerdings verschwinden alle Parameter und lokalen Variablen nach der
Ausfiithrung einer Funktion. Dies bedeutet, dass alle Variablen, die wir je in einer Definition erstellt
haben, nur in dieser Definition ,lebten®. Wir konnten jedoch nicht mehr auf Parameter oder lokale
Variablen zugreifen, nachdem das Programm beendet wurde.

Beispiel 4.5:
Betrachten Sie folgenden Code. Weshalb fiihrt er zu einer Fehlermeldung?

1 def summiere(xl, x2):
2 summe = x1 + x2

» summiere(3, 5)

5 print (summe)

Die Konsole gibt folgende Meldung aus: [Zeile: 5] NameError: name 'summe' is not

40
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

defined. Dies bedeutet, dass die Variable summe auf Zeile 5 nicht existiert. Die Fehlermeldung
erklart sich dadurch, dass alle Variablen, die innerhalb einer Definition erstellt werden, nur
innerhalb dieser Definition ,,leben”, also existieren. Dass Variablen mittels dem Befehl return
auch an das Hauptprogramm ,,zuriickgegeben“ werden konnen, lernen wir in diesem Kapitel.

Funktionen kénnen jedoch auch Werte an das Hauptprogramm zuriickgeben: In diesem Kapitel
lernen wir, wie Funktionen, dhnlich wie ,,Sous-Chefs“ (Hilfs-Koche) in einer komplexen Kiiche Zu-
taten (Parameter) entgegennehmen und Resultate an andere ,Sous-Chefs* (Funktionen) via das
Hauptprogramm weitergeben werden kénnen.

Fine Funktion kann man sich vorstellen wie ein Kochrezept, das einige Zutaten entgegennimmt
und ein Resultat (Gericht) zuriickgibt. Die Zutaten, oder ,Inputs®, werden dabei héufig als ,Pa-
rameter” bezeichnet, wihrenddem das fertige Gericht, oder ,Resultat” hiufig als ,return-Wert*
bezeichnet wird. Diese Idee ist in Abbildung 4.2) veranschaulicht.

def al(x1l, x2, ...)

Abbildung 4.2: Illustration einer Funktion mit Inputs (Parametern) und Outputs (return-Wert)

Beispiel 4.6:

Betrachten Sie nochmals den folgenden, leicht modifizierten Code aus Beispiel 4.5. Wenn
wir den Wert mit return an das Hauptprogramm zuriickgeben und in einer Variable (im
Hauptprogramm, auf Zeile 5) abspeichern, funktioniert der Code nun: Wir kénnen auch aus-
serhalb der Funktion summiere () auf einen Wert zugreifen, welcher innerhalb der Definition
berechnet wurde, und diesen potentiell weiterverwenden.

1 def summiere(xl, x2):

2 summe = x1 + x2

3 return summe

) Wert an das Hauptprogramm zuriickgeben...

ert in Variable speichern, z.B. res

 res=summiere(3, 5)
s print(res)

41
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

A Achtung

Wichtiger Hinweis 4.1:

Man muss sich diesen Code wie folgt vorstellen: Auf Zeile 7 wird die Funktion summiere
aufgerufen, die Werte 3 und 5 werden fiir die Parameter x1 und x2 {ibergeben. Zeile
2 berechnet nun die Summe dieser beiden Werte. Auf Zeile 3 wird nicht die Variable
summe an das Hauptprogramm zuriickgegeben, sondern deren Wert (in diesem Fall:
8). Dies ist sehr wichtig: Nur weil wir return summe schreiben, heisst dass nicht,
dass wir ausserhalb der Funktion summiere auf eine Variable summe zugreifen konnen.
Vielmehr kann man sich vorstellen, dass der blau markierte Bereich auf Zeile 7 nun
yersetzt® wird durch den Wert 8, welcher vom Unterprogramm an das Hauptprogramm
zuriickgegeben wird. Zeile 7 liest sich also nach der Ausfiilhrung des Unterprogramms
so als ob man res = 8 geschrieben hatte. Man konnte selbstverstédndlich auch einen
anderen Variablenname statt res auswéhlen, z.B. x, y, resultat (kurz res) oder
einfach summe. In letzterem Falle wire summe auf Zeile 7 eine globale Variable und
somit génzlich unterschiedlich von der lokalen Variable summe auf Zeile 2.

J

@ Aufgabe 4.7

Gegeben seien die Hohe h und die Grundseite b eines Dreiecks. Schreiben Sie eine Funkti-
on flaeche_dreieck(h, b), welche den Flacheninhalt dieses Dreiecks berechnet und mit
return zuriickgibt. Testen Sie die Funktion mit den Werten h=5 und b=10, speichern Sie das
Resultat in einer Variable result und geben Sie deren Wert per print nach dem Funktions-
aufruf (im Hauptprogramm) aus.

Uberpriifen Sie die Korrektheit Threr Funktion, indem Sie sie auf Moodle hochladen.

I r
J

[#' Aufgabe 4.8

Geben sei eine ganze Zahl n. Schreiben Sie eine Funktion square (n), welche das Quadrat von
n berechnet und mit return zuriickgibt. Testen Sie die Funktion mit dem Wert 5, speichern
Sie das Resultat in einer Variable result und geben Sie deren Wert per print nach dem
Funktionsaufruf (im Hauptprogramm) aus.

Uberpriifen Sie die Korrektheit Ihrer Funktion, indem Sie sie auf Moodle hochladen.

@ Aufgabe 4.9 \

In welchen Féllen ist es sinnvoller, einen Wert einfach per print auf der Konsole auszugeben,
und wann ist ein return-Befehl sinnvoller? Ist das Zuriickgeben des Werts in Aufgabe 4.8
und Aufgabe 4.7 sinnvoll, oder wiirde hier auch ein print reichen?

4.3.2 Mehrere Funktionen

Wie Sie in Aufgabe 4.9 gesehen haben, ist ein return in vielen Féllen nicht notwendig, ein einfa-
ches print reicht in vielen Fallen aus. Wozu kann ein return eigentlich niitzlich sein? Wenn Sie
Code schreiben, wird dieser oftmals schnell komplizierter. Somit kann es hilfreich sein, die einzelnen
Schritte in Unter-Programme aufzuteilen. Dies erleichtert zudem die Mlodularisierung und Wie-
derverwendbarkeit von Code: Beispielsweise konnte eine Funktion, die das Maximum einer Liste

42
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

berechnet, an verschiedenen Orten in einem ldngeren Programm mehrmals zum Einsatz kommen

Zum Vergleich: stellen Sie sich vor, Sie arbeiten in einer edlen Michelin-Sterne-Kiiche an einem
raffinierten Gericht, in das viele Arbeitsschritte involviert sind. Haufig miissen in solchen Restaurants
bis zu 200 Schritte pro Gericht ausgefiihrt werden. Daher kénnte es sinnvoll sein, einzelne Aufgaben,
wie beispielsweise die Herstellung der Saucen, an Thre Sous-Chefs zu delegieren, und eine Person
zu bestimmen, die das ganze Gericht zusammenfiigt. Hiufig werden Funktionen genau mit solchen
komplexen Aufgaben im Hinterkopf geschrieben. Diese Idee ist in Abbildung 4.3 illustriert.

def al(x1, x2, ...) def a2(x1, x2, x3, ...) def al3(x1, x2, ...)

return outl

Abbildung 4.3: Hlustration einer Code-Struktur, bei welcher mehrere Funktionen zusammenarbeiten

In Abbildung 4.3 haben wir eine Funktion a1, die zwei Parameter entgegennimmt (x1 und x2). Mit
diesen Parametern macht sie etwas (z.B. die Summe berechnen, ein Quadrat zeichnen oder irgend
eine sonstige Aufgabe) und gibt danach einen neuen, berechneten Wert a1 zuriick. Dieser kann im
Hauptprogramm abgespeichert und an andere Funktionen weitergegeben werden, beispielsweise an
die Funktion a3.

Beispiel 4.7:

Stellen Sie sich vor, Sie arbeiten fiir einen Supermarkt und sollten den Preis Ihrer Produkte
berechnen. Sie kaufen IThre Artikel bei einem Grossverteiler ein, daher erhalten Sie auf alle
Produkte 10 % Rabatt. Der Grossverteiler befindet sich im Ausland, Sie miissen also noch 7
% Mehrwertsteuer hinzufiigen. Der Grossverteiler gibt Thnen den Original-Preis Threr Waren
vor Rabatt und vor Mehrwertsteuer.

Folgender Code berechnet den Endpreis, fiir den Sie ihre Waren verkaufen werden, indem
folgende zwei Funktionen aufgerufen werden:

1. berechne_rabatt berechnet den Preis nach Abzug eines Rabatts fiir ein Produkt.
2. berechnet_gesamtpreis ruft berechne_rabatt auf und fiigt zum rabattierten Preis
die Mehrwertsteuer hinzu.

43
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

def berechne_rabatt(preis, rabatt_prozent):
rabatt = preis * (rabatt_prozent / 100)
Gibt den Preis nach Abzug des Rabatts zurick

Wert zuriickgeben (und speichern)

amtpreis(preis, rabatt_prozent, mwst_prozent):

= berechne_rabatt(preis, rabatt_prozent)

mwst = rabattpreis * (mwst_prozent / 100)

Gibt den Gesamtpreis inklusive Mwst. zuriick

def berechne_

return

Wert zuriickgeben (und speichern)
Anwendung
preis = 100 # Basispreis in CHF
rabatt_prozent ~ 10 # Rabatt in %
mwst_prozent = 7.7 # Mehrwertsteuer in %

= berechne_gesamtpreis(preis, rabatt_prozent, mwst_prozent)
print("Der Endpreis nach Rabatt und Mehrwertsteuer ist:", endpreis)

Mit folgendem Code kénnen wir die Turtle eine Spirale aus mehreren Vielecken zeichnen lassen:
import turtle as t

don't show turtle moving
t.tracer(False)

def vieleck(umfang, ecken):
for _ in range(ecken):
t.fd(umfang / ecken)
t.rt(360 / ecken)

def vieleck_muster (umfang, ecken):
for _ in range(60):
vieleck(umfang, ecken) ==
t.rt(6)
umfang -= 10

vieleck_muster (600, 36)
t.done ()

Programm 4.5: spirale_kreis.py
Beispiel 4.8:

Leider ist unsere Turtle etwas miide und sollte nicht zu viel laufen. Daher mochten wir

44
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

fortlaufend die Gesamtdistanz berechnen, um am Ende herauszufinden, ob unsere Turtle
zu viel Strecke zuriickgelegt hat. Dies kénnen wir tun, indem wir die Funktion einen Wert
zuriickgeben lassen:

import turtle as t

def vieleck(umfang, ecken):

for _ in range(ecken):

t.fd(umfang/ecken)
t.rt(360/ecken)

def vieleck_muster(umfang, ecken):

for _ in range(60):
vieleck(umfang, ecken)

umfang-=10
t.rt(10)

return gesamtdistanz
BesamtaISEanZI=]vicleck_muster (600,35)

[# Aufgabe 4.10

Schreiben Sie eine Python-Funktion def notenskala(maxPunkte, erreichtePunkte), wel-
che die erreichte Note in Abhéngigkeit der maximal moglichen Punktzahl und der erreichten
Punktzahl berechnet und per return zuriickgibt. Verwenden Sie dafiir die folgende Formel:

erreichtePunkte
note — -5+1
maxPunkte

[#' Aufgabe 4.11 Formel 1 ##

Ein Formel-1-Auto fahrt eine bestimmte Strecke in einer bestimmten Zeit. Schreiben Sie eine
Funktion durchschnittsgeschwindigkeit(strecke_km, zeit_min), die Strecke in Kilo-
metern und Zeit in Minuten als Eingabe erhélt und die durchschnittliche Geschwindigkeit in
km/h per return zurtickgibt.

Formel: Durchschnittsgeschwindigkeit = Strecke (km) / Zeit (h)

45
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 4.12 Boxenstopp 5

Ein Formel-1-Rennteam mochte die Gesamtzeit eines Rennens inklusive Boxenstopps berech-
nen. Gegeben sind die Gesamtstrecke in Km, die Durchschnittsgeschindigkeit in Km/h, die
Anzahl Stopps sowie die Dauer pro Stopp in Sekunden.

Schreiben Sie zwei Funktionen:

def fahrzeit_ohne_stopps(strecke, kmh): Berechnet die reine Fahrzeit in Sekunden und
gibt diese per return zuriick.

def gesamtzeit(strecke, kmh, stopps, stoppdauer): Berechnet zuerst die Fahrzeit oh-
ne Stopps (mit der ersten Funktion) und berechnet dann die Gesamtzeit mit Stopps, indem
zur Fahrzeit ohne Stopps die Anzahl Boxenstopps mal die Dauer eines Boxenstopps (in Se-
kunden) hinzugefiigt wird. Das Resultat soll ebenfalls per return zuriickgegeben werden.

Formel 1: Fahrzeit (Sekunden) = Strecke (Km) / Geschindigkeit (Km/h) * 3600
Formel 2: Gesamtzeit (Sekunden) = Fahrzeit + (Anzahl Stopps x Stoppdauer)

Tipp 1: Schreiben Sie den Code zuerst in VS Code und testen sie ihn erst nachher auf
Moodle.

Tipp 2: Schreiben Sie zuerst die erste Funktion und testen Sie diese mit folgenden Testwerten:
Geschwindigkeit = 210 km/h, Strecke = 305 km. Das Resultat sollte sein: 5228.57 Sekunden.
Schreiben Sie erst danach die zweite Definition, und rufen Sie darin die erste Definition auf.

46
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

4.4 Weitere Aufgaben

47
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 4.13

Sie wollen ein Haus in der Schweiz kaufen. Der Kaufpreis betrigt k Franken. Sie kaufen das
Haus mit E Franken Ihres gesparten Geldes (Eigenkapital) und der Restbetrag wird durch
die Aufnahme einer Hypothek von h := k — F Franken gedeckt.

Die Tragbarkeitsrechnung in der Schweiz priift, ob die Kosten einer Immobilie langfristig fi-
naziell tragbar (bezahlbar) sind. Banken und andere Kreditinstitute verwenden diese (sehr
grobe) Berechnung, um sicherzustellen, dass Sie Thre Hypothek auch dann noch bezahlen
konnten, falls die Zinsen steigen wiirden. Als Faustregel gilt, dass die jahrlichen (kalkula-
torischen”) Wohnkosten nicht mehr als 1/3 Ihres Bruttojahreseinkommens (b) ausmachen
diirfen.

Die kalkulatorischen jahrlichen Wohnkosten setzten sich als die Summe der folgenden drei
Positionen zusammen:

o Kalkulatorischer Zins: 5 Prozent des Hypothekenbetrags h, also 5 Prozent von k — E
e Nebenkosten: 1 Prozent des Kaufpreises k
o Amortisation: Falls die aufgenommene Hypothek grosser als 2/3 des Kaufpreises k ist,
muss der dariiberliegende Betrag h — (2/3)k nach 15 Jahren zuriickbezahlt sein. Die
Bank rechnet also hierfihr mit jahrlichen Kosten a fiir die Amortisation von
0 h—(2/3)k (k—FE)—(2/3)k

15 15
und mit a := 0, falls die Hypothek 2/3 des Kaufpreises nicht tibersteigt.

Zusammengefasst muss also die Ungleichung

Brutto-Jahreseinkommen
3

oder anderst geschrieben

> Kalkulatorischer Zins + Nebenkosten + Amortisation

b/3 > 0.05(k — E) 4 0.01k + max {0, (k/3 — E)/15}

erfiillt sein. Wir wollen unsere Berechnung méoglichst allgemein halten und ersetzen die kal-
kulatorische Hypothekenrate von 0.05 durch die positive Variable a und die kalkulatorische
Nebenkostenrate 0.01 durch die positive Variable 3:

b/3 > a(k — E) + Bk + max {0, (k/3 — E)/15} . (4.1)

Nun gibt es fiir den Kaufpreis £ noch eine weitere Zusatzbedingung: Der Kaufpreis darf
nicht héher sein als das Fiinffache des Eigenkapitals.

1. Losen Sie die Ungleichung nach k auf. Natiirlich wird £ abhéngig sein von F, b, a und
8.

2. Schreiben Sie eine Funktion max_kaufpreis(E, b, alpha, beta), welche fiir gegebe-
ne Werte von E, b, & und 8 den maximal tragbaren Kaufpreis berechnet und mit return
zuriick gibt.

3. Geben Sie eine Formel fiir das maximal tragbare k in Excel an, falls ¥/ in A1, b in A2,
a in A3 und B in A4 gespeichert sind.

“Der Begriff Kalkulatorisch bedeutet in diesem Zusammenhang, dass dieser Betrag nach bestimmten Vorgaben
berechnet wird und tiberhaupt nicht den tatsdchlichen Kosten entsprechen muss.

48
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Kapitel 5

Verzweigungen und bedingte Schleifen

5.1 Verzweigungen mit if, elif und else

In vielen Fallen méchten wir Code nur Ausfiihren, falls eine gewisse Bedingung wahr ist: beispiels-
weise mochte ein Arzt nur dann eine Warnung erhalten, wenn der Blutdruck eines Patienten zu
hoch ist, oder ein selbstfahrendes Auto sollte nur dann piepsen, wenn der Fahrer nicht aufmerksam
auf die Strasse schaut. Um solche konditionale (bedingte) Logik zu programmieren, kénnen wir die
Begriffe if (,falls“), elif (,sonst falls“) und else (,in allen anderen Féllen“) verwenden.

5.1.1 Verzweigungen mit if

Beispiel 5.1:
Folgendes Beispiel fithrt nur zu einem Output, falls eine Temperatur von 30 Grad oder mehr
eingegeben wird.

def beschreibe_wetter (temperatur) :
if temperatur >= 30:
print("Es ist heiss")

beschreibe_wetter (33)
Programm 5.1: ex_if.py

Der Code kann folgendermassen als Fluss-Diagramm aufgezeichnet werden (siche Abbil-
dung 5.1). Auf dem Flussdiagramm werden die einzelnen Schritte des Codes als Boxen dar-
gestellt. Die Boxen sind durch Pfeile verbunden, die den Fluss des Codes darstellen. Die
Entscheidungspunkte sind durch Rauten dargestellt, und die Pfeile zeigen, welche Aktion
ausgefiihrt wird, je nachdem, ob die Bedingung wahr oder falsch ist.

49
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Ebeschre ibe_wetter (33)}

temperatur >= 30 True —(print(”Es ist heiss”)}

l False
.‘

Abbildung 5.1: Flussdiagrammm fiir den Code aus Beispiel 5.1

Dabei bezeichnen blaue, rechteckig-abgerundete Boxen eine Zeile Code, griine, rauteférmige
Formen einen Test der schwarze Punkt das Programmende. Wenn immer eine Verzweigung
vorliegt, geht der Pfeil fiir True nach links, der Pfeil fiir False geht nach rechts

Nach jedem if steht ein logischer Ausdruck oder ein logischer Wert.

Definition 5.1:
Logische Ausdriicke, auch Boolsche Ausdriicke sind Ausdriicke, die genau zwei verschie-
dene Werte annehmen konnen: entweder wahr (True) oder falsch (False). Beispiele sind:

3 == 5 # gibt den Wert False zurick
(9 + 3) < (2 x 8) # gibt den Wert True zurick

Wie Sie im obigen Beispiel sehen, wird von einem Wahrheitstest ein Wert zuriickgegeben:
entweder der Wert True (Wahr) oder False (Falsch).

Mogliche logische Relationen sind in Tabelle 5.1 abgebildet.

Python H Mathematische Bedeutung

== gleich (=)

I= ungleich (#)

< kleiner (<)

<= kleiner oder gleich (<)
> grosser (>)

>= grosser oder gleich (>)

Tabelle 5.1: Logische Relationen und Schreibweise in Python

Logische (oder auch bool’sche) Audriicke wie z.B. 3 < 45 fiihren zu einem Bool’schen Wert,
also einem Wahrheitswert, welcher entweder den Wert True (wahr) oder False (falsch) hat.

Die typische Verwendungsart logischer Ausdriicke ist in folgendem Code abgebildet:

if BOOLSCHER_WERT:
dieser Code wird nur dann ausgefihrt, wenn BOOLSCHER_WERT wahr (True)
ist.

50
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 5.1 .

Entwickeln Sie eine Funktion def quadrat(laenge) zum Zeichnen von Quadraten. Der Be-
fehl soll aber nur etwas zeichnen, wenn die Seitenldnge mindestens 40 betragt. Zeichnen Sie
sich zuerst ein Flussdiagramm des Codes auf Papier auf.

@' Aufgabe 5.2 .

Entwickeln Sie ein Programm, das dem Benutzer im Rahmen einer interaktiven Fragerunde
drei Fragen stellt (mit dem Befehl input ("...")).

Das Programm soll die Anzahl der richtigen Antworten zéhlen und diese Anzahl ausgeben.

Zur Erinnerung: input("Frage") gibt den Text "Frage" auf dem Bildschirm aus und
wartet auf eine Eingabe des Benutzers. Um die Antwort zu speichern, muss der Befehl in eine
Variable gespeicher werden. Zum Beispiel:

name = input("Wie heisst du?")

print("Hallo " + name)

Die Eingabe eines input("...")-Befehls wird immer als Text zuriickgegeben, selbst wenn
eine Zahl eingetippt wird. Um die Eingabe als Zahl zu interpretieren, muss der Text in eine
Zahl umgewandelt werden. Dies geschieht mit dem Befehl int (input ("Frage")). Beispiel:
age = int(input("Wie alt sind Sie?"))

print("Sie sind " + str(age) + " Jahre alt.")

Zeichnen Sie Thre Losung als Flussdiagramm des Codes auf Papier auf.

5.1.2 Verzweigungen mit if und else

Beispiel 5.2:
In folgendem Code wird mit dem else-Ausdruck ein Fall definiert, welcher ausgefithrt wird,
sofern die if-Kondition nicht zutrifft.

def beschreibe_wetter (temperatur):
if temperatur >= 30:
print("Es ist heiss")
else:
print("Es ist kihl")

beschreibe_wetter (19)

Programm 5.4: ex_if_else.py

Beachten Sie, dass nach dem else kein logischer Ausdruck steht, da der Code unterhalb des
else nur dann stattfindet, wenn alle zuvor genannten Tests falsch waren.

Der Code kann ebenfalls als Fluss-Diagramm aufgezeichnet werden:

51
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren

O Informatik, 2026

Ebeschreibe_wetter(lQ)}

l

temperatur >= 30 {print(”Es ist heiss")}

{False

[print ("Es ist kithl")}

.

5.1.3 Verzweigungen mit if, elif und else

Beispiel 5.3:
Folgender Code fiihrt eine von drei Moglichkeiten aus:

def beschreibe_wetter(temperatur):
if temperatur >= 30:
print("Es ist heiss")
elif temperatur >= 20:
print("Es ist warm")
else:
print ("Es ist kiihl")

beschreibe _wetter (19)

Programm 5.5: ex_if_elif_else.py

Der Code kann folgendermassen als Fluss-Diagramm aufgezeichnet werden:

52
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

beschreibe_wetter(lQ)’

l

True
temperatur >=

print ("Es ist heiss") F—

True

temperatur >= print ("Es ist warm") %—

print("Es ist kﬁhl")’

o

[#' Aufgabe 5.3

Ein Backer mochte Kekse backen und gleichméssig in Keksdosen verpacken, so dass jede Dose
voll ist. Jede Dose fasst 12 Kekse. Schreibe ein Programm, das berechnet:

e Wie viele Dosen benétigt werden fiir n Kekse.
o Wie viele Kekse iibrig bleiben.

Falls mehr als 500 oder weniger als 1 fiir n eingegeben werden, soll ausgegeben werden:
"Ungiltige Anzahl Kekse!"

Verwenden Sie die Ganzzahldivision (//) und Modulo (%)! Zur Erinnerung: // gibt den ganz-
zahligen Teil der Division zuriick, % gibt den Rest der Division zuriick.

.

= Aufgabe 5.4

Verwenden Sie einen input-Befehl, um den Benutzer nach einer Zahl n zu fragen.

1. Falls die Zahl n=1 eingegeben wird, soll ein blaues Viereck gezeichnet werden.

2. Falls eine Zahl n von 2 bis und mit 6 eingegeben wird, soll ein griines Sechseck gezeichnet
werden.

3. Falls eine Zahl n von 7 oder grosser eingegeben wird, soll ein schwarzes n-Eck gezeichnet
werden.

53
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

@ Aufgabe 5.5 .

Bei einer Flugreise darf der aufgegebene Koffer iiblicherweise nicht schwerer sein als 20 kg.
Ansonsten bezahlt man einen Aufschlag von CHF 5.- pro kg Ubergewicht.

Schreiben Sie ein Unterprogramm koffer(gewicht), der einen Parameter Gewicht entgegen-
nimmt und einen Text auf der Konsole druckt, je nach Fall:

o Wenn der Koffer iiber 100 kg wiegt, wird er nicht transportiert ("Der Koffer ist zu
schwer").
e Wenn der Koffer iiber 20 kg und bis und mit 100 kg wiegt, muss der Aufpreis berech-
net und ausgegeben werden (z.B. "Ihr Koffer hat X kg Ubergewicht. Das kostet
(5%X) .-").
e Wenn der Koffer iiber 0 kg und bis und mit 20 kg wiegt, muss kein Aufpreis bezahlt
werden und es wird gedruckt "Der Koffer ist gratis".
e In allen anderen Féllen soll ausgegeben werden Das eingegebene Gewicht ist nicht
zuldssig (0, negative Zahlen etc.).

. 7

[#' Aufgabe 5.6 |

Entwickeln Sie eine Funktion def vielecke_sicher(anzahl, seite) zum Zeichnen von re-
gelméssigen Vielecken mit wéahlbarer Anzahl Ecken und wéhlbarer Seitenldnge. Wenn anzahl
(die Anzahl der Ecken) kleiner als 1 ist, soll das Programm nichts tun. Wenn anzahl ==
ist, soll das Programm "Es gibt kein 1-Eck" ausgeben. Wenn anzahl == 2 ist, soll das
Programm "Es gibt kein 2-Eck" ausgeben. Wenn anzahl >= 3 ist, soll das Programm das
anzahl-Eck mit Seitenldnge seite zeichnen. Zeichnen Sie auch das dazugehorige Flussdia-
gramm.

\ J

[#' Aufgabe 5.7 \

Was gibt dieser Code aus? Ist die Ausgabe sinnvoll? Weshalb (nicht)?

def beschreibe_wetter (temperatur):
if temperatur >= 30:
print("heiss")
if temperatur >= 20:
print ("warm")
else:
print ("kihl")

beschreibe_wetter (33)
Programm 5.10: ex_if_if_else.py

54
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

@ Aufgabe 5.8 .

Entwickeln Sie eine Funktion def quadgleich(a, b, c), welche quadratische Gleichungen
der Form axz? + bz + ¢ = 0 16st.

Zur Erinnerung: die Formel zur Berechnung der Lésungen ist:

_ —bE Vb —dac

2a

x1,2 (5.1)
Der Befehl soll zuerst d = b? — 4ac ausrechnen und abhingig vom Wert von d keine, eine oder
zwei Losungen ausgeben.

o Falls d < 0, gibt es keine reelle Losung
o falls d = 0, gibt es genau eine reelle Losung
o falls d > 0, gibt es genau zwei Losungen

\ J

[# Aufgabe 5.9)

Gegeben seien zwei Zahlen x1 und x2. Schreiben Sie eine Funktion maxzahl (x1, x2), welche
die grossere der beiden Zahlen mit return ausgibt. Wenn beide Zahlen gleich gross sind, soll
x2 ausgegeben werden.

W Aufgabe (Challenge) 5.10 Dynamisches Schachbrett

Wir méchten ein quadratisches Schachbrettmuster mit n x n Feldern erzeugen, wobei n eine
gerade positive natiirliche Zahl ist. Jedes der n? Felder soll dabei eine Grosse von genau s x s
Zeichen haben (s > 1). Die Zahl 1 représentiere die schwarzen Felder, die Zahl 0 die weissen
Felder.

Zusétzlich moéchten wir wéahlen konnen, ob das linke obere Feld schwarz oder weiss sein
soll (upper_left = 'black' oder upper_left = 'white'). Folgende Beispiele zeigen die
entsprechenden Schachbrettmuster fiir verschiedene Wahlen der drei Parameter n, s und
upper_left:

Schachbrettmuster fir n
000111
000111
000111
111000
111000
111000

2, s 3, upper_left = 'white'

Schachbrettmuster fir n 'black’
1010
0101
1010

0101

1]
NS
10)

|

= 1, upper_left

Schachbrettmuster fir n
110011001100
110011001100

'black’

1]
)
n

= 2, upper_left

95
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

001100110011
001100110011
110011001100
110011001100
001100110011
001100110011
110011001100
110011001100
001100110011
001100110011

Allgemein soll das Muster immer genau ns Zeichen breit und ebenso hoch sein. Schreiben Sie
ein Python-Programm, welches die drei oben beschriebenen Parameter akzeptiert und das
entsprechende Schachbrettmuster ausgibt.

5.1.4 Logische Ausdriicke miteinander verbinden: and und or

Hé&ufig fallen wir im echten Leben Entscheidungen, welche nicht nur von einer Bedingung abhéngen,
sondern gleich von mehreren, so zum Beispiel:

e Ich gehe per Fahrrad zur Schule, falls das Wetter schon ist und ich mich kérperlich fit fiihle.
o Ich esse etwas, falls ich Hunger habe oder ich Lust darauf habe (auch wenn ich keinen Hunger
habe).

Beim ersten Beispiel handelt es sich um eine Verbindung per ,,und“: beide Konditionen miissen wahr
sein, damit etwas geschieht. Dies kann in Python mit and (englisch fiir ,und“) umgesetzt werden.

Beispiel 5.4:
Folgendes Beispiel illustriert, wie mehrere Bedingungen miteinander verkniipft werden koén-
nen:

temperature = 25 # aktuelle Aussen-Temperatur
fitness = 80 # korperliche Fitness (zwischen 0-100, subjektiv empfunden)
if (temperature > 20) and (fitness > 80):

print("Ich gehe per Fahrrad zur Schule!")

Beim zweiten Beispiel handelt es sich um eine Verbindung mehrerer Bedingungen per ,oder®: es
reicht, dass eine von beiden Bedingungen wahr ist, damit etwas geschieht. Dies kann in Python
mittels dem Wort or (englisch fiir ,oder”) umgesetzt werden.

Beispiel 5.5:
Folgendes Beispiel illustriert, wie mehrere Bedingungen miteinander verkniipft werden kon-

nen:
hunger = 25 # aktueller Hunger-Wert (zwischen 0-100, subjektiv empfunden)
lecker = 80 # wie lecker ist das Lebensmittel (Skala von O bis 100)7

if (hunger > 80) or (lecker > 80):
print("Ich will das essen!")

o6
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 5.11

Schreiben Sie eine Funktion geschwindigkeit_angemessen(geschwindigkeit), welche als
Parameter geschwindigkeit eine Zahl entgegennimmt (z.B. 50 oder 120). Falls die Geschwin-
digkeit zwischen 30 und 100 km/h liegt (einschliesslich dieser Werte), soll auf der Konsole
ausgegeben werden: ,,Die Geschwindigkeit ist angemessen®. Ansonsten soll ausgegeben werden
,Die Geschwindigkeit ist nicht angemessen®. Verwenden Sie dazu den Ausdruck and.

I r

= Aufgabe 5.12

Schreiben Sie eine Funktion temperatur_ist_unangenehm(temperatur), welche einen Pa-
rameter temperatur als Zahl entgegennimmt. Falls die Temperatur kleiner als 10 Grad oder
grosser als 30 Grad ist, soll auf der Konsole ausgegeben werden: ,,Unangenehme Tempera-
tur. Ansonsten soll ausgegeben werden: ,,Angenehme Temperatur®. Verwenden Sie dazu den
Ausdruck or.

4 Aufgabe 5.13

I r

Entwickeln Sie eine Funktion def vieleck_kreis(anzahl_ecken, umfang), die ein Vieleck
zeichnet. Damit das Vieleck aussieht wie ein Kreis, soll es nur gezeichnet werden, wenn die
Anzahl der Ecken gréosser als 35 ist und wenn der Umfang mindestens 100 ist.

I r

[#' Aufgabe 5.14

Schreiben Sie eine Funktion positiv_und_gerade(zahl), welche einen Parameter zahl ent-
gegennimmt, und testet, ob die Zahl positiv und gerade ist, und falls dies zutrifft, den Text
ausgibt "Die Zahl ist positiv und gerade'. Ansonsten soll nichts ausgegeben werden.

Zur Erinnerung: Eine Zahl ist gerade, wenn sie ohne Rest durch 2 teilbar ist. Der Rest einer
Ganzzahldivision kann in Python mit dem Modulo-Operator % berechnet werden. Beispiel:

zahl % 2 ==

Dieser Ausdruck gibt True zuriick, wenn die Zahl gerade ist, da sie dann vollsténdig (ohne
Rest) durch 2 teilbar ist. Andernfalls gibt der Ausdruck den Wert False zuriick.

~

= Aufgabe 5.15

Entwickeln Sie ein Programm, das alle natiirlichen Zahlen zwischen 0 und 100 auf den Bild-
schirm schreibt, die durch 7, aber nicht durch 3 teilbar sind.

F

W Aufgabe (Challenge) 5.16

Finen Code mit mehreren Bedingungen kann man statt mit or hidufig auch mit if, elif und
else umsetzen. Uberlegen Sie sich, wie Sie den Code aus Aufgabe 5.12 mit if, elif und
else statt mit or schreiben kénnten.

In welchen Féllen ist es sinnvoller, if, elif und else zu verwenden? In welchen Féllen ist es
sinnvoller or zu verwenden?

7~

57
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

W Aufgabe (Challenge) 5.17

Finen Code mit mehreren Bedingungen kann man statt mit and haufig auch mit verschach-
telten if-Bedingungen umsetzen. Uberlegen Sie sich, wie Sie den Code aus Aufgabe 5.11 mit
verschachtelten if-Bedingungen statt mit and schreiben kénnten.

In welchen Féllen ist es sinnvoller, and zu verwenden? In welchen Féllen sind verschachtelte
if-Bedingungen besser geeignet?

7~

W Aufgabe (Challenge) 5.18

Diskutieren Sie den Gebrauch der Begriffe ,und* und ,,oder* im Alltag und in der Informatik.
Wo sehen Sie Unterschiede in der Verwendung dieser Begriffe?

~

W Aufgabe (Challenge) 5.19

Das harmonische Mittel zweier Zahlen a und b ist eine wichtige Grosse in der Informatik,
da es in vielen Algorithmen verwendet wird, beispielsweise in der Berechnung von Durch-
schnittswerten.

Beispiel: Wenn Sie 100 Kilometer mit 50 km/h und 100 Kilometer mit 100 km/h fahren,
betragt die Durchschnittsgeschwindigkeit nicht 75 km/h, sondern 66.67 km/h. Das harmoni-
sche Mittel kann in diesem Fall verwendet werden, um die Durchschnittsgeschwindigkeit zu
berechnen:

Das harmonische Mittel zweier Zahlen a und b ist 1%_— Es lasst sich aber nur berechnen,

a' b
wenn weder a noch b null sind. Entwickeln Sie eine Funktion def harmonisches_mittel(a,
b), die fiir die Parameter a und b das harmonische Mittel ausrechnet, wenn sowohl a als auch
b nicht null sind. Ansonsten gibt der Befehl den Text "Das kann man nicht berechnen."
aus.

W Aufgabe (Challenge) 5.20

Schreiben Sie eine Python-Funktion def ist_schaltjahr (jahr), welche priift, ob ein gege-
benes Jahr ein Schaltjahr ist oder nicht.

Ein Jahr ist ein Schaltjahr, genau dann wenn gilt:

1. (das Jahr ist durch 400 teilbar) oder
2. (das Jahr ist durch 4 teilbar aber nicht durch 100)

Fiir die Priifung auf Teilbarkeit sollen Sie den Modulo-Operator (%) verwenden.

\

5.1.5 Logische Ausdriicke negieren: not

Negieren bedeutet in der Informatik nicht, das Gegenteil einer (urpsriinglichen) Aussage zu machen,
sondern alle Aussagen zu machen, welche durch die urspriingliche Aussage nicht gemacht wurden,
also alles ,andere® als die urspriingliche Aussage zu sagen.

Beispiel 5.6:
Folgende Tabelle illustriert, was mit der Negation einer Aussage gemeint ist.

o8
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren

O Informatik, 2026

\

= Aufgabe 5.21

Aussage Negation

,2Das Madchen heisst Elin“ »,2Das Médchen heisst nicht Elin“

,2Niemand in dieser Klasse ist volljahrig“ | ,Mindestens eine Person in dieser Klasse
ist volljahrig*
T > 2 ‘ x <2

(Von Hand) Notieren Sie zu folgenden Aussagen die Negation, ohne die Worter ,nicht* oder
,kein“ zu verwenden:

e >3

1y ist eine negative Zahl

e in der Variable test ist der Wert "Franz" gespeichert.

e Im Auto sitzen mindestens drei Menschen

e Der Koffer ist leer

e Das Programm ist falsch geschrieben

e Die Anzahl der Jugendlichen in der Klasse ist genau 19

e Morgen wird es in Ziirich mindestens 22 Grad Celsius warm

J

Die Negation einer Aussage kann in Python mit dem Ausdruck not (englisch fiir ,nicht“) gemacht
werden. Die Negation einer Aussage (mit not) ist insbesondere praktisch, um die Negation einer
Aussage zu machen, ohne die Aussage komplett umschreiben zu miissen.

Beispiel 5.7:
Wir kénnen den Code aus Beispiel 5.4 einfach mit dem Ausdruck not umschreiben, um
auszugeben, unterwelchen Bedingungen wir nicht per Fahrrad zu Schule gehen wollen:

if not((temperature > 20) and (fitness > 80)):
print("Ich gehe nicht per Fahrrad zur Schule!")

Man konnte dieselbe Aussage auch folgendermassen formulieren: ,Falls ich mich nicht fit
flihle oder das Wetter schlecht ist, gehe ich nicht per Fahrrad zur Schule®. Dies séhe in
Python folgendermassen aus:

if (temperature <= 20) or (fitmess <= 80):
print("Ich gehe nicht per Fahrrad zur Schule!")

Weshalb haben wir im ersten Code ein and und im zweiten Code ein or? Dank dem not
miissen wir nichts vom urspriinglichen Code in Beispiel 5.4 umformulieren, da wir mit dem
not einfach alljene Félle negieren, welche innerhalb der Klammer stehen. Somit kommen
beide Codes zum selben Resultat.

29
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 5.22

Schreiben Sie Thren Code aus Aufgabe 5.14 so um, dass getestet wird, ob eine Zahl weder
gerade noch positiv ist. Verwenden Sie dazu unter anderem den Ausdruck not. Testen Sie
ihre Funktion fir die Werte -3, +3, -4 und +4.

Schreiben Sie danach dieselbe Funktion nochmals, ohne den Ausdruck not zu verwenden.

I r
J

= Aufgabe 5.23

Entwickeln Sie ein Programm, das alle Zahlen von 1 bis 24 mit print ausgibt, die nicht Teiler
von 24 sind. Verwenden Sie den Ausdruck not.

5.2 Fussgesteuerte Schleifen mit break

Bisher haben wir eine Art von Schleife gesehen: for _ in range(...). Dabei gibt die Zahl in-
nerhalb des Befehls range(...) an, wie viele Mal der Schleifenkérper wiederholt wird. Manchmal
wissen wir jedoch nicht im voraus, wie viele Male eine Schleife wiederholt werden soll, wir kennen
jedoch eine Bedingung, bei der die Schleife abgebrochen werden soll. Dies kdnnte beispielsweise der
Fall sein, wenn wir eine Spirale zeichnen wolle, die immer grosser wird, bis die Seitenldnge eine
gewisse maximale Linge max_seite erreicht hat.

(]

max_seite

Abbildung 5.3: Bild einer Spirale, deren grisste Seitenléinge max_seite lang ist

Natiirlich kénnte man auch hier berechnen, wie viele Male die for-Schleife ausgefithrt werden muss.
Die Formel, um dies zu berechnen, wére:

maxseite - seite
{ JH
add

Es geht allerdings auch einfacher, indem wir eine ,unendliche“ Schleife starten, die wir abbrechen,
sobald eine gewisse Kondition wahr ist.

Grundsétzlich konnen wir auch direkt die Werte True (Wahr) oder False (Falsch) in Logischen
Ausdriicken verwenden:

Beispiel 5.8:
Der print-Befehl in folgendem Beispiel wird immer ausgefiihrt:

if True:
print ("Hello World")

60
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Den Wert True kénnten wir beispielsweise verwenden, um eine FEndlosschleife mit while True: zu
konstruieren.

import turtle as t

Tempo der Turtle festlegen
t.speed(100)

gleichseitiges Dreieck zeichnen

seite = 5
max_seite = 50
increment = 5

while True: < Unendliche Schleife

if seite > max_seite:

break Schleifenabbruch

t.fd(seite)
t.rt(90)
seite += increment

Turtle-Zeichnung stehen lassen
t.done ()

[#' Aufgabe 5.24 .

Schreiben Sie eine Funktion erraten_zahl (), die ein einfaches Zahlenratespiel implementiert
(siehe Code-Vorlage untenan). Die Funktion soll:

1. Eine zufillige Zahl zwischen 1 und 100 generieren (dies wird gemacht mit dem Befehl
random.randint (1, 100), ist im Code bereits gemacht).

2. Den Benutzer in einer Schleife auffordern, die Zahl zu erraten (int (input("Rate die

Zahl: "))).

3. Falls die Eingabe kleiner als die gesuchte Zahl ist, soll ausgegeben werden: ,Die Zahl
ist grosser..

4. Falls die Eingabe grosser als die gesuchte Zahl ist, soll ausgegeben werden: ,,Die Zahl
ist kleiner.”.

5. Falls die Eingabe korrekt ist, soll die Nachricht , Richtig! Du hast die Zahl erraten.
ausgegeben werden und die Schleife mit break beendet werden.

Testen Sie die Funktion, indem Sie sie ausfithren und versuchen, die Zahl zu erraten. Vervoll-
standigen Sie folgende Code-Vorlage:

import random

def erraten_zahl():
Zufallszahl generieren
ziel zahl = random.randint(1, 100)

while True:
x = int(input("Errate die Zahl!"))
IHR CODE HIER

61
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

g Aufgabe 5.25

Schreiben Sie eine Funktion zeichne_spirale(seitenlaenge, winkel, increment), die
eine Spirale zeichnet. Die Funktion soll folgende Parameter haben:

o seitenlaenge: Die Startlinge der ersten Seite.

e winkel: Der Winkel, um den sich die Turtle nach jeder gezeichneten Seite dreht.

e increment: Der Wert, um den die Seitenldnge nach jeder gezeichneten Seite erhoht
wird.

Die Spirale soll so lange gezeichnet werden, bis die Seitenldnge 200 erreicht oder iiberschritten
hat.

\

= Aufgabe 5.26

Schreiben Sie eine Funktion ist_quadrat (x), die iiberpriift, ob eine gegebene natiirliche Zahl
x eine Quadratzahl ist (also ob es eine ganze Zahl a gibt, so dass x = a - a).

Das Programm soll mit a = 1 starten und iiberprifen, ob a-a = z. Falls a - a = z, soll a
ausgegeben werden und die Schleife abgebrochen werden. Ansonsten fahrt man mit a = a+1
weiter.

Sobald a-a > x soll die Schleife abgebrochen und ausgegeben werden: x ist kein Quadrat.

Verwenden Sie dazu eine while True-Schleife.

W Aufgabe (Challenge) 5.27

Was gibt folgender Code aus und wann endet er?

i=2
while True:
if i>5b:

break

5.3 Kopfgesteuerte Schleifen mit while

Beispiel 5.9:

Folgendes Beispiel zeigt, wie ein while True: mit einem break-Befehl zu einem einfachen
while mit Ausfithrungs-Bedingung vereinfacht werden kann. Beide Codes machen dasselbe.
Die Schleife wird solange ausgefiihrt, wie die Ausfithrungs-Bedingung wahr ist. Die Abbruchs-
kondition wird vor jeder neuen Schleifenausfithrung tiberpriift und die Schleife wird nur dann
ausgefithrt, wenn die Ausfithrungs-Bedingung noch wahr ist. Beim linken Code verwenden
wir nicht eine Ausfiihrungs-Bedingung sondern eine Abbruch-Bedingung.

62
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

import turtle as t

import turtle as t
def spirale(seite, add, max_seite):
while True: l def spirale(seite, add, max_seite):

if seite > max_seite: {while seite < max_seite:

break t.fd(seite)
t.fd(seite) t.rt(90)
t.rt(90) seite+=add

seitet+=add
spirale(10, 10, 100)
spirale(10, 10, 100)

A Achtung

Wichtiger Hinweis 5.1 (Endlos-Schleifen):
Beachten Sie folgende Punkte:

e Passen Sie auf, dass Sie keine unendlichen Schleifen produzieren! In diesem Fall kann
das Programm, auf dem Python lauft, hingen bleiben. Vergessen Sie daher nie die
Abbruchkondition klar zu formulieren!

o Ein while True: (unendliche Schleife) ohne break kann zum Absturz des Programms
fithren @

e Je nachdem kann das auch in einem while mit einer Kondition passieren, sofern die
Bedingung nach dem while so geschrieben ist, dass sie immer wahr (True) ist (siche
Unterabschnitt 3.7.3 zu semantischen Fehlern).

e Speichern Sie regelmissig Thre Aufgaben!

o Falls das Programm VS Code hingenbleibt: Beenden mit [Ctrl|+[Alt]+[] (Windows),
bzw. Activity Monitor unter MacOS

J

[#' Aufgabe 5.28

Schreiben Sie eine Funktion verdreifache_bis_ueberiMio(zahl), welche eine Zahl zahl so
lange immer wieder verdreifacht, bis zahl erstmals grosser als 1°000°000 ist. Dabei sollen alle
Zwischenresultate in der Konsole ausgegeben werden. Am Schluss soll ausserdem die Anzahl
Verdreifachungen ausgedruckt werden.

I r
J

@ Aufgabe 5.29

Entwickeln Sie eine Funktion, dem eine Zahl x > 1 als Parameter {ibergeben wird. Aus x wird
nun eine Folge von Zahlen generiert und ausgegeben. Dabei wird folgende Regel angewendet:
Wenn x durch zwei teilbar ist, ist die néchste Zahl /2 . Wenn x nicht durch zwei teilbar
ist, ist die néchste Zahl 3z + 1 . Dieser Prozess wird wiederholt, solange die neu berechnete
Zahl grosser als 1 ist.

63
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

@ Aufgabe 5.30

Entwickeln Sie ein Programm, das eine siebeneckige Spirale von aussen nach innen zeichnet.
Die Startlange der Seite und die Verkleinerung der Seite in jedem Schritt sollen Parameter
sein. Verwenden Sie eine while-Schleife und lassen Sie die Spirale so lange zeichnen, wie die
Seitenlédnge grosser als 10 ist.

[#' Aufgabe 5.31

I r
J

Gegeben ist eine natiirliche Zahl x > 1. Ein echter Teiler einer Zahl ist eine Zahl, die grosser
als 1 und kleiner als x ist und x ohne Rest teilt. 10 hat beispielsweise die Teiler 1, 2, 5 und
10, wovon nur 2 und 5 echte Teiler sind.

Schreiben Sie ein Programm, das fiir eine vom Benutzer eingegebene Zahl x mit einer while
-Schleife den kleinsten und den grossten echten Teiler von x bestimmt.

Gibt es keine echten Teiler (d.h. x ist eine Primzahl), soll das Programm ausgeben "x ist
eine Primzahl.". Andernfalls sollen der kleinste und der grisste echte Teiler ausgegeben
werden.

\

[#' Aufgabe 5.32

Wenn man die folgende Zahlenfolge von Briichen immer weiter addiert, wird die Summe
immer grosser:

L i . aF = T = F

2 3 4 5 7
Wie viele Briiche miissen addiert werden, damit die Summe mindestens gleich einer gegebenen
Zahl x wird?

Schreiben Sie ein Python-Programm, das die Briiche addiert, solange deren Summe kleiner
als z ist. Am Ende soll das Programm ausgeben, welcher Nenner beim letzten hinzugefiigten
Bruch verwendet wurde und wie gross die Summe insgesamt ist.

Wenn iiber 100 Briiche addiert wurden, soll die while-Schleife abgebrochen werden (mit
break).

. J

W Aufgabe (Challenge) 5.33

Wie viele Schleifen durchlauft das folgende Programm?

a=1
summe = 0

while summe < 2:
summe += 1 / a
a x= 2
print("a =", a)
print("Summe =", summe)

Programm 5.31: schleifen_wiederh.py

64
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 5.34

Schreiben Sie ein Programm, das den Benutzer wiederholt auffordert, Worter einzugeben.
Sobald das Wort ,,Voldemort* eingegeben wird, soll der Prozess beendet werden. Der Com-
puter soll anschliessend eine Aneinanderreihung aller vor ,,Voldemort“ eingegebenen Worter
ausgeben.

@ Aufgabe 5.35 Weizenkornlegende .

Sissa ibn Dahir lebte angeblich im dritten oder vierten Jahrhundert in Indien und gilt Le-
genden zufolge als der Erfinder des Schachspiels.

Der indische Herrscher Shihram tyrannisierte seine Untertanen und stiirzte sein Land in Not
und Elend. Um die Aufmerksamkeit des Konigs auf seine Fehler zu lenken, ohne seinen Zorn
zu entfachen, schuf der weise Brahmane Sissa ein Spiel, in welchem der Koénig als wichtigste
Figur ohne Hilfe anderer Figuren und Bauern nichts ausrichten kann. Der Unterricht im
Schachspiel machte auf den Herrscher Shihram einen starken Eindruck. Er wurde milder und
liess das Schachspiel verbreiten, damit alle davon Kenntnis nehmen.

Um sich fiir die anschauliche Lehre von Lebensweisheit und zugleich Unterhaltung zu bedan-
ken, gewéhrte er dem Brahmanen einen freien Wunsch. Dieser wiinschte sich Weizenkorner:
Auf das erste Feld eines Schachbretts wollte er ein Korn, auf das zweite Feld das Doppelte,
also zwei, auf das dritte wiederum die doppelte Menge, also vier und so weiter.

Sie sollen die Menge Weizenkorner, welche Sissa vom Herrscher gefordert hat, berechnen.
Gehen Sie folgendermassen vor:

Auf dem ersten Schachfeld liegt 1 Reiskorn, auf dem zweiten Feld liegen 2 Reiskérner, auf
dem dritten Feld liegen 4 Korner usw.

Allgemein liegen auf dem n+1-ten Schachfeld genau doppelt soviele Kérner wie auf dem n-ten
Schachfeld. Unser Schachbrett habe n-Felder, wobei n < 67. Wie viele Reiskorner wiirden in
dieser Situation insgesamt auf dem Schachfeld liegen (angenommen so viel Reis hétte Platz)?

Schreiben Sie eine Funktion reis(n), welche die gesuchte Anzahl Reiskérner in Abhéngigkeit
der Anzahl n der Felder berechnet und per return zuriickgibt.

e reis(3) sollte 7 ausgeben.

65
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

e reis(8) sollte 255 ausgeben.
e reis(64) sollte 18446744073709551615 ausgeben.

66
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Kapitel 6

Datenstrukturen

6.1 Listen

6.1.1 Einfiihrung in Listen
Bisher haben wir uns mit Variablen beschéftigt, die nur einen Wert speichern kénnen::

e x = 3 (eine Zahl / ,integer“)
o name = "Hallo" (einen Text / ,string")
e ist_wahr = True (einen Wahrheitswert / ,boolean*)

In der Informatik ist es jedoch oft notig, mit vielen Werten gleichzeitig arbeiten zu kénnen, gerade
im Kontext von Big Data. Eine Mo6glichkeit, in Python mit vielen Werten zu arbeiten, sind Listen.

Definition 6.1 (Liste):

Fine Liste ist eine Sammlung von Werten, die in einer Variable gespeichert werden kénnen.
Eine Liste kann beliebig viele Werte enthalten und diese Werte kénnen von einem beliebigen
Typ wie zum Beispiel ,,integer”, ,string” oder , boolean“ sein.

Beispiel 6.1 (Listen erstellen):

Folgendes Beispiel zeigt, wie eine Liste in Python definiert wird. Wir kénnen dabei, wie auch
bei anderen Variablentypen, beliebige Namen verwenden. Die Inhalte der Liste werden in
eckigen Klammern [] geschrieben und die einzelnen Werte werden durch Kommas , getrennt.

Liste, die nur Zahlen enthilt

liste 1 = [1, 2, 3, 4, 5]

Liste, die nur Strings enth&dlt

liste_2 = ["Hallo", "Welt", "Python"]

Liste, die nur Wahrheitswerte (Typ bool) enthilt
liste 3 = [True, False, Truel]

Liste, die Werte von verschiedenen Typen enthilt
liste_4 = [1, "Hallo", True, 3.14]

Beispiel 6.2 (Zugriff auf Listen):
Wenn wir auf die einzelnen Werte in der Liste zugreifen moéchten, kénnen wir dies mit dem

67
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Index tun. Der Index ist eine Zahl, die angibt, an welcher Stelle sich der Wert in der Liste
befindet. Der Index beginnt bei 0, das heisst, der erste Wert in der Liste hat den Index 0, der
zweite Wert hat den Index 1 und so weiter.

Liste a erstellen

a=1[1, 2, 3, 4, 5]

Zugriff auf das erste Element der Liste
print(al0]) # gibt 1 aus

Zugriff auf das zweite Element der Liste
print(al1]) # gibt 2 aus

Zugriff auf das letzte Element der Liste
print(al[-11)

Beispiel 6.3 (Listen-Werte verédndern):

Um den Wert an einer bestimmten Stelle in der Liste zu dndern, kénnen wir ebenfalls den
Index verwenden. Wir konnen den Wert an dieser Stelle einfach durch einen neuen Wert
ersetzen.

Liste a erstellen

a=[1, 2, 3, 4, 5]

Andern des Wertes an der Stelle O in der Liste a
afo] = 10

print(a) # gibt [10, 2, 3, 4, 5] aus

Beispiel 6.4 (Lange einer Liste):

Der Befehl 1len(liste) gibt die Lénge der Liste zuriick, also die Anzahl der Werte, die in
der Liste gespeichert sind. Dies ist niitzlich, wenn wir wissen mochten, wie viele Werte in der
Liste enthalten sind.

Listen erfillen vielfdltige Aufgaben in der Informatik. Sie kénnen verwendet werden, um Daten zu
speichern, zu sortieren, zu filtern und zu analysieren. In Python gibt es viele eingebaute Funktionen
und Methoden, die speziell fiir Listen entwickelt wurden, um diese Aufgaben zu erleichtern.

Beispiel 6.5 (Zahlen-Liste summieren):

Folgendes Beispiel zeigt auf, wie eine Liste in einer Funktion verwendet werden kann, um
eine Summe zu berechnen. Die Funktion berechne_summe nimmt eine Liste von Zahlen als
Fingabe und gibt die Summe dieser Zahlen zuriick.

def summiere(daten):
i =0 # Hilfs-Index, um auf Elemente von daten zuzugreifen
summe = 0 # Variable, um alle Elemente von "daten" zu summieren

Jedes Element von Daten zu Summe hinzufiigen

for _ in range(len(daten)):
summe += daten[i] # Wert von daten[i] zu Summe hinzufiigen
i +=1 # Hilfs-Index um 1 vergrdssern (Werte?)

print (summe)

68
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

= Aufgabe 6.1

summiere([4, 2, -6, 17, 5, 12]) # Ausgabe: 34

Programm 6.1: summe. py

Beispiel 6.6 (Schleifen ohne Index):

Etwas effizienter kann auf jedes Element der Liste mit dem Befehl for zahl in liste zu-
gegriffen werden. Dabei wird die Variable zahl nacheinander auf jedes Element der Liste
gesetzt.

def summiere(daten):
summe = 0O
for zahl in daten:
summe += zahl
print (summe)

summiere([4, 2, -6, 17, 5, 12]) # Ausgabe: 34

Programm 6.2: summe_for_zahl_in.py

Erstellen Sie eine Funktion vergroessere_um_fuenf (1iste), die mithilfe einer Schleife jeden
Wert in der Liste daten = [20, -7, 8, 2, 1, 6] um 5 erhoht. Die Anzahl der Wiederho-
lungen der Schleife soll dabei mit len() bestimmt werden. Kontrollieren Sie Thr Programm
mit print (daten).

-

I r
J

= Aufgabe 6.2

Entwickeln Sie eine Funktion berechne_durchschnitt (liste), die fiir die Liste (z.B. [5, 0,
-2, 3, 51, 8, 13, -100, -10, -1]) den Durchschnittswert der Betrige aller Elemente
berechnet und mit print () ausgibt.

Der Durchschnitt einer Liste von Zahlen ist die Summe aller Zahlen geteilt durch die Anzahl
der Zahlen.

[# Aufgabe 6.3

Erstellen Sie ein Programm, das alle geraden Zahlen in der Liste daten = [5, 7, 8, 6, 3]
verdoppelt. Kontrollieren Sie Thr Programm mit print (daten).

69
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 6.4

Das Skalarprodukt wird in vielen Lebensbereichen verwendet, z.B. in der Mathematik, Physik
und Informatik. Im Alltag begegnen wir dem Skalarprodukt haufig in der Finanzwelt, z.B.
bei der Berechnung des Gesamtpreises von Produkten:

Produkt H Menge m ‘ Preis p

| 800g | 2-/ke
@ | 1200g |250/kg

o

& || 2300g | 5-/keg

Schreiben Sie eine Funktion, die das Skalarprodukt zweier Listen berechnet. Das Skalar-
produkt ist die Summe der Produkte der jeweils entsprechenden Elemente beider Listen.
Beispiel: Fiir die Listenm = [0.8, 1.2, 2.3] (inkg) undp = [2.0, 2.5, 5.0] (Preis pro
kg) berechnet das Skalarprodukt den Gesamtpreis.

Wie berechnen wir den Gesamtpreis? Dies kann mit dem Skalarprodukt gemacht wer-
den: m[1] * p[0] + m[1] * p[1] + ... + m[-1] * p[-1]. Zur Erinnerung: m[-1] gibt
uns das letzte (hinterste) Element der Liste m.”

“Alternativ konnen wir anstelle von m[-1] auch m[len(m) - 1]

Beispiel 6.7 (Kleinste Zahl in einer Liste):

Mit folgendem Code kénnen wir die kleinste Zahl in einer Liste finden. Wir verwenden eine
Schleife, um alle Zahlen in der Liste zu durchlaufen und die kleinste Zahl zu finden. Der Code
gibt am Schluss die kleinste Zahl in der Liste aus.

def finde_kleinste_zahl(liste):
kleinste zahl = listel[0]
index = 0
for _ in range(len(liste)):
if liste[index] < kleinste_zahl:
kleinste zahl = liste[index]
index += 1

print(kleinste_zahl) # Kleinste Zahl ausgeben

Beispielaufruf der Funktion
finde_kleinste_zahl([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, -5]) # gibt -5 aus

Programm 6.7: findmin.py

= Aufgabe 6.5

Verandern Sie den Code aus Beispiel 6.7 so, dass die Funktion finde_kleinste_zahl nicht
nur die kleinste Zahl in einer Liste von Zahlen ausgibt, sondern auch deren Position (Index)
in der Liste.

70
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[Aufgabe 6.6

Schreiben Sie eine Funktion, welche gleichzeitig den grossten und den kleinsten Wert sowie
deren Indizes (Positionen) in einer Liste von Zahlen zuriickgibt.

= Aufgabe 6.7

I r

Schreiben Sie eine Funktion, die zéhlt, wie oft die Zahl 10 in einer Liste von Zahlen vorkommt.
Testen Sie Thre Funktion mit der Liste [1, 2, 3, 10, 4, 10, 5]. Die Funktion soll die
Anzahl der Vorkommen von 10 ausgeben (2 in diesem Fall).

I r

W Aufgabe (Challenge) 6.8

Schreiben Sie eine Funktion, die {iberpriift, ob eine Liste von Zahlen sortiert ist oder nicht.
Falls die Liste sortiert ist, soll die Definition den Wert True zuriickgeben, ansonsten den Wert
False.

Tipps:

1. Gehen Sie jedes Element der Liste mit einer Schleife durch, und iiberpriifen Sie, dass
das Element grosser oder gleich dem vorigen Element ist.

2. return bricht die Funktion ab und gibt einen Wert an das Hauptprogramm zuriick. Sie
koénnen also, sobald eine Zahl in falscher Reihenfolge gefunden worden ist, direkt False
zuriickgeben.

3. Falls Sie nie ein falsches Element gefunden haben, geben Sie am Ende der Definition
True zuriick.

= Aufgabe 6.9

Eine Supermarkt-Kette bittet Sie, die Rabatte auf ausgewéhlte Produkte zu berechnen. Sie
gibt Thnen hierzu zwei Listen: die erste Liste enthilt die Preise der Produkte ohne Rabatt
und die zweite Liste enthélt die Rabatte in Prozent.

Preise in Franken

liste_preise = [39.95, 65.95, 66.95, 76.95, 9.95, 10.95, 13.95]
Rabatte in Prozent

liste_rabatte = [30, 40, 30, 35, 20, 15, 35]

Das Beispiel bedeutet, dass das erste Produkt nicht 39.95, sondern 30 % weniger als 39.95
kosten sollte, also 70 % von 39.95 = 27.965.

Der rabattierte Preis eines einzelnen Produkts wird folgendermassen berechnet:
preis_rabattiert = preis_normal * (1 - rabatt_in_prozent / 100)

Schreiben Sie eine Definition, die die rabattierten Preise fiir alle Produkte berechnet und als
Liste auf der Konsole ausgibt. Sie miissen die Preise nicht runden.

71
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

@ Aufgabe 6.10 .

Sie hatten zum Mittagessen ein Sandwich sowie einen Energy-Drink. Sie m&échten gerne wis-
sen, wie viele Kalorien das gesamte Mittagessen hatte, die Nahrwerte sind jedoch nur pro 100
Gramm oder 100 Milliliter (wobei 100 Gramm = 100 Milliliter sind) angegeben. Berechnen
Sie die Gesamt-Kalorien, indem Sie folgende zwei Listen erstellen:

o 1_kcal: Liste der Kalorien pro 100 Gramm (bzw. 100 Milliliter) fiir das Sandwich und
den Energy-Drink.

e 1_gram: Liste der Mengen in Gramm, bzw. Milliliter fiir das Sandwich und den Energy-
Drink.

Die Nahrwert-Informationen entnehmen Sie dem Bild Abbildung 6.1

Baguette Artisano Thon i
Nett ht i

ettogewic! 0,230 kg ;

2uverbrauchen bis: 08.11.24 CHF/SuckTa f
4 consommer jusqu'au: Le13g 7.20 CHF |

Sandvich beleat mit Thunfischerzeuanls

Zutaten: Brot (Getreldemehle WEIZEN, ROGGEN, Rels, HARTWEIZEN
Mais], Wasser, Kochsalz odier, Savertelg getrocknet IWEIZEN], Glucoss, 'l
Hefa), 2 (TH H pelamis,
gefangen im Westlichen Indischen Ozean’, Wasser, Kochselz), Rapsdl,

| Tomaten, Essiaaurken (Gurken, Spelseassig, Kochsalz), Salat, Zviebeln,
Stérke, Spelseessia, Wasser, EIGELB, Kochsalz fodiert, Zucker.

| :&mnsunuren von BAUMNUSS, HASELNUSS, MILCH, SESAM, SOJA

b n

54nﬂwich gami dun produit & base de thoy

| Ingrédients: pan (farines de céréales [ELS, SEIGLE, riz, BLE DUR, mals],

| ea, sel de cuisine iodé, levain sec [BLE], glucos, levure), prodult 2 base

| de thon 15% (THON, [Katsuwonus pelamis, péché dans lacéan Indien
Ouest] eau, sel do cuisine) hule do colza, tomates, concombres au
vineigre (cmycombr.ls‘ vinalgre comestible, sel de cuisine), salade,
olgnons, amidon, vinalgre comestible, eau, JAUNE D'CEUF, sel de
cussine odé, sucre, Peut contenir des races de: NOIX, NOISETTES,
LAIT, SESAME, SOJA,

100 g erthalten cacont, eny.:

Enargle/ énergle 962 kJ (229 kcal), Fatt / matiéres grasses 8,7 g, davel
geséltigte Fettshuren | dont acides gras saturés 0,8 g, Kohunh‘drm/
glucides 26 g, davon Zucker / dont sucres 1,1 g, Ballaststoffe / flores
alimentaires 1,8 g, Elwelss / protéines 7,8 g, Salz / sel 1,39

Abbildung 6.1: Mittagessen und dazugehorige Kalorien-Informationen

W Aufgabe (Challenge) 6.11 .

Schreiben Sie nun eine Definition, mit der Sie beliebig viele Ndhrwerte und Mengenangaben
mittels Input eingeben. Die Definition soll folgendes machen:

1. Mittels input ("...") nach einer Kalorienangabe fiir ein Lebensmittel fragen (pro 100
Gramm).

2. Mittels input ("...") nach der konsumierten Menge fiir dasselbe Lebensmittel fragen.

3. Mittels input("...") fragen, ob noch weitere Lebensmittel hinzukommen.

Schritt 1-2 sollen so lange wiederholt werden, bis in Schritt 3 False eingegeben wird.

6.1.2 Algorithmen
6.1.2.1 Sortier-Algorithmen

Eine der hiufigsten Anwendungen in der Informatik ist das Sortieren von Daten. Es gibt viele
verschiedene Algorithmen, um Daten zu sortieren, und jeder Algorithmus hat seine eigenen Vor-
und Nachteile, insbesondere hinsichtlich der Geschwindigkeit und der benétigten Rechenleistung. Im
Folgenden wird der Bubble-Sort-Algorithmus vorgestellt, der eine einfache Methode ist, um Daten
zu sortieren. Der Bubble-Sort-Algorithmus funktioniert, indem er die Liste von Werten durchlauft
und benachbarte Werte vergleicht. Wenn ein Wert grosser ist als der nédchste Wert, werden die

72
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O® Informatik, 2026

beiden Werte vertauscht. Dieser Vorgang wird so lange wiederholt, bis die gesamte Liste sortiert
ist. Die ersten zwolf Schritte des Bubble-Sort-Algorithmus sind in Abbildung 6.2 dargestellt. Der
Algorithmus wird so lange wiederholt, bis die gesamte Liste sortiert ist.

2
X
nnnonn
@ @

Schritt 1 Schritt 1 (ausgetauscht!)

? ?
A A
ae BE

3 3

Schritt 2 Schritt 3

2

))5 m(w)
@

&

Schritt 4 Schritt 4 (ausgetauscht!)
?
¥ N
Schritt 5 Schritt 5 (ausgetauscht!)
? ?
A A
a
Schritt 6 Schritt 7
?

¥ N
S o) e o[
o P

Schritt 8 Schritt 8 (ausgetauscht!)

Abbildung 6.2: Bubble-Sort-Algorithmus (erste 8 Schritte)

73
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Folgender Code zeigt, wie der Bubble-Sort-Algorithmus in Python implementiert werden kann. Der
Algorithmus wird in einer Funktion bubble_sort definiert, die eine Liste von Zahlen als Eingabe
erhélt und die sortierte Liste zuriickgibt. Die Funktion verwendet eine Schleife, um die Liste zu
durchlaufen und benachbarte Werte zu vergleichen. Wenn ein Wert grosser ist als der ndchste Wert,
werden die beiden Werte vertauscht. Dieser Vorgang wird so lange wiederholt, bis die gesamte Liste
sortiert ist.

def bubble_sort(liste):
Initialisiere den &usseren Schleifenz&hler
i=20
Aussere Schleife: Wiederhole den Sortiervorgang n-mal
for _ in range(len(liste) - 1):
Initialisiere den inneren Schleifenz&hler
j=20
Innere Schleife: Vergleiche benachbarte Elemente
for _ in range(len(liste) - 1 - i):
Wenn das aktuelle Element grdsser als das ndchste ist, tausche sie
if liste[j] > liste[j + 11:
temp = liste[j] # Temporire Variable zum Speichern des Werts
liste[j] = listel[j + 1] # Tausche die Werte
liste[j + 1] = temp # Setze den gespeicherten Wert an die neue
Position
j += 1 # Erhohe den inneren Schleifenz&hler
i += 1 # Erhohe den &usseren Schleifenzéhler

Gib die sortierte Liste aus
print(liste)

Beispielverwendung
numbers = [64, 34, 25, 12, 22, 11, 90]
bubble_sort (numbers)

Programm 6.15: bubble_sort_w_comments.py

[#' Aufgabe 6.12 .

Schauen Sie sich den Python-Code fiir Bubble an sowie die folgenden drei Listen:

e X = [3: 4, 1; -3, 6]
e X = [3, 4, 5, 6, 7]
e X = [7’ 6, 5, 4’ 3]

Notieren Sie von Hand, wie die Listen nach jedem Durchgang der dusseren Schleife aussehen
(fiir eine Liste von Lange 5 sollten Sie beispielsweise 4 Zwischenresultate notieren). Kontrol-
lieren Sie IThr Resultat, indem Sie das Programm mit diesen Listen ausfiihren.

\ J

Der Algorithmus hat eine Zeitkomplexitit von O(n?), was bedeutet, dass die Laufzeit des Algo-
rithmus quadratisch mit der Anzahl der Werte in der Liste wéchst. Dies macht den Bubble-Sort-
Algorithmus fiir grosse Datenmengen ineffizient. Aufgrund der inneren Schleife (for _ in range(n

- 1 - 1)) kann die Laufzeit noch geringfiigig verbessert werden: In jedem Durchlauf der &dusseren
Schleife ist das jeweils grosste Element bereits an die richtige Position gewandert, sodass die innere
Schleife jedes Mal um ein Element kiirzer wird.

74
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

¢ nicht optimierte Version: Die Anzahl der Vergleiche betrigt
(n—1)?

Das bedeutet: Fiir eine Liste mit 6 Elementen sind das 52 = 25 Vergleiche.
e optimierte Version: Die Anzahl der Vergleiche entspricht der Summe der Zahlen von 1 bis

n—1:
n—1

m=1+n-2)+...+2+1=> m.
m=1
5
Fiir eine Liste mit 6 Elementen ergibt das Z m=1+4+24+3+4+5 =15 Vergleiche.

m=1
e Im Mathematikunterricht lernen Sie, dass die Gleichheit

n—1
1 1
m—1)4n—-2)+...+2+1= Zm:i”?‘*‘an

m=1

gilt. Damit bleibt die Anzahl der Vergleiche von Bubble-Sort auch mit dieser Optimierung im
Wesentlichen quadratisch.

Im Allgemeinen wéchst die Anzahl der Vergleiche beim Bubble-Sort-Algorithmus quadratisch mit
der Linge der Liste, also O(n?). Die Optimierung reduziert die Anzahl der Vergleiche, &ndert aber
nichts an der grundséatzlichen Komplexitét.

6.1.2.2 Such-Algorithmen

In der Informatik stellt sich hiufig die Frage, wie man moglichst schnell herausfinden kann, ob eine
bestimmte Zahl in einer Liste enthalten ist.

Ist die Liste unsortiert, wie zum Beispiel bei x = [5, 3, 8, 20, 2, 10], bleibt uns nichts anderes
iibrig, als jedes Element der Liste einzeln zu iiberpriifen. Dies entspricht einer linearen Suche, bei
der im ungiinstigsten Fall alle Elemente betrachtet werden miissen.

Ist die Liste jedoch bereits sortiert, wie zum Beispiel bei x = [2, 3, 5, 8, 10, 20], kénnen wir
effizientere Suchverfahren anwenden. Dies ldsst sich mit der Suche nach einem Gegenstand in einem
Koffer vergleichen. Wenn der Koffer unordentlich gepackt ist, miissen wir jeden einzelnen Gegenstand
herausnehmen, um den gesuchten zu finden. Wenn der Koffer jedoch ordentlich gepackt ist, konnen
wir die Gegensténde viel schneller finden (siehe Abbildung 6.3).

Abbildung 6.3: Unordentlich gepackter Koffer vs. ordentlich gepackter Koffer

Ein besonders schneller Algorithmus ist die sogenannte binédre Suche, bei der die Liste immer
wieder halbiert wird, um das gesuchte Element zu finden.

Das Suchen bezeichnet allgemein den Vorgang, ein bestimmtes Element in einer Datenmenge mog-
lichst effizient zu finden. Im Folgenden lernen wir die binére Suche als effizienten Such-Algorithmus
fiir sortierte Listen kennen.

75
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

links mitte rechts
‘ 1 ‘ 2 ‘ 3 ‘ 5 ‘ 7 [8 J 9 ‘ 11 ‘ 15 ‘ 17 20
(a) Schritt 1
links mitte rechts
‘ 1 } 2 }) } 5 } s { & } 9 ‘ 11 ‘ 15 1 17 20
(b) Schritt 1 (nichster Vergleich)

links mitte rechts

‘ 1 ‘ 2 ‘ 3 ‘ 5 ‘ 7 ‘ 8 ‘ 9 ‘ 11 [15 } 17 20

(¢) Schritt 2

Der Algorithmus zur Umsetzung der bindren Suche ist in Python wie folgt implementiert:

1 def binaere_suche(liste, ziel):

2 # Definiere die Start- und Endpunkte des Suchbereichs
: links = 0

1 rechts = len(liste) - 1

6 # Solange der Suchbereich gililtig ist, also links <= rechts
7 while links <= rechts:

8 # Berechne das mittlere Element

9 mitte = (links + rechts) // 2

11 # Wenn das mittlere Element das gesuchte Ziel ist, gib den Index zurick
12 if liste[mitte] == ziel:

13 print("Ziel Gefunden an Position", mitte)

14 break

16 # Wenn das Ziel groésser ist als das mittlere Element,
17 # dann ist das Ziel im rechten Teil der Liste

8 elif liste[mitte] < ziel:

19 links = mitte + 1

21 # Wenn das Ziel kleiner ist als das mittlere Element,
22 # dann ist das Ziel im linken Teil der Liste

23 else:

24 rechts = mitte - 1

26

>7 # Beispiel-Liste (muss sortiert sein)
2s meine_liste = [2, 3, 4, 10, 40]

20 ziel = 10

30

31 # Bindre Suche aufrufen

76
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

32 binaere_suche(meine_liste, ziel)

Programm 6.17: binary_search.py

Bei solchen, etwas komplexeren Codes, kann es niitzlich sein, sich die Entwicklung der Variablenwerte
im Verlauf der Ausfithrung des Codes von Hand zu notieren (siehe Tabelle 6.1).

Variable i
M links

1. while

mitte | rechts

2. while

3. while

Tabelle 6.1: Beispielhafte Zeit-Tabelle fiir die bindre Suche (zum Ausfiillen), jeweils nach Zeile 9

Beispiel 6.8:

Wir kénnen fiir folgende Liste [4, 8, 9, 11, 15, 23, 42] die bindre Suche verwenden. Der
Code sucht nach der Zahl 9 und gibt den Index der Zahl in der Liste zuriick. Wir evaluieren
jeweils die Werte der Variablen links, mitte und rechts nach Zeile 9, um den Ablauf des
Codes zu verstehen. Die Tabelle Tabelle 6.2 zeigt die Werte der Variablen nach jedem Schritt
der Schleife.

M‘ links | mitte | rechts
1. while o | 3 | 6
2. while o | 1 | 2
3. while 2 | 2 | 2
Gefunden!

Tabelle 6.2: Beispielhafte Zeit-Tabelle fiir die binédre Suche, jeweils nach Zeile 9 evaluiert

[#' Aufgabe 6.13

Verwenden Sie die folgende Liste: [-20, -17, -13, -13, 2, 5, 7, 7, 9, 10]. Vollzichen
Sie den Ablauf des Programms fiir folgende Werte

1. -20
2. 6

Zeichnen Sie eine Zeit-Tabelle wie in Tabelle 6.1 und uberpriifen Sie Ihre Resultate, indem
Sie zwischen den Zeilen Zeilen 9 und 10 print-Befehle verwenden, um die Werte von links,
mitte und rechts auszugeben.

77
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 6.14

Andern Sie den Code fiir die binére Suche so ab, dass ein while True: gemeinsam mit einer
boolsche Variable gefunden sowie dem Befehl break verwendet wird.

6.1.3 Listen verandern

H&ufig missen Listen verdndert werden, beispielsweise um Elemente hinzuzufiigen oder zu entfernen,
oder um diese neu zu ordnen. Python bietet hierfiir verschiedene Methoden an. Methoden sind
Funktionen, die auf bestimmte Variablen angewandt werden. In 7.1 werden wir lernen, wie Methoden
definiert werden koénnen. Hier lernen wir einige vordefinierte Methoden fiir Listen kennen.

Definition 6.2 (Listen verdndern):
Listen konnnen in Python dynamisch verdndert werden, indem Elemente hinzugefiigt oder
entfernt werden. Einige der wichtigsten Methoden sind:

e liste.append(wert) fligt am Ende der Liste einen neuen Wert hinzu.

o liste.insert(index, wert) fiigt an der angegebenen Position (index) einen neuen
Wert ein. Alle nachfolgenden Elemente werden nach rechts verschoben.

o liste.pop(index) entfernt das Element an der angegebenen Position (index) und gibt
es zurick. Wird kein Index angegeben, wird das letzte Element entfernt.

Weitere Methoden zum Verdndern von Listen sind in der offiziellen Python-Dokumentation
aufgelistet.

Beispiel 6.9 (Elemente hinzufiigen und entfernen):

Folgender Code zeigt auf, wie Listen in Python verdndert werden kénnen. Wir erstellen eine
Liste von Zahlen und fligen dann neue Zahlen hinzu, entfernen das letzte Element und das
erste Element. Die Ergebnisse werden anschliessend ausgegeben.

zahlen = [1, 2, 3]

zahlen.append(4) # [1, 2, 3, 4]

zahlen.insert(1, 10) # [1, 10, 2, 3, 4]

letztes = zahlen.pop() # entfernt 4, jetzt [1, 10, 2, 3]
erstes = zahlen.pop(0) # entfernt 1, jetzt [10, 2, 3]
print(zahlen) # [10, 2, 3]

print(letztes) # 4

print(erstes) # 1

Programm 6.19: dynamic_lists.py

= Aufgabe 6.15

Fiigen Sie der Liste fruechte = ["Apfel", "Banane'"] zuerst "Orange" am Ende hinzu,
dann "Kiwi" an der zweiten Stelle. Entfernen Sie danach das erste Element der Liste und
geben Sie die Liste aus.

78
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Programmieren O Informatik, 2026

@ Aufgabe 6.16

Erstellen Sie eine leere Liste zahlen. Fiigen Sie mit einer Schleife die Zahlen 1 bis 5 mit
append hinzu. Entfernen Sie dann das Element an der dritten Stelle mit pop und geben Sie
die Liste aus.

[#' Aufgabe 6.17

I r

Gegeben ist die Liste farben = ["rot", "blau", "grin"]. Fiigen Sie "gelb" an der zwei-
ten Stelle ein und entfernen Sie das letzte Element mit .pop(). Geben Sie die verdnderte
Liste aus.

I r

= Aufgabe 6.18

Gegeben seien zwei gleich lange Listen A und B.

Schreiben Sie eine Python-Funktion verschmelzen(A, B), welche die beiden Listen zu einer
Liste C zusammenfiigt. Das Zusammenfiigen soll ,reissverschlussartig® geschehen: Elemente
aus A und B sollen sich in C abwechseln, beginnend mit einem Element aus A. Betrachten Sie
dazu die Beispiele. Schliesslich soll die Liste C mit print ausgegeben werden.

Beispiel:
verschmelzen([4, 2], [5, 9]) # Ausgabe: [4, 5, 2, 9]
verschmelzen([1, 1, 11, [2, 2, 1]1) # Ausgabe: [1, 2, 1, 2, 1, 1]

\

4 Aufgabe 6.19

Gegeben sei eine Liste A von ganzen Zahlen.

Schreiben Sie eine Python-Funktion entferne_duplikate (A), welche systematisch eine Liste
B aufbaut, welche genau die Elemente von A enthélt aber ohne Duplikate (mehr als einmal
vorkommende Elemente). Die Liste B soll schliesslich durch einen print-Befehl ausgegeben
werden.

Tipps:

e Verwenden Sie zwei ineinander geschachtelte Schleifen, um zu iiberpriifen, ob ein Ele-
ment bereits in der Liste B enthalten ist.

e Verwenden Sie eine bool’sche Variable, um zu verfolgen, ob ein Element bereits in der
Liste B vorhanden ist:

ist_vorhanden = False
for element_B in B:
if element B == A[i]:
ist_vorhanden = True
if not ist_vorhanden:
B.append(A[i])

79
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

W Aufgabe (Challenge) 6.20

Probieren Sie weitere Methoden zum Verdndern von Listen aus, indem Sie folgende Begrif-
fe verwenden: .extend(...), .remove(...), .sort(), .reverse(). Eine Auflistung aller
moglichen Methoden fiir ein Objekt der Klasse 1ist finden Sie in der offiziellen Python-
Dokumentation.

6.2 Worterbiicher (dictionaries)

In der Informatik werden Daten oft nicht nur als Listen, sondern auch als sogenannte Dictionaries
(Worterbiicher) gespeichert. Ein Dictionary ist eine Sammlung von Schliissel-Wert-Paaren. Anders
als bei Listen werden die Werte nicht durch einen Index, sondern durch einen eindeutigen Schliissel
(key) lokalisiert. Dies ist vielfach praktischer als die Speicherung in Listen, da man direkt mit einem
Begriff auf die Werte zugreifen kann, ohne die Position des Werts in der Liste kennen zu miissen.

Definition 6.3 (Dictionary):
Ein Dictionary ist eine Datenstruktur, die jedem Schliissel (key) einen Wert (value) zuord-
net. Die Schliissel miissen eindeutig sein und konnen z.B. Zahlen oder Zeichenketten sein.

Beispiel 6.10 (Dictionary fiir Kontaktdaten):
Ein typisches Beispiel fiir ein Dictionary ist ein Adressbuch, in dem zu jedem Namen die
Telefonnummer gespeichert ist:

telefonbuch = {
"Anna": "079 123 45 67",
"Ben": "078 987 65 43",
"Clara": "O77 555 44 33"

Iy
print(telefonbuch["Anna"]) # gibt "079 123 45 67" aus

Beispiel 6.11 (Dictionary fiir Produktpreise):
Auch in einem Online-Shop werden Produkte oft mit ihren Preisen als Dictionary gespeichert:

preise = {

"Apfel": 0.80,
"Banane": 0.50,
"Brot": 2.50

}
print(preise["Brot"]) # gibt 2.5 aus

Beispiel 6.12 (Werte hinzufiigen und &ndern):
Sie kénnen einem Dictionary neue Schliissel-Wert-Paare hinzufiigen oder bestehende Werte

andern:
preise["Milch"] = 1.60 # neues Produkt hinzufigen
preise["Apfel"] = 0.90 # Preis &ndern
print(preise)

80

[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Programmieren O Informatik, 2026

Beispiel 6.13 (Alle Schliissel und Werte durchgehen):
Mit einer Schleife kdnnen Sie alle Eintrége eines Dictionaries durchgehen:

for produkt in preise:
print (produkt, "kostet", preisel[produkt], "Franken")

Beispiel 6.14 (Uberpriifen, ob ein Schliissel existiert):
Um zu tiberpriifen, ob ein Schliissel in einem Dictionary existiert, konnen Sie den in-Operator
verwenden:

if "Brot" in preise:
print("Brot ist im Dictionary vorhanden.")
else:
print("Brot ist nicht im Dictionary vorhanden.")

[#' Aufgabe 6.21

Erstellen Sie ein Dictionary noten, das die Noten von drei Schiilern speichert: "Lea" (Note
5.5), "Tim" (Note 4.0), "Sara" (Note 6.0). Geben Sie die Note von "Sara" aus.

I r

[# Aufgabe 6.22

Fiigen Sie dem Dictionary noten aus der vorherigen Aufgabe einen neuen Schiiler ,, Alex“ mit
der Note 5.0 hinzu. Andern Sie Tims Note auf 4.5 und geben Sie das gesamte Dictionary aus.

I r

[#' Aufgabe 6.23

Sie verwalten die Lagerbestédnde eines kleinen Geschéfts. Erstellen Sie ein Dictionary lager
mit den Produkten "Cola" (10 Stiick), "Fanta" (5 Stiick) und "Wasser" (20 Stiick). Schreiben
Sie ein Programm, das die Anzahl der Flaschen "Fanta" um 2 reduziert (z.B. durch Verkauf)
und das neue Dictionary ausgibt.

[# Aufgabe 6.24

I r

Erstellen Sie ein Dictionary, das fiir verschiedene Lénder die jeweilige Hauptstadt speichert:

o Fiir die Schweiz: "Hier gibt es keine Hauptstadt, nur eine Bundesstadt."
o Fiir Deutschland: "Berlin"
o Fiir Frankreich: "Paris"

Lassen Sie den Benutzer mit input () nach einem Land fragen und geben Sie die entspre-
chende Hauptstadt aus dem Dictionary mit print aus.

Falls das eingegebene Land nicht im Dictionary existiert, soll ausgegeben werden:
"Land nicht gefunden."

siehe Beispiel 6.14 fir Hinweise dazu, wie dies umgesetzt werden kann.

7~

81
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 6.25 .

Carlas Englisch ist nicht so gut. Helfen Sie Carla, ein paar Sétze zu iibersetzen. Schreiben Sie
in einem Dictionary namens deutsch_zu_englisch die Ubersetzung der folgenden Worter in
Englisch: ,Die“, ,Der*, Das“, ,Stuhl“, Sofa“, ,Lampe®, ,ist“, ,rot“, ,grin“, ,gelb“, blau“,
n,schwarz®, ,weiss®.

Implementieren Sie eine Funktion uebersetzen(satz), die eine Liste erstellt, welche die
englische Ubersetzung jedes Wortes in der Liste satz enthilt. Die Liste soll Wort fiir Wort
erstellt und am Schluss mit print ausgegeben werden.

Vorlage:

deutsch_zu_englisch = {

def uebersetzen(satz):
uebersetzter_satz = []

print (uebersetzter_satz)

uebersetzen(["Die", "Lampe", "ist", "rot"])
Tipp: Arbeiten Sie sich schrittweise heran!

1. Schreiben Sie nun einen Code, um auf jedes Element (jedes Wort) der Liste satz zu-
zugreifen, speichern Sie das Wort in einer Variable wort.

2. Greifen Sie nun auf das entsprechende englische Wort im Dictionary deutsch_zu_englisch
zu.

3. Fiigen Sie das englische Wort der neuen Liste hinzu.

\ J

Die Werte eines Dictionaries koénnen selber ebenfalls Listen, Dictionaries oder andere Python-
Objekte sein, was besonders niitzlich ist, wenn mehrere Werte zu einem Schliissel gespeichert werden
sollen.

= Aufgabe 6.26 .

Erstellen Sie ein Dictionary likes, das fiir verschiedene Nutzer die Anzahl der Likes auf
einem Social-Media-Post als Liste speichert. Beispiel:

likes = {
"Anna": [5, 8, 12],
"Ben": [3, 7, 9],
"Clara": [10, 15, 20]
}

Schreiben Sie einen Code, die fiir einen eingegebenen Nutzernamen die durchschnittliche
Anzahl der Likes berechnet und ausgibt.

82
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

@ Aufgabe 6.27 .

Erstellen Sie ein Dictionary wettervorhersage, das fiir verschiedene Tage die Wetterdaten
als weiteres Dictionary speichert. Beispiel:

wettervorhersage = {
"Montag": {"Temperatur": 18, "Regen": False}l,
"Dienstag": {"Temperatur": 21, "Regen": True},
"Mittwoch": {"Temperatur": 17, "Regen": False}
}

Schreiben Sie einen Code, das fiir einen eingegebenen Tag die Temperatur und ob es regnet
ausgibt. Falls es Regnet oder unter 15 Grad ist, soll zusétzlich die Meldung ,Ich gehe mit
dem Bus* ausgegeben werden, ansonsten ,,Ich gehe per Fahrrad®

83
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

6.3 Mengen (sets)

In Python stehen die Mengenoperationen, welche Thnen aus dem Mathematikunterricht wohlvertraut
sind, zur Verfiigung. Wir werden die drei mengentheoretischen Operationen Vereinigung, Schnitt-
menge und Differenz einfithren und mittels Venndiagrammen' illustrieren.

e AUB, in Python: A | B
AUuB:={zeM; (x€ AV (xeB)}
Die Vereinigung von A und B. Die Vereinigung von A und B enthélt genau alle Elemente,
die in A oder B liegen.
AUB

e« ANB,in Python: A & B
ANB:={zxeM; (x€ A)AN(z € B)}
Die Schnittmenge von A und B. Die Schnittmenge von A und B enthélt genau alle Elemente,
die in A und in B liegen.
ANB

« A\B, in Python: A - B
A\B:={zeM; (zcAAN(x¢B)}
Die Differenz von A und B. Die Differenz von A und B enthélt genau alle Elemente, die in
A aber nicht in B liegen.

A\ B

Falls M eine endliche Menge ist (nicht unendlich viele Elemente enthélt), dann bezeichnet |M| die
Anzahl der Elemente in M. In Python finden wir die Anzahl der Element in der Menge M mit dem
Befehl len(M).

Beispiel 6.15:
Sets konnen in Python mit geschweiften Klammern { und } oder mit dem Befehl set () erstellt
werden. Folgender Code zeigt die drei Mengenoperationen an einem Beispiel mit Friichten.

!Benannt nach dem englischen Mathematiker John Venn Junior.

84
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Mengen mit Friichten erstellen
set_1 = {"Apfel", "Banane", "Orange", "Traube'"}

Sets konnen auch aus Listen erstellt werden
liste_2 = ["Banane", "Orange", "Kiwi", "Mango"]
liste_3 = ["Traube", "Kiwi", "Melone"]

Listen zu Sets konvertieren

set_2 = set(liste_2)

set_3 = set(liste_3)

Schnittmenge: Finden Sie die gemeinsamen Friichte

gemeinsame_fruechte = set_1 & set_2

print("Gemeinsame Friichte zwischen set_1 und set_2:", gemeinsame_fruechte)
print("Anzahl der gemeinsamen Friichte:", len(gemeinsame_fruechte))

Vereinigungsmenge: Kombinieren Sie alle einzigartigen Friichte

alle fruechte = set_1 | set 2

print("Alle einzigartigen Friichte aus set_1 und set_2:", alle_fruechte)
print("Anzahl aller einzigartigen Friichte:", len(alle_fruechte))

Differenzmenge: Finden Sie die Friichte in set_1, die nicht in set_3 sind
nur_in_set_1 = set_1 - set_3

print ("Frichte in set_1, aber nicht in set_3:", nur_in_set_1)
print("Anzahl der nur in set_1 vorhandenen Friichte:", len(nur_in_set_1))

Programm 6.28: example_sets_fruit.py

[# Aufgabe 6.28)

An einer Schule konnen Schiiler mehrere Kurse wéihlen. Manche Kurse iiberschneiden sich,
andere sind Pflicht.

Gegeben:
schueler_a
schueler_b
schueler_c

["Mathe", "Englisch", "Informatik", "Biologie"]
["Mathe", "Englisch", "Informatik", "Kunst", "Musik"]
["Informatik", "Englisch", "Sport", "Geschichte"]

pflichtkurse = ["Mathe", "Englisch"]
wahlkurse = ["Informatik", "Biologie", "Kunst", "Musik", "Sport", "
Geschichte"]

Finden Sie alle Kurse, die mindestens einer der Schiiler belegt.

Finden Sie alle Kurse, die von allen drei Schiilern gemeinsam belegt werden.
Bestimmen Sie alle Kurse, die exklusiv nur Schiiler A hat.

Ermitteln Sie die Pflichtkurse, die zwar existieren, aber von mindestens einem Schiiler
nicht gewihlt wurden.

5. Stellen Sie eine Liste aller Wahlkurse zusammen, die alle drei Schiiler gemeinsam
gewahlt haben.

=8N I=

Tipp: Mit dem Befehl set (1iste) konnen Sie eine Liste in eine Menge umwandeln. Mit dem

85
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Befehl 1ist (menge) kdnnen Sie eine Menge wieder in eine Liste umwandeln.

Beispiel-Ausgabe:

Alle belegten Kurse: {'Biologie', 'Kunst', 'Musik', 'Sport', 'Mathe', '
Englisch', 'Geschichte', 'Informatik'}

Gemeinsame Kurse aller: {'Englisch', 'Informatik'}

Exklusiv nur Schiler A: {'Biologie'}

Pflichtkurse, die fehlen: {'Mathe'}

Gemeinsame Wahlkurse: {'Informatik'}

6.4 Tupel

Tupel sind eine weitere grundlegende Datenstruktur in Python, die Ahnlichkeiten mit Listen auf-
weisen, sich aber in einem entscheidenden Punkt unterscheiden: ihrer Unverdnderlichkeit.

Definition 6.4:

Ein Tupel in Python ist eine geordnete, unverdnderliche Sammlung von Elementen. Tupel
sind dhnlich wie Listen, kénnen aber nach ihrer Erstellung nicht mehr verandert werden. Man
erstellt sie, indem man Elemente in runde Klammern setzt, getrennt durch Kommas.

Tupel in Python haben die folgenden Eigenschaften:

o Unverénderlichkeit (Immutability): Versucht man, ein Element zu dndern, erhilt man
eine Fehlermeldung. Zum Beispiel wiirde koordinaten[0] = 5 einen Fehler verursachen.

¢ Geordnetheit: Die Reihenfolge der Elemente bleibt erhalten.

¢ Heterogenitiat: Ein Tupel kann verschiedene Datentypen enthalten, wie ganze Zahlen, Zei-
chenketten oder sogar andere Tupel. Zum Beispiel: person = ('Anna', 30, True).

¢ Anwendungsbereiche: Tupel werden oft verwendet, wenn man sicherstellen will, dass Daten
nicht versehentlich gedndert werden, wie z. B. bei Datenbankkoordinaten, Riickgabewerten von
Funktionen oder als Schliissel in einem Wérterbuch.

Beispiel 6.16:

ein Tupel (fir 2D-Koordinaten) erstellen
koordinaten = (10, 20)

das Tupel mit print ausgeben
print (koordinaten)

das erste Element des Tupels ausgeben (Index 0)
print (koordinaten[0])

das zweite Element des Tupels ausgeben (Index 1)
print (koordinaten[1])

Error! Tupel sind unverénderlich!
koordinaten[0] = 5

86
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

6.5 Weitere Aufgaben

[#" Aufgabe 6.29 Notenspiegel fiir mehrere Personen

Sie mochten ein Programm schreiben, das fiir mehrere Personen in Threr Klasse den Noten-
schnitt berechnet und priift, ob jede Person ihr Ziel erreicht hat.

o Teilaufgabe 1: Schreiben Sie die Funktion schnitt (punkte_dict).
— Der Parameter punkte_dict ist ein Dictionary, in dem jeder Schliissel ein Name
ist und jeder Wert eine Liste von Noten fiir die jeweilige Person (oder Punkten).
— Die Funktion berechnet fiir jede Person den Durchschnitt und gibt ein Dictionary
zuriick, in dem die Namen den berechneten Schnitten zugeordnet sind.
— Beispiel: schnitt({"Anna":[5.0,5.5,4.5,6.0],"Ben":[4.0,3.5,4.5]})
Riickgabe: {"Anna":5.25,"Ben":4.0}
o Teilaufgabe 2: Schreiben Sie die Funktion ziel_erreicht(schnitte, zielnote).
— Der Parameter schnitte ist ein Dictionary mit Namen und Schnittwerten (Riick-
gabe von schnitt).
— Der Parameter zielnote ist eine Zahl, z. B. 4.0, die angibt, ab welchem Schnitt
eine Person ihr Ziel erreicht hat.
— Die Funktion gibt ein Dictionary zurtick, das fiir jede Person angibt, ob das Ziel
erreicht wurde (True oder False).
— Beispiel: ziel_erreicht({"Anna":5.25,"Ben":4.0}, 4.5)
Riickgabe: {"Anna":True, "Ben":False}

[#' Aufgabe 6.30 Mensa-Auswahl und Budgetpriifung

Sie mochten ein Programm schreiben, das Thnen hilft, passende Gerichte aus der Mensa
auszuwéhlen und zu priifen, ob diese Auswahl in Ihr Budget passt.

o Teilaufgabe 1: Schreiben Sie die Funktion filter_menue (menue, max_preis, nur_vegil
).
— Der Parameter menue ist eine Liste von Dictionaries, die jeweils ein Gericht mit
Name, Preis und einem Wahrheitswert vegi enthalten.
— Der Parameter max_preis gibt den maximal erlaubten Preis pro Gericht an.
— Der Parameter nur_vegi gibt an, ob nur vegetarische Gerichte erlaubt sind (mog-
liche Werte: True oder False).
Die Funktion gibt eine Liste mit den Gerichten (als Dictionaries) zurtick, welche
die Bedingungen erfiillen.
Beispiel: filter_menue([{"name":"Pasta","preis":9.5,"vegi" :True},{"name
":"Schnitzel","preis":12.0,"vegi":False}], 10.0, True)
Riickgabe: [{"name":"Pasta","preis":9.5,"vegi":True}]
o Teilaufgabe 2: Schreiben Sie die Funktion budget_check(gerichte, budget, tage
).

— Der Parameter gerichte ist eine Liste der gewéhlten Gerichte (z.B. Riickgabe von
filter_menue).

— Der Parameter budget ist das verfiigbare Budget fiir die Woche.

— Der Parameter tage ist die Anzahl der Tage, an denen in der Mensa gegessen wird.

Die Funktion berechnet die Gesamtkosten und priift, ob das Budget ausreicht. Sie

gibt ein Dictionary zuriick mit den Schliisseln "summe" und "ok".

Beispiel: budget_check([{"preis":9.5},{"preis":9.5},{"preis":9.5}]1, 30.0,

87
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

5)
Riickgabe: {"summe":28.5,"ok" : True}

88
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Kapitel 7

Objektorientierte Programmierung

7.1 Klassen

Bisher haben wir mit einfachen Variablentypen (integer, string, boolean) und grundlegenden Da-
tenstrukturen wie Listen und Dictionaries gearbeitet. Dabei haben wir bereits gesehen, dass viele
dieser Objekte iiber sogenannte Methoden verfiigen. So konnten wir beispielsweise mit der Me-
thode .append() ein neues Element an eine Liste anhdngen. Diese Methoden sind typisch fiir den
jeweiligen Datentyp und erméglichen es uns, bequem mit den enthaltenen Daten zu arbeiten.

In Python sind tatsédchlich alle Variablen Objekte. Jedes Objekt besitzt bestimmte Eigenschaf-
ten (Attribute) und kann tiber Methoden manipuliert oder abgefragt werden.

Python erlaubt es uns jedoch nicht nur, bestehende Objekttypen zu verwenden, sondern auch eige-
ne Datentypen zu definieren. Dies geschieht mithilfe von Klassen, einem zentralen Konzept des
Programmierparadigmas der Objektorientierte Programmierung (OOP). Klassen dienen als Bauvor-
lage fur komplexe Objekte, die sowohl Daten (Attribute) als auch Verhalten (Methoden) enthal-
ten konnen. Auf diese Weise kénnen wir reale oder abstrakte Dinge im Programm strukturiert und
nachvollziehbar modellieren.

Definition 7.1:

Eine Klasse ist eine Vorlage oder Schablone fiir Objekte. Sie fasst Daten (Attribute) und
Funktionen (Methoden) zusammen und beschreibt damit die Eigenschaften und das Ver-
halten einer ganzen Gruppe von Objekten. Ein Objekt ist eine konkrete Instanz (= ein
tatsichlich existierendes Exemplar) einer Klasse.

Die folgenden beiden Analogien verdeutlichen die Beziehung zwischen einer Klasse und ihren Ob-
jekten:

 FEine Klasse ist wie ein Kochrezept. Das Rezept beschreibt, welche Zutaten (Attribute) beno-
tigt werden und welche Schritte (Methoden) ausgefiihrt werden, um ein Gericht zuzubereiten.
Wenn Sie das Rezept befolgen, entsteht ein konkretes Gericht — das ist das Objekt. Aus
demselben Rezept (Klasse) konnen Sie beliebig viele Gerichte (Objekte) kochen, die gleich
aufgebaut, aber individuell gewiirzt sind (unterschiedliche Attributwerte).

¢ Eine Klasse kann man sich auch wie eine Charaktervorlage in einem Videospiel vorstel-
len. Die Vorlage Krieger oder Magier definiert allgemeine Eigenschaften (z.B. Lebenspunkte,
Stérke, Intelligenz) und Fdahigkeiten (z.B. angreifen, heilen, zaubern). Wenn Sie im Spiel einen
neuen Charakter erstellen, z.B. Irelia die Kriegerin, dann ist das ein Objekt, welches auf der

89
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Vorlage Krieger (der Klasse) basiert. Alle Krieger haben dhnliche Fahigkeiten, aber individu-
elle Werte.

Objekte werden in Games stédndig verwendet, beispielsweise um Spieler, Gegner, Tiere, Wolken oder
andere Elemente zu ,spawnen*, also um diese mit zufilligen Variationen zu erzeugen. Die Grundidee
von Klassen ist in Abbildung 7.1 dargestellt.

Klasse Objekte / Instanzen

e ’ Instanz(en) erzeugen

>
>

class Hund:
hund_1 = Hund ("Thommy", "Grin", ...)
hund_2 = Hund("Bello", "Gelb", ...)
hund_3 = Hund ("Rocky", "Rot", ...)

...
Attribute Methoden Attribute Methoden
name gassi_gehen() name: Tommy gassi_gehen()
farbe belle() farbe: Gruen belle()
augenfarbe gehe_vorwaerts () augenfarbe: Braun gehe_vorwaert ()
gewicht ist_kastriert() gewicht: 16 ist_kastriert()
laenge kom_her () laenge: 89 komm_her ()

Abbildung 7.1: Hlustration von Klassen und Instanzen in Python: Klassen (links) besitzen Eigen-
schaften und Methoden, welche fiir jede Instanz dieser Klasse (rechts) definiert und aufgerufen
werden konnen.

Im Grunde genommen kennen wir Klassen in Python bereits: So erstellen wir beispielsweise jedes
Mal eine Instanz der Klasse 1ist, wenn wir eine Variable des Typs 1ist (eine Liste) erstellen (siehe
Abbildung 7.2).

90
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Klasse Objekte / Instanzen

TN Instanz(en) erzeugen
L=
N 7

»
>

~--

class list:
liste_1=[1, 2, 3]
1iSte_2 = [nan’ nbn]
liste_3 = [True, False]

...
Methoden Methoden
Attribute append () Attribute append ()
remove () remove ()
elemente elemente : 1, 2, 3
laenge sort () laenge : 3 sort ()
& popQ) 8¢ - popQ)
count () count ()

Abbildung 7.2: Tllustration von Klassen und Instanzen fiir Listen in Python: Die Klasse list defi-
niert die Struktur und Methoden, wiahrend konkrete Listen-Objekte individuelle Inhalte besitzen.

Beispiel 7.1 (Klassen definieren):

Fine Klasse wird mit dem Schliisselwort class definiert. Im folgenden Beispiel erstellen wir
eine Klasse Person mit den Attributen name und alter sowie zwei Methoden vorstellen
und geburtstag_feiern.

class Person:
def __init__(self, name, alter):
self .name = name
self.alter = alter

def vorstellen(self):
print(f"Hallo, ich heisse {self.name} und bin {self.alter} Jahre
alt.")

def geburtstag feiern(self):
self.alter += 1
print(£"{self .name} ist jetzt {self.alter} Jahre alt.")

Objekte der Klasse 'Person' erstellen
anna = Person('"Anna'", 16)
jan = Person("Jan", 17)

Methoden aufrufen
anna.vorstellen() # Ausgabe: Hallo, ich heisse Anna und bin 16 Jahre alt.
jan.vorstellen() # Ausgabe: Hallo, ich heisse Jan und bin 17 Jahre alt.

Geburtstag feiern
anna.geburtstag_feiern() # Ausgabe: Anna ist jetzt 17 Jahre alt.

Programm 7.1: person.py

91
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Beispiel 7.1 fiihrt bereits einige zentrale Konzepte einer Klasse ein:

Der Konstruktor __init__: Diese spezielle Methode wird automatisch aufgerufen, so-
bald ein neues Objekt erzeugt wird (z.B. bei anna = Person("Anna", 16)). Ihre Hauptaufga-
be besteht darin, das Objekt mit Anfangswerten zu initialisieren. Die Werte in den Klammern
("Anna" und 16) werden dabei als Parameter an die __init__-Methode iibergeben.

Die Instanzvariable self: Das Schliisselwort self reprisentiert das konkrete Objekt (die
Instanz), mit dem gerade gearbeitet wird. Wird beispielsweise anna.geburtstag_feiern()
aufgerufen, verweist self innerhalb der Methode auf das Objekt anna. Dadurch wird sicher-
gestellt, dass self.alter += 1 das Alter von anna und nicht das eines anderen Objekts
verdndert. self muss immer der erste Parameter jeder Methode innerhalb einer Klasse sein.
Attribute definieren: Innerhalb der Klasse werden Attribute eines Objekts mit self.
attributname = wert erstellt. Im obigen Beispiel weist self.name = name dem Attribut
name des Objekts den iibergebenen Wert zu.

Auf Attribute zugreifen: Um den Wert eines Attributs innerhalb einer Methode zu lesen
oder zu dndern, wird ebenfalls self.attributname verwendet.

Methoden aufrufen: Nachdem ein Objekt erstellt wurde (z.B. anna = Person("Anna',
16)), konnen seine Methoden mit der Punkt-Notation aufgerufen werden. Der Aufruf anna.
geburtstag_feiern() fiihrt die Methode fiir das Objekt anna aus und erhcht dessen Alter.

Beispiel 7.2 (Bankkonto-Klasse):
Ein praktisches Beispiel ist eine Klasse fiir Bankkonten:

class Bankkonto:

def __init__(self, kontonummer, inhaber, kontostand):
self.kontonummer = kontonummer
self.inhaber = inhaber
self.kontostand = kontostand

def einzahlen(self, betrag):
if betrag > O:
self.kontostand += betrag
print (£"CHF {betrag} eingezahlt. Neuer Kontostand: CHF {self.kontostand}")
else:
print ("Fehler: Betrag muss positiv sein")

def abheben(self, betrag):
if betrag > O:
if betrag <= self.kontostand:
self .kontostand -= betrag
print(
f"CHF {betrag} abgehoben. Neuer Kontostand: CHF {self.kontostand}"
)
else:
print("Fehler: Nicht geniigend Guthaben")
else:
print("Fehler: Betrag muss positiv sein")

def kontoinfo(self):
print(£"Konto {self.kontonummer} ({self.inhaber}): CHF {self.kontostand}")

Objekt erstellen
mein_konto = Bankkonto("CH123456", "Lea Miiller", 1000)

Methoden aufrufen
mein_konto.kontoinfo ()
mein_konto.einzahlen(500)
mein_konto.abheben (200)
mein_konto.kontoinfo ()

Programm 7.2: bankkonto.py

92
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 7.1 .

Erstellen Sie eine Klasse Buch mit den Attributen titel, autor und seitenzahl. Implemen-
tieren Sie eine Methode info (), die eine Zusammenfassung der Buchinformationen ausgibt.
Erstellen Sie zwei Buchobjekte und rufen Sie die info ()-Methode auf.

[#' Aufgabe 7.2 .

Erweitern Sie die Bankkonto-Klasse um eine Methode ueberweisen(self, zielkonto,
betrag). Diese Methode soll eine Geldiiberweisung von einem Konto auf ein anderes ermog-
lichen.

Anforderungen an die Methode:

1. Guthaben priifen: Stellen Sie sicher, dass das Guthaben auf dem Quellkonto (self)
fiir den betrag ausreicht.

2. Uberweisung durchfiihren: Falls das Guthaben ausreicht, ziehen Sie den Betrag vom
aktuellen Konto ab und fiigen Sie ihn dem zielkonto hinzu.

3. Feedback geben: Geben Sie eine Erfolgs- oder Fehlermeldung auf der Konsole aus,
um den Benutzer iiber den Status der Uberweisung zu informieren.

Tipp: Sie kénnen die bereits existierenden Methoden abheben() und einzahlen() wieder-
verwenden, um Ihren Code sauber und kurz zu halten!

7.2 Vordefinierte Klassen in Python

Wie bereits erwahnt ist jegliche Variable in Python ein Objekt, das zu einer bestimmten Klasse
gehort. Python bietet eine Vielzahl von vordefinierten Klassen, welche wir in den vorausgehenden
Kapiteln bereits angeschaut haben, beispielsweise Datentypen wie int, float, str (String), list
(Liste) oder dict (Dictionary), sowie weitere Klassen. Diese Klassen haben ihre eigenen Methoden,
die spezifische Operationen auf den Objekten dieser Klassen ermoglichen.

Bemerkung 7.1 (Vordefinierte Klassen in Python):

Eine Auflistung aller vordefinierten Klassen in Python finden Sie in der offiziellen Doku-
mentation unter https://docs.python.org/3/library/stdtypes.html. Dort sind alle Da-
tentypen und deren Methoden beschrieben, die in Python verfiigbar sind. Alternativ kann
folgender Code ausgefiihrt werden, um die Namen aller vordefinierten Klassen in Python zu
erhalten:

import builtins
import inspect

builtin_classes = [name for name, obj in vars(builtins).items() if inspect.
isclass(obj)]
print(builtin_classes)

Programm 7.5: builtin_classes.py

J

Weshalb kann man in Python eine Variable fiir gewisse vordefinierte Klassen erstellen, ohne ex-
plizit den Namen der Klasse anzugeben? Hier handelt es sich um etwas ,,Python-Magie“, bei der
Python den Typ der Variable automatisch erkennt und die entsprechende Klasse verwendet. Wenn

93
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://docs.python.org/3/library/stdtypes.html

Programmieren O Informatik, 2026

wir beispielsweise eine Variable x = 5 erstellen, wird x automatisch als Objekt der Klasse int er-
stellt. Python kiimmert sich im Hintergrund um die Zuweisung der richtigen Klasse, sodass wir uns
nicht explizit darum kiimmern miissen. Wir kénnten jedoch die Klasse explizit angeben, indem wir
beispielsweise x = int(5) schreiben, was dasselbe Ergebnis liefert.

Wie wir gesehen haben, beinhalten gewisse Klassen bereits Methoden, wie beispielsweise .append ()
fiir Listen oder .keys() fiir Dictionaries. Diese Methoden sind spezifisch fiir die jeweilige Klasse
und ermoglichen es uns, auf einfache Weise mit den Objekten dieser Klassen zu interagieren. Falls
wir wissen mochten, welche Methoden eine bestimmte Klasse hat, konnen wir die Funktion dir ()
verwenden, um eine Liste aller verfiigbaren Methoden und Attribute zu erhalten. Zum Beispiel:

Beispiel 7.3 (Verfiighare Methoden einer Klasse):

Folgendes Beispiel zeigt, wie wir die verfligharen Methoden fiir eine Liste und einen String
abfragen kénnen. Dies kann sowohl fiir eine konkrete Instanz wie auch fiir den Klassennamen
selbst erfolgen:

Zeige verfiigbare Methoden fir eingebaute Typen mit dir()

Fur eine konkrete Instanz

x = [1, 2, 3]

print("Methoden fir die Instanz x (Liste):")
print(dir(x))

Fir den Klassennamen selbst
print("Methoden fir die Klasse 'list':")
print(dir(list)) # gibt dasselbe Ergebnis wie dir(x) aus

Beispiel fir einen anderen Typ (str)

s = "hallo"

print("Methoden fir die Instanz s (String):")
print(dir(s))

print ("Methoden fiir die Klasse 'str':")
print(dir(str)) # gibt dasselbe Ergebnis wie dir(s) aus

Programm 7.6: verfuegbare_methoden.py

7.3 Klassenmethoden und Attribute

Neben den Instanzattributen (die zu jedem Objekt gehoren) kénnen Klassen auch Klassenattribute
haben, die fiir alle Instanzen gleich sind.

Beispiel 7.4 (Klassenattribute):
Folgendes Beispiel zeigt, wie Klassenattribute definiert und verwendet werden koénnen, bei-
spielsweise um SchiilerInnen mit Attributen wie Name und Klasse zu erstellen:

class Schueler:
schule = "Kantonsschule im Lee" # Klassenattribut

def __init__(self, name, klasse):

94
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

self .name = name # Instanzattribut
self.klasse = klasse # Instanzattribut

def info(self):
return f'"{self.name}, Klasse {self.klasse}, {self.schule}"

Objekte erstellen
s_1 = Schueler("Lisa", "3a")
s_2 = Schueler("Tim", "4b")

print(s_1.info()) # Lisa, Klasse 3a, Kantonsschule im Lee
print(s_2.info()) # Tim, Klasse 4b, Kantonsschule im Lee

Klassenattribut iiber die Klasse &dndern
Schueler.schule = "KLW"

Anderung wirkt sich auf alle Instanzen aus
print(s_1.info()) # Lisa, Klasse 3a, KLW
print(s_2.info()) # Tim, Klasse 4b, KLW

Programm 7.7: klassenattribute.py

Beispiel 7.5 (Instanzzahler):
Ein haufiger Anwendungsfall fiir Klassenattribute ist das Zahlen von Instanzen:

class Produkt:
anzahl_produkte = 0 # Klassenattribut fir alle Produkte

def __init__(self, name, preis):
self .name = name
self.preis = preis
Produkt.anzahl_produkte += 1 # Erhohe bei jeder neuen Instanz

O@classmethod
def get_anzahl_produkte(cls):
print ("Anzahl Produkte:", cls.anzahl_produkte)

bjekte erstellen

Produkt ("Laptop", 1200)
Produkt ("Smartphone", 800)
Produkt ("Maus", 30)

#0
p_1
p_2
p_3

Produkt.get_anzahl_produkte() # Anzahl Produkte: 3

Programm 7.8: instanzzaehler.py

95
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 7.3 .

Erstellen Sie eine Klasse Auto mit den Instanzattributen marke, modell und baujahr. Fiigen
Sie ein Klassenattribut anzahl_autos hinzu, das die Gesamtzahl der erstellten Auto-Objekte
zahlt. Implementieren Sie eine Klassenmethode get_statistik(), die die Anzahl der Autos
zurlckgibt.

7.4 Vererbung und Polymorphismus

7.4.1 Vererbung

Ein machtiges Konzept der Objektorientierung ist die Vererbung. Sie ermdglicht es, eine neue Klasse
basierend auf einer vorhandenen Klasse zu erstellen und deren Eigenschaften und Methoden zu
iibernehmen.

Definition 7.2:

Bei der Vererbung erbt eine Kindklasse (Subklasse) Attribute und Methoden von einer
Elternklasse (Superklasse). Die Kindklasse kann zusétzliche Attribute und Methoden haben
oder vorhandene iiberschreiben. Die Vererbung geschieht mithilfe des Schliisselworts class
Kindklasse(Elternklasse): sowie der Verwendung von super (), um auf die Elternklasse
zuzugreifen. Dabei wird zuerst eine Instanz der Elternklasse erstellt, bevor die Kindklasse
ihre eigenen Attribute und Methoden hinzufiigt oder iiberschreibt.

Beispiel 7.6 (Vererbung):
Elternklasse
class Fahrzeug:
def __init__(self, marke, modell, baujahr):
self.marke = marke
self.modell = modell
self.baujahr = baujahr
self.km_stand = 0

def fahren(self, strecke):
self.km_stand += strecke
print(£"Fahre {strecke} km. Neuer Kilometerstand: {self.km_stand} km")

def info(self):
return f"{self.marke} {self.modell} ({self.baujahr}), {self.km_stand} km"

Kindklasse
class ElektroAuto(Fahrzeug):
def __init__(self, marke, modell, baujahr, batterie_kapazitaet):
super().__init__(marke, modell, baujahr) # Elternklassen-Konstruktor aufrufen
self.batterie_kapazitaet = batterie_kapazitaet
self.ladezustand = 100 # Prozent

def laden(self):
self.ladezustand = 100
print (£"{self.marke} {self.modell} wurde vollstindig geladen.")

def fahren(self, strecke):
verbrauch = strecke * 0.2 # 207 Verbrauch pro 100 km
if self.ladezustand - verbrauch >= O:
self.km_stand += strecke
self.ladezustand -= verbrauch
print(
f"Fahre {strecke} km elektrisch. Ladezustand: {self.ladezustand:.1f}%"

96
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

)
else:
print("Nicht genug Batterieladung fir diese Strecke!")

def info(self):

basis_info = super().info() # Methode der Elternklasse aufrufen

return f"{basis_info}, Batterie: {self.batterie_kapazitaet} kWh, Ladung: {self.ladezustand:.1f
}%H

Objekte erstellen
normales_auto = Fahrzeug("VW", "Golf", 2020)
elektro_auto = ElektroAuto("Tesla", "Model 3", 2021, 75)

Methoden testen
normales_auto.fahren(100)
print (normales_auto.info())

elektro_auto.fahren(200)
print (elektro_auto.info())
elektro_auto.laden()
print(elektro_auto.info())

Programm 7.10: elektroauto.py

In diesem Beispiel:

e ElektroAuto erbt von Fahrzeug und erhilt alle seine Attribute und Methoden.

e Mit super().__init__(...) rufen wir den Konstruktor der Elternklasse auf.

e Die Methode fahren () wird in der Kindklasse tiberschrieben, um die spezifische Funktionalitat
eines Elektroautos zu implementieren.

o Mit super() .info() greifen wir auf die Methode der Elternklasse zu.

= Aufgabe 7.4 .

Erstellen Sie eine Elternklasse Person mit den Attributen name und alter sowie einer Metho-
de geburtstag_feiern(). Erstellen Sie dann eine Kindklasse Schueler mit einem zusétzli-
chen Attribut schulklasse und einer iiberschriebenen Methode vorstellen(), die auch die
besuchte Schulklasse ausgibt.Implementieren Sie eine zusitzliche Methode, welches es erlaubt,
dem Schiiler eine neue Schulklasse zuzuweisen.

[#' Aufgabe 7.5 N

Erstellen Sie eine Basisklasse Bankkonto wie im vorherigen Beispiel. Dann erstellen Sie eine
Unterklasse Sparkonto, die eine zusétzliche Methode zinsen_gutschreiben(zinssatz) hat,
die Zinsen basierend auf dem aktuellen Kontostand gutschreibt.

7.4.2 Polymorphismus

Unterschiedliche Klassen kénnen Methoden mit denselben Namen haben, aber jede Klasse hat ihre
eigene Implementierung. Dies wird als Polymorphismus bezeichnet. Das Wort Polymorphismus
stammt aus dem Griechischen und bedeutet soviel wie "viele Formen”, von griechisch poly = viel
und morphos = Form. Polymorphismus ermoglicht, dass verschiedene Klassen auf die gleiche Weise
angesprochen werden koénnen, obwohl sich die Methoden unterscheiden. Dies ist insbesondere bei
Kindesklassen von Bedeutung, die die Methoden der Elternklasse iiberschreiben oder auf unter-
schiedliche Weise implementieren konnen.

97
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren

O Informatik, 2026

Beispiel 7.7 (Polymorphismus):
Folgendes Beispiel zeigt, wie verschiedene Klassen die gleiche Methode geraeusch() imple-
mentieren kénnen:

class

Tier:

def geraeusch(self):

class

return "Ein Tier macht ein Gerdusch"

Hund (Tier):

def geraeusch(self):

class

return "Wuff"

Katze(Tier):

def geraeusch(self):

tiere

return "Miau"

= [Tier(), Hund(), Katze()]

for tier in tiere:
print(tier.geraeusch())

Ausgabe:

Ein

Wuff

Tier macht ein Ger&usch

Miau

Programm 7.13: polymorphism.py

7.5 Praktisches Beispiel: Bibliothekssystem

Als umfassenderes Beispiel implementieren wir ein einfaches Bibliothekssystem mit mehreren Klas-
sen, die verschiedene Aspekte einer Bibliothek modellieren.

Beispiel 7.8 (Bibliothekssystem):
Folgendes Beispiel zeigt, wie wir Klassen fiir Biicher, Autoren usw. fiir eine eine Bibliothek
erstellen kénnen:

class Buch:

def

def

__init__(self, titel, autor, isbm):
self.titel = titel

self.autor = autor

self.isbn = isbn

self.ausgeliehen = False

info(self):
status = "ausgeliehen" if self.ausgeliehen else "verfiigbar"
return f'"{self.titel}" von {self.autor} (ISBN: {self.isbn}) - {status}'

class Bibliotheksmitglied:

def

__init__(self, name, mitgliedsnummer):
self.name = name
self .mitgliedsnummer = mitgliedsnummer

98
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

self.ausgeliehene_buecher = []

def buch_ausleihen(self, buch):

if not buch.ausgeliehen:
self.ausgeliehene_buecher.append(buch)
buch.ausgeliehen = True
print(£f"{self.name} hat '{buch.titel}' ausgeliehen.")
return True

else:
print(£"Fehler: '{buch.titell}' ist bereits ausgeliehen.")
return False

def buch_zurueckgeben(self, buch):

if buch in self.ausgeliehene_buecher:
self .ausgeliehene_buecher.remove (buch)
buch.ausgeliehen = False
print (£"{self.name} hat '{buch.titel}' zuriickgegeben.")
return True

else:
print(f"Fehler: {self.name} hat '{buch.titel}' nicht ausgeliehen.")
return False

def info(self):

anzahl = len(self.ausgeliehene_buecher)
info = f"{self.name} (Nr. {self.mitgliedsnummer}) - {anzahl} Biicher ausgeliehen"
if anzahl > O:

info += ":\n"

for buch in self.ausgeliehene_buecher:

info += f"- {buch.titel}\n"

return info

class Bibliothek:
def __init__(self, name):
self.name = name
self.buecher = []
self .mitglieder = []

def buch_hinzufuegen(self, buch):
self .buecher.append (buch)
print(£"Buch '{buch.titel}' wurde zur Bibliothek hinzugefiigt.")

def mitglied_registrieren(self, mitglied):
self .mitglieder.append(mitglied)
print(f"{mitglied.name} wurde als Mitglied registriert.")

def buch_suchen(self, suchbegriff):
ergebnisse = []
for buch in self.buecher:
if (
suchbegriff.lower() in buch.titel.lower()
or suchbegriff.lower() in buch.autor.lower()
or suchbegriff in buch.isbn

ergebnisse.append (buch)
return ergebnisse

def verfuegbare_buecher(self):
return [buch for buch in self.buecher if not buch.ausgeliehen]

def statistik(self):
verfuegbar = len(self.verfuegbare_buecher())
ausgeliehen = len(self.buecher) - verfuegbar
return (
f"Bibliothek {self.name}:\n"
f"- Gesamtzahl Biicher: {len(self.buecher)}\n"
f"- Verfiigbare Biicher: {verfuegbar}\n"
f"- Ausgeliehene Biicher: {ausgeliehen}\n"
f"- Anzahl Mitglieder: {len(self.mitglieder)}"

99
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Beispielverwendung
bibliothek = Bibliothek("Stadtbibliothek Winterthur")

Bilicher erstellen und hinzufiigen

buch_1 = Buch("Harry Potter und der Stein der Weisen", "J.K. Rowling", "9783551557414")
buch_2 = Buch("Der Herr der Ringe", "J.R.R. Tolkien", "9783608939842")

buch_3 = Buch("Die unendliche Geschichte", "Michael Ende", "9783522202664")

bibliothek.buch_hinzufuegen(buch_1)
bibliothek.buch_hinzufuegen(buch_2)
bibliothek.buch_hinzufuegen(buch_3)

Mitglieder erstellen und registrieren
mitglied_1 = Bibliotheksmitglied("Lisa Miller", "MOO1")
mitglied_2 = Bibliotheksmitglied("Tom Schneider", "MOO2")

bibliothek.mitglied_registrieren(mitglied_1)
bibliothek.mitglied_registrieren(mitglied_2)

Bilicher ausleihen
mitglied_1.buch_ausleihen(buch_1)
mitglied_2.buch_ausleihen(buch_3)

Suche durchfiihren
print ("\nSuchergebnisse fiir 'Harry':")
ergebnisse = bibliothek.buch_suchen("Harry")
for buch in ergebnisse:

print(buch.info())

Statistik anzeigen
print("\n" + bibliothek.statistik())

Infos zu Mitgliedern anzeigen
print ("\nMitgliederinformationen:")
print(mitglied_1.info())
print(mitglied_2.info())

Buch zuriickgeben
mitglied_1.buch_zurueckgeben(buch_1)

Aktualisierte Statistik
print("\n" + bibliothek.statistik())

Programm 7.14: library_system.py

[#' Aufgabe 7.6

Erweitern Sie das Bibliothekssystem um eine neue Klasse Zeitschrift, die von Buch erbt,
aber zusitzlich eine ausgabe (z.B. ,Mai 2024“) hat. Uberschreiben Sie die info()-Methode
entsprechend, und fiigen Sie mindestens eine Zeitschrift zur Bibliothek hinzu.

100
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

W Aufgabe (Challenge) 7.7

Entwickeln Sie ein vollstdndiges Lagerverwaltungssystem mit folgenden Klassen:

e Produkt (Basisklasse mit Name, Artikelnummer, Preis)

o Elektronikprodukt (erbt von Produkt, zusétzlich mit Garantiedauer)

o Lebensmittel (erbt von Produkt, zusitzlich mit Haltbarkeitsdatum)

o Lager (verwaltet Produkte, mit Methoden zum Hinzuftigen, Entfernen, Suchen und
Bestandsanzeige)

o Bestellung (enthélt Produkte und Mengen, berechnet Gesamtpreis)

Implementieren Sie auch eine Methode, die abgelaufene Lebensmittel identifiziert und aus
dem Lager entfernt.

7.6 Zusammenfassung

Die objektorientierte Programmierung mit Klassen ist ein méchtiges Werkzeug zur Strukturierung
von Code und Modellierung realer Objekte. Wichtige Konzepte sind:

¢ Klassen definieren Vorlagen fiir Objekte mit Attributen und Methoden

¢ Objekte sind konkrete Instanzen von Klassen

e Methoden erméglichen es, auf Attribute zuzugreifen und diese zu verdndern.

e Vererbung ermoglicht die Wiederverwendung und Erweiterung von Code in Form von Kind-
klassen, die ihre Attribute von Elternklassen erben und gegebenenfalls tiberschreiben.

¢ Polymorphismus erméglicht es, Methoden mit denselben Namen in verschiedenen Klassen zu
verwenden, wobei jede Klasse ihre eigene, unabhéangige Implementierung hat.

Durch die Verwendung von Klassen kénnen komplexe Systeme modelliert und implementiert wer-
den, wodurch der Code besser strukturiert, lesbarer und wartbarer wird. Insbesondere in Games sind
Klassen ein zentrales Konzept, um verschiedene Spielobjekte (wie Spieler, Gegner, Items) zu mo-
dellieren und deren Verhalten zu steuern. In der Praxis werden Klassen hiufig in Kombination mit
anderen Konzepten wie Vererbung und Polymorphismus verwendet, um flexible und erweiterbare
Softwarearchitekturen zu schaffen.

101
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Kapitel 8

Praktische Anwendungen

8.1 Kalorienverbrauch

Folgende Beispiele sollen die meisten der bisher gelernten Programmier-Konzepte konkret veran-
schaulichen. Stellen Sie sich vor, Sie sind SportlerIn und md&chten Thren Kalorienbedarf berechnen,
um sich fiir auf einen kommenden Wettkampf optimal zu ern&dhren. Hierzu wollen Sie zunéchst
Thren theoretischen téglichen Kalorienbedarf berechnen. Der theoretische tégliche Kalorienbedarf
berechnet sich wie folgt:

1. Thr Grundumsatz (englisch Base Metabolic Rate (BMR)): Dies ist ihr Grundbedarf, also die
Anzahl Kilokalorien, welche Sie theoretisch bendtigen, falls Sie sich gar nicht bewegen.

2. Ihr Leistungsumsatz, d.h., zusétzliche Energie, die Sie bei Aktivitdten wie Spazieren, Rad-
fahren, Joggen usw. verbrennen.

Beide Komponenten sind schwierig abzuschétzen. Sie mochten jedoch eine erste Einschéatzung IThrer
BMR haben, indem sie einige bekannte Formeln auf sich selber anwenden und diese vergleichen.

[#' Aufgabe 8.1

Schreiben Sie eine Python-Funktion, um den Grundumsatz anhand der Harris-Benedict-
Formel zu berechnen und geben Sie das Resultat per return zuriick.

1. Fur Manner:

BMR =88.362+
(13.397 x Gewicht in kg)+
(4.799 x Koérpergrosse in cm)—
(5.677 x Alter in Jahren)

2. Fur Frauen:

BMR =447.593+
(9.247 x Gewicht in kg)+
(3.098 x Koérpergrosse in cm)—
(4.330 x Alter in Jahren)

\.

Wir haben nun eine erste, grobe Einschidtzung des BMR. Allerdings gibt es auch noch weitere

102
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

mogliche Formeln, mithilfe denen der BMR berechnet werden kann. Diese méchten wir nun ebenfalls
berechnen, um die unterschiedlichen Schatzungen des BMR anhand der verschiedenen Methoden zu
vergleichen.

[#' Aufgabe 8.2

Schreiben Sie zwei weitere Funktionen, um den BMR anhand der Mifllin-St-Jeor-Gleichung
sowie der Katch-McArdle-Formel zuriickzugeben und berechnen Sie den Durchschnitt al-
ler drei Formeln in einer weiteren Funktion.

1. Mifflin-St-Jeor-Gleichung;:
(a) Ménner:

BMR = 10 x Gewicht (kg)
+ 6.25 x Grosse (cm)
— 5 x Alter (Jahre)
+5

(b) Frauen:

BMR = 10 x Gewicht (kg)
+ 6.25 x Grosse (cm)
— 5 x Alter (Jahre)
— 161

2. Katch-McArdle-Formel (gleich fur Manner sowie Frauen):

BMR = 370
+ (21.6 x FFM in kg)

Wobei die fettfreie Masse (FFM) zuerst berechnet werden muss:

FFM = Korpergewicht (kg)
x (1 — Korperfettanteil)

. J

Nun haben wir eine etwas verlédsslichere Einschétzung unseres Grundumsatzes. Zum Grundumsatz
kénnen wir nun auch noch den Leistungsumsatz hinzufiigen, um den gesamten theoretischen tagli-
chen Energieumsatz in Kilokalorien zu berechnen.

103
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 8.3

Berechnen Sie Ihren Leistungsumsatz (durch Leistung bené6tigte Energie) anhand der Tabelle
8.1.

Gewicht (kg) ‘ 60 65 70 75 80 85 90 95 100 105
Spazieren ‘ 45 51 54 57 60 64 67 73 80 9.0
Schnelles Gehen ‘ 55 63 70 75 80 86 9.5 100 106 11.3
Fahrradfahren ‘ 65 75 80 9.0 95 103 11.0 11.7 125 13.6
Schwimmen ‘ 80 9.2 10.0 10.8 11.5 12,5 13.7 144 154 16.5

Rudern ‘ 11.0 13.0 143 15.0 16.5 175 19.0 20.5 21.8 23.5
Jogging ‘ 13.0 145 16.0 175 19.0 20.0 22.0 23.5 245 26.5
Laufen ‘ 16.0 18.5 20.0 22.0 23.5 25.0 27.5 29.0 31.0 33.5
Sprint ‘ 19.0 21.5 24.0 26.0 28.0 30.0 325 34.7 356 39.0

Tabelle 8.1: Kalorienverbrauch fiir unterschiedliche Aktivitdten, pro Minute, in Abhéngigkeit
des Korpergewichts

Wenn z.B. eine 80 kg schwere Person 1 Stunde lang rudert und 20 Minuten spaziert wiren
die Listen wie folgt:

1_zeit = [60, 20] # Zeit in Minuten
1_kcal = [16.5, 6] # Kalorien pro Aktivitéat

Erstellen Sie zwei Listen:

1. Eine Liste fiir die Zeit, wihrend der Sie téglich einer Aktivitdt nachgehen
2. Eine Liste mit dem Kalorienverbrauch pro Minute fiir jede dieser Aktivitédten

Schreiben Sie eine Python-Funktion berechne_leistungsumsatz, um lhren Leistungsum-
satz zu berechnen. Das erwartete Resultat fiir das Beispiel hier wére: 1110 (= Summe von
[990, 120]). Das Resultat soll an das Hauptprogramm zurtickgegeben und in einer Variable
kalorienverbrauch gespeichert werden.

\

[#' Aufgabe 8.4

Schreiben Sie nun eine weitere Funktion, die Thren gesamten Energieumsatz berechnet, als
Summe der folgender Teile:

o« BMR, den Sie in Aufgabe 8.2 berechnet haben (Durchschnitt der drei Formeln)
e Leistungsumsatz, den Sie in Aufgabe 8.3 berechnet haben

Diese Funktion ist extrem kurz und umfésst nur eine einzige (neue) Zeile.

104
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

A Achtung

Die Zahlen zu Energiebedarf und Kalorien, die Sie im Rahmen dieser Ubungen berechnet
haben, sollten Sie mit Vorsicht geniessen, aus folgenden Griinden:

e Ihr realer Energiebedarf kann signifikant von Ihrem berechneten Energiebedarf abwei-
chen. Viele weitere Faktoren, die nicht in den Formeln enthalten sind, konnen diesen
beeinflussen, beispielsweise Ihre Kopertemperatur, Ihre Fitness, Ihre Muskelmasse, so-
wie Thre Non-Exercise Activity Thermogenesis (NEAT), wobei Letzteres Energie be-
zeichnet, die Sie durch Bewegungen, die nicht Sport sind, verbrauchen (beispielsweise
durch ,,Zappeln® aber auch kurze Spazierginge und alltdgliche Aktivitaten).

o Sie sollten sich beziiglich konsumierter Kalorien vor Augen halten, dass ,,zu viele* kon-
sumierte Kalorien nicht automatisch mit einer Gewichtszunahme verbunden sind. In
einem Kilo Korperfett stecken ca. 8000 Kilokalorien, wobei der Koper iiber verschiede-
ne Mechanismen verfiigt, um ein stabiles Kérpergewicht zu halten, etwa die Erhohung
oder Senkung der Kérpertemperatur im Falle eines kurzfristigen Kalorien-Uberschusses,
respektive -Defizits. Allerdings kann es interessant sein, zu wissen, dass einige, nicht
sehr siattigende Lebensmittel besonders viele Kalorien enthalten — wie beispielsweise
hochverarbeitete Snacks oder Siissgetrinke.

105
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

8.2 Bilder Bearbeiten (Anwendung von Listen und Schleifen)

In diesem Abschnitt werden wir uns mit der Bearbeitung von Bildern in Python beschéftigen. Sie
lernen, wie Sie auf einzelne Bildpunkte (Pixel) zugreifen und deren Farbwerte gezielt verdndern kon-
nen. Schritt fiir Schritt werden Sie verschiedene Effekte wie Invertierungen, Filter oder das Erzeugen
von Mustern fiir Schwarz-Weiss-, Graustufen- und Farbbilder programmieren. Diese Ubungen bie-
ten eine praktische Anwendung fiir viele der bisher gelernten Konzepte wie Schleifen und Listen in
einem visuell ansprechenden Kontext.

8.2.1 Vorbereitung
1. Bitte Installieren Sie das Python-Paket Pillow wie folgt:

fir MacOS (Bash):
python3 -m pip install --upgrade pip
python3 -m pip install pillow

fir Windows (PowerShell):
py —m pip install --upgrade pip
py —m pip install pillow
2. Erstellen Sie auf Ihrem eigenen Rechner einen neuen Ordner © mit dem Namen Bilder_Bearbeiten.
3. Laden Sie die Datei dateien.zip von Moodle herunter, und zwar so, dass die Datei dateien.zip
in dem neu angelegten Ordner Bilder_Bearbeiten abgespeichert ist.
4. Die Datei dateien.zip ist komprimiert und muss zuerst entpackt werden. Entpacken geht
ganz einfach so:
Windows: Rechtsklick auf dateien.zip und dann Alle extrahieren.
macOS: Doppelklick auf datein.zip
5. Offnen Sie das Python-File bilder_template.py in VS Code.
6. In diesem Python-File bilder_template.py ist eine Vorlage (Template) zu allen nachfolgen-
den Aufgaben bereits gegeben. Bitte l6sen Sie die Aufgaben, indem Sie diese Vorlage Schritt
fiir Schritt durch Thren Python-Code ergénzen.

8.2.2 Aufgaben zur Bearbeitung von Bildern
8.2.2.1 Schwarz-Weiss-Bilder

[#' Aufgabe 8.5 Anzahl der schwarzen Pixel in einem gegeben Bild ziihlen

Schreiben Sie eine Python-Funktion count_black_pixels(filename), welche das ein Schwarz-
Weiss-Bild mit dem Dateinamen filename als Argument erhélt und die Anzahl der schwarzen
Pixel in diesem Bild zéhlt und diese Anzahl mit return zuriick gibt. Betrachten Sie dazu
unbedingt die Vorlage.

\ J

[#' Aufgabe 8.6 Schwarz-Weiss-Bild invertieren .

Schreiben Sie eine Python-Funktion invert_black_white_image (filename), welche ein Schwarp-
Weiss-Bild mit dem Dateinamen filename als Argument erhilt und dieses Bild invertiert:
Alle weissen Pixel (Pixel mit Wert 1) sollen schwarz werden und alle schwarzen Pixel (Pixel
mit Wert 0) sollen weiss werden.

Stellen Sie schliesslich das originale Bild und das invertierte Bild nebeneinander dar.

106
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

@ Aufgabe 8.7 Bild von zufillig gewihlten (schwarz-weiss) Pixeln

Schreiben Sie eine Python-Funktion random_black_white_image (width, height), welche
ein Schwarz-Weiss-Bild mit den gegebenen Dimensionen (Breite / Hohe) erzeugt. Jeder Pixel
soll dabei zuféllig entweder schwarz (0) oder weiss (1) gewéhlt werden. Der Aufruf

random_black_white_image (400, 600)

sollte dann beispielsweise ein Schwarz-Weiss-Bild der Breite 400 Pixel und Héhe 600 Pixel
generieren, wobei jeder Pixelwert (0 oder 1) zuféllig gewdhlt wurde.

\

8.2.2.2 Graustufenbilder

g Aufgabe 8.8 Graustufen invertieren

Schreiben Sie eine Python-Funktion invert_grayscale_image (filename), welche ein Grau-
stufenbild (256 Stufen) mit dem Dateinamen filename als Argument erhélt und dieses Bild
invertiert: Aus dem hellen (weissen) Pixel mit Wert 255 soll der dunkle (schwarze) Pixel mit
Wert 0 werden, der dunkle Pixel mit Werte 1 soll zum hellen Pixel mit Wert 254 werden und
so weiter.

Stellen Sie das originale Bild und das invertierte Bild nebeneinander dar.

[#' Aufgabe 8.9 Nur 8 verschiedene Graustufen

Schreiben Sie eine Python-Funktion only_8_shades_of_gray(filename), welche ein Grau-
stufenbild (256 Stufen) mit dem Dateinamen filename als Argument erhilt und mit nur 8
(anstelle von 256) verschiedenen Graustufen darstellt: Die Pixel mit Werten in {0,1,2,...,31}
sollen alle durch den Graustufenwert 0 (schwarz) dargestellt werden, die Pixel mit Werten in
{32,33,34,...,63} durch den Wert 32 und so weiter. Es ergeben sich also 8 Gruppen (Men-
gen), welche je 32 verschiedene Graustufenwerte durch denselben Graustufenwert darstellen.

Stellen Sie das originale Bild und das transformierte Bild nebeneinander dar.

\

[# Aufgabe 8.10 Vertikale Streifen

Schreiben Sie ein Python-Funktion vertical_stripes(filename), welche ein Graustufen-
bild mit dem Dateinamen filename als Argument erhélt. Die Funktion soll ,vertikale Strei-
fen“ in gleichméssigen Abstdnden durch das Bild legen.

107
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

8.2.2.3 RGB-Bilder

[#' Aufgabe 8.11 Griinanteil erhShen

Schreiben Sie ein Python-Funktion increase_green(filename), welche ein RGB-Bild mit
dem Dateinamen filename als Argument erhélt und den Griinanteil dieses RGB-Bilds um 20
Prozent verstarkt / erhoht. Es ist kein Problem, wenn ein Wert bei der Erhohung den Wert
255 iibersteigt: Die Image-Library interpretiert jeden Wert > 255 als 255.

Stellen Sie das originale Bild und das transformierte Bild nebeneinander dar.

(Bei Bildern mit Griinanteil von > 212 wird die Erh6hung natiirlich de facto weniger als 20
Prozent betragen.)

[#' Aufgabe 8.12 Sepia-Filter

I r

In dieser Aufgabe wollen wir einen Sepia-Filter (Sepia-Effekt) erstellen. Wie dieser Filter de-
finiert ist, konnen Sie unter https://de.wikipedia.org/wiki/Sepia_(Fotografie) nach-
lesen. Der Sepia-Filter findet hdufige Anwendung in den sozialen Medien (e.g. Instagram).

Schreiben Sie ein Python-Funktion sepia_filter (filename), welche ein RGB-Bild mit dem
Dateinamen filename als Argument erhélt und den Sepia-Effekt auf das Bild anwendet.

Stellen Sie das originale Bild und das transformierte Bild nebeneinander dar.

~

8.2.2.4 Weitere Aufgaben

J

[#° Aufgabe 8.13 Primzahlen als Pixel

Schreiben Sie eine Python-Funktion is_prime (number), welche fiir eine gegebene natiirliche
Zahl number entscheidet, ob number eine Primzahl ist (return True) oder nicht (return
False).

Testféalle:
is_prime(0) # return False
is_prime(23) # return True

is_prime(97) # return True
is_prime(91) # return False

Erstellen Sie nun eine leere Liste. Diese Liste soll am Ende ein Schwarz-Weiss-Bild von 200 x
200 Pixeln kodieren und somit eine Lange von 40000 haben. Der k-te Eintrag der Liste fiir

ke{0,1,2,...,39999}

soll 0 (schwarz) sein, falls k eine Primzahl ist und 1 (weiss) sonst.

[#' Aufgabe 8.14 Eigene Aufgaben

Erstellen Sie eigene interessante Aufgaben. Falls Sie eine besonders kreative Aufgabe entwi-
ckelt haben, senden Sie mir diese bitte per Mail.

r
\.

108
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

https://de.wikipedia.org/wiki/Sepia_(Fotografie)

Kapitel 9

Game

9.1

Einfiihrung in Pygame

In diesem Kapitel entwickeln wir Schritt fiir Schritt ein eigenes 2D-Game mit pygame-ce. pygame-ce
ist eine moderne, Community-gepflegte Variante von Pygame und wird genau gleich importiert mit
import pygame as pg. Sie eignet sich hervorragend, um in Python Grafiken, Animationen, Sound
und Interaktionen umzusetzen.

Essentielle Bausteine eines Games sind:

Fenster (Auflésung, Titel) und Zeichenflache (,,screen®)

Game-Schleife mit Ereignissen (Tastatur, Maus) und Zeitsteuerung (Frames Per Second
(FPS) / ,refresh rate*)

Zeichnen: Hintergrund, Farben, geometrische Figuren, Bilder (,,Sprites®)

Zustadnde und Objekte (z.B. Spieler als Rect), Bewegungen und Kollisionen

Medien: Bilder, Icon, Schrift, Sound / Musik

Definition 9.1 (Game-Schleife):

Ein Game lauft in einer Endlosschleife, bis das Programm beendet wird. In jeder Runde
werden der Eingabestatus gelesen (,Events“), der interne Zustand aktualisiert (,,Update“)
und die Szene gezeichnet (,,Render“). Eine Clock (= Uhr) begrenzt die Bildwiederholrate
(FPS), sodass das Game stabil und gleichmaéssig lauft.

Um pygame-ce in VS Code zu installieren, gehen Sie wie folgt vor:

1.
2.

3.

Offnen Sie ein Terminal-Fenster in VS Code (,, Terminal“ — ,New Terminal).

Installieren Sie pygame-ce mit pip:

pip install pygame-ce

Uberpriifen Sie die Installation, indem Sie eine neue Python-Datei game_test.py mit folgen-
dem Code ausfiihren:

import pygame as pg

print (pg.ver)

Dieser Code sollte, sofern pygame-ce korrekt installiert ist, die Versionsnummer von pygame-
ce ausgeben. Damit ist pygame-ce einsatzbereit und Sie konnen mit den unten stehenden
Ubungen starten.

109
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

A Acht ung

Wichtiger Hinweis 9.1:
Falls die Installation nicht funktioniert, erstellen Sie zuerst ein virtuelles Umfeld (venv) in
VS Code und installieren Sie pygame-ce darin:

« Offnen Sie ein Terminal-Fenster in VS Code (,, Terminal“ — ,New Terminal®).
o Erstellen Sie ein virtuelles Environment:
python3 -m venv venv
Aktivieren Sie das venv:
Windows: venv\Scripts\activate
macOS: source venv/bin/activate
o Fiihren Sie nun nochmals die obigen Schritte zur Installation von pygame-ce durch.

Beispiel 9.1 (Minimale Game-Schleife):

Folgender Code zeigt den minimalen Aufbau eines Pygame-Programms mit Fenster, Game-
Schleife und Ereignisverarbeitung. Kopieren Sie den Code in eine Datei game_intro.py und
fithren Sie ihn in VS Code aus.

import pygame as pg

pg.init() # Pygame initialisieren (starten)

HEIGHT = 600 # Hohe des Fensters

WIDTH = 800 # Breite des Fensters

WINDOW = (WIDTH, HEIGHT) # Fenstergrésse (als Tuple gespeichert)
screen = pg.display.set_mode(WINDOW) # Fenster erstellen
pg.display.set_caption("Mein erstes Game") # Fenstertitel setzen
clock = pg.time.Clock() # Clock fir Zeitsteuerung erstellen

running = True # Hauptschleife
while running:
-—— Events -—-
for event in pg.event.get():
if event.type == pg.QUIT:
running = False

--- Update --- (Spielzustand aktualisieren)
--- render (zeichnen) ---

screen.fil11((30, 30, 40))

pg.display.flip()

—--- Zeitsteuerung ---
clock.tick(60) # 60 FPS

pg.quit ()

Fin schwarzes Fenster sollte erscheinen, das Sie mit dem Schliessen-Knopf beenden kénnen.

110
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 9.1 Fenster-Titel setzen

Setzen Sie einen passenden Fenstertitel, indem Sie folgende Zeile abdndern:

pg.display.set_caption("IHR TITEL HIER...")

W Aufgabe (Challenge) 9.2

Laden Sie ein Fenster-Icon (.png oder . jpg): Laden Sie ein beliebiges Bild aus dem Internet
herunter, speichern Sie es unter den Downloads und ziehen Sie es in Ihren Projektordner
in VS Code (dort wo auch Ihre Python-Datei ist). Fiigen Sie nun diese beiden Zeilen nach
pg.display.set_mode(...) ein:

icon = pg.image.load("path/to/icon.png")
pg.display.set_icon(icon)

Wenn Ihr Ordner beispielsweise Informatik/ heisst und das Bild unter
Informatik/Game/icon.png
gespeichert ist, dann verwenden Sie
pg.image.load("Game/icon.png").

Bei Windows dndert sich nur das Fenster-Icon, bei macOS wird das Icon nur im Dock ange-
zeigt.

[#' Aufgabe 9.3 Hintergrund zeichnen

Fiillen Sie den Hintergrund pro Frame mit einer Farbe mittels screen.fil1((R,G,B)). Ex-
perimentieren Sie mit zufillig generierten Farbtonen:

import random

In der Game-Schleife, im Render-Abschnitt:
= random.randint (0, 255)

random.randint (0, 255)

random.randint (0, 255)

screen.fill((r, g, b))

o 0@ R H# #

Die Farbe muss in der Hauptschleife, aber noch vor pg.display.f1lip(), gesetzt werden.

e Was dndert sich, wenn Sie die drei Zeilen fiir die Farbwerte r, g, b vor die Haupt-
schleife setzen?
e Schreiben Sie den Code so um, dass die Farbe nur alle 10 Frames gedndert wird.

111
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[# Aufgabe 9.4 Geometrische Figuren

Zeichnen Sie geometrische Formen: Rechteck, Kreis, Linie. Nutzen Sie dafiir pg.draw.rect,
pg.draw.circle und pg.draw.line. Achten Sie darauf, nach dem Zeichnen pg.display.
flip() aufzurufen. Versuchen Sie, mittels folgender Befehle einen Apfel zu zeichnen: Ver-
wenden Sie folgende Befehle:

pg.draw.rect(screen, rect_color, pg.Rect(rect_x, rect_y, rect_width,
rect_height))

pg.draw.circle(screen, circle_color, (circle_x, circle_y), circle_radius)

pg.draw.line(screen, line_color, (start_x, start_y), (end_x, end_y),
line_width)

Dabei bezeichnen die Parameter Folgendes:

e screen: die Zeichenflache

e rect_color, circle_color, line_color: Farbe als RGB-Tupel, z. B. (255, 0, 0)
fiir Rot

o pg.Rect(...): Rechteck-Objekt mit Position (x,y) und Grosse (width,height)

e (circle_x, circle_y): Mittelpunkt des Kreises

e circle_radius: Radius des Kreises

e (start_x, start_y), (end_x, end_y): Start- und Endpunkt der Linie

e line_width: Dicke der Linie in Pixeln (optional)

\ J

[#' Aufgabe 9.5 Sonnenuntergang erstellen .

Erzeugen Sie eine einfache Szene mit Himmel, Sonne und Meer. Tipp: Zeichnen Sie einen
Farbverlauf am Himmel, indem Sie in einer Schleife schmale horizontale Rechtecke in leicht
unterschiedlichen Farbtonen zeichnen. Die Sonne ist ein Kreis; das Meer ein Rechteck in der
unteren Hélfte. Das Meer sollte ebenfalls einen Farbverlauf haben (von hellblau zu dunkel-
blau). Verwenden Sie folgenden Code als Vorlage:

Himmel (einfacher Gradient)

for y in range(0, HEIGHT//2):
red = 100 + int(155 * (y / (HEIGHT//2))) # 100 ... 255
pg.draw.rect(screen, (red, 120, 180), (0, y, WIDTH, 1))

Sonne
IHR CODE HIER...

Meer
IHR CODE HIER...

Optional: Lassen Sie die Sonne langsam sinken (Animation iiber mehrere Frames).

112
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[# Aufgabe 9.6 Bewegungen (Tastatur)

Erstellen Sie ein Spieler-Rect (z.B. 50 x 50) und bewegen Sie es mit den Pfeiltasten. Nut-
zen Sie pg.key.get_pressed() und begrenzen Sie die Bewegung auf das Fenster (,,Screen
Bounds“). Verwenden Sie folgende Code-Vorlage:

Vor der Game-Schleife:
player = pg.Rect(100, 100, 50, 50) # Spieler-Rechteck erstellen
speed = 5 # Bewegungsgeschwindigkeit

In der Game-Schleife:
keys = pg.key.get_pressed() # alle gedriickten Tasten abfragen
if keys[pg.K_LEFT]:
player.x —-= speed
if keys[pg.K_RIGHT]:
player.x += speed
if keys[pg.K_UP]:
player.y —= speed
if keys[pg.K_DOWN]:
player.y += speed
player.clamp_ip(screen.get_rect()) # Rechteck innerhalb des Fensters halten

pg.draw.rect(screen, (0,0,0), player) # Spieler (Rechteckt) zeichnen

. J

[#' Aufgabe 9.7 Kollisionen .

Legen Sie ein Rect als ,,Ziel /Ttem® an (z. B. kleiner Kreis oder Block). Priifen Sie eine Kollision
mit player.colliderect(item). Bei Kollision: Position des Items neu zufillig setzen und
optional Punkte zéhlen.

import random

...

Vor der Game-Schleife:

item = pg.Rect(400, 300, 30, 30) # dieses Item soll gesammelt werden

.

In der Game-Schleife, nach der Spieler-Bewegung:

if player.colliderect(item):
item.topleft = (random.randint (0, WIDTH-30), random.randint(0, HEIGHT
-30))

pg.draw.rect(screen, (255, 0, 0), item) # Item zeichnen

113
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 9.8 Highscore anzeigen

Erstellen Sie eine Variable score, die bei jeder Kollision um 1 erhéht wird. Zeichnen Sie
den aktuellen Punktestand mit font.render(...) oben links im Fenster. Verwenden Sie
folgenden Code, um Text zu zeichnen:

Vor der Game-Schleife:

font = pg.font.Font(None, 36) # Schriftart und -grésse

...

In der Game-Schleife, im Render-Abschnitt:

score_text = font.render(f"Score: {score}", True, (0, 0, 0))
screen.blit(score_text, (10, 10)) # Text oben links zeichnen

[Aufgabe 9.9 Ereignisse (Keyboard / Maus)

Reagieren Sie auf KEYDOWN- und MOUSEBUTTONDOWN-Events. Beispiel: Bei Mausklick wird an
der Klickposition ein kleiner Kreis gezeichnet (oder eine Partikelspur gestartet). Bei ESC
beendet sich das Game. Da die Kreise jedes Frame neu gezeichnet werden miissen, speichern
Sie die Positionen in einer Liste.

Um Ereignisse wie etwa einen Maus-Klick zu verarbeiten, verwenden Sie folgenden Code:

Vor der Game-Schleife:
mouse_positions = [] # Liste fir Maus-Klick-Positionen

In der Game-Schleife, im Event-Abschnitt:
for event in pg.event.get():
if event.type == pg.QUIT:
running = False
elif event.type == pg.KEYDOWN and event.key == pg.K_ESCAPE:
running = False
elif event.type == pg.MOUSEBUTTONDOWN:
X, y = event.pos
mouse_positions.append((x, y)) # Position speichern

In der Game-Schleife, im Render-Abschnitt:
for pos in mouse_positions:
pg.draw.circle(screen, (255, 100, 100), pos, 10)

@ Aufgabe 9.10 Medien: Bild und Sound

Laden Sie ein Bild (.png /.jpg) und zeichnen Sie es mit screen.blit(...). Skalieren/ro-
tieren Sie es optional. Laden Sie einen Sound (.wav/ .ogg / .mp3) mit pg.mixer.Sound
und spielen Sie ihn bei einer Kollision ab.

Fur Bilder:

Vor der Game-Schleife:
img = pg.image.load("assets/player.jpeg") # Bild laden
img = pg.transform.scale(img, (64, 64)) # optional: skalieren

114
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

In der Game-Schleife, im Render-Abschnitt:
screen.blit(img, player) # Bild an Spieler-Position zeichnen

Fir Sounds:

Vor der Game-Schleife:
pg.mixer.init() # Mixer initialisieren (ist nétig fiir Sound)
motor = pg.mixer.Sound("assets/motor.wav") # Sound laden

In der Game-Schleife, bei Kollision:
if player.colliderect(item):
motor.play() # Sound abspielen

Hinweis: Legen Sie die Medien in einem Ordner (z. B. assets/) ab und achten Sie auf relative
Pfade. Die Dateien player. jpeg und motor.mp3 finden Sie auf Moodle.

Optional: Skalieren Sie das Bild auf eine bestimmte Hohe, wobei das Seitenverhéltnis bei-
behalten wird, indem Sie das Seitenverhéltnis mit den Befehlen img.get_width() und img.
get_height () berechnen.

Tipp: Viele kostenlose Soundeffekte finden Sie unter https://pixabay.com/sound-effects.

W Aufgabe (Challenge) 9.11 Bonus: Kleines Sammelspiel

Verbinden Sie die vorherigen Bausteine: Bewegen Sie den Spieler, sammeln Sie Items (Punkte
zéhlen), spielen Sie dabei einen Sound ab und zeichnen Sie im Hintergrund Ihren Sonnenun-
tergang. Begrenzen Sie die Spielzeit auf 60 Sekunden und zeigen Sie die verbleibende Zeit im
Fenstertitel an.

\

@ Aufgabe 9.12 Pong-Spiel

Erstellen Sie das klassische Pong-Spiel mit zwei Paddles und einem Ball.

Das folgende Video zeigt das fertige Pong-Spiel: https://youtu.be/vCoBgJ1lUg_c

Die Paddles werden mit den Tasten W/S (links) und UP/DOWN (rechts) gesteuert. Der Ball
bewegt sich automatisch und prallt von den Paddles und den oberen/unteren Bildschirmrén-
dern ab. Zéhlen Sie die Punkte, wenn ein Spieler den Ball am Gegner vorbei spielt. Gehen
Sie Schritt fiir Schritt vor, indem Sie folgende Elemente umsetzen:

Rechtecke fiir Paddles und Ball zeichnen

Mittellinie zeichnen

Tastatur-Eingaben fiir Paddle-Bewegung (W/S und UP/DOWN)

Ball von der Mitte aus in eine zuféllige Richtung starten lassen

Kollisionserkennung fiir Ball und Paddles, Richtung von Ball umkehren bei Kollision
oder sofern der Ball die oberen/unteren Rénder beriihrt

Punkte zéhlen und anzeigen

Soundeffekte bei Kollisionen und Punkten

o 80 e =

oV &

115
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://pixabay.com/sound-effects
https://youtu.be/vCoBgJlUg_c

Programmieren O Informatik, 2026

A Achtung

Wichtiger Hinweis 9.2 (Hinweise zu Pong):
Die folgende Sammlung von Hinweisen zeigt kleine Bausteine, die im Pong-Beispiel verwendet
werden und Ihnen beim Verstdndnis oder bei eigenen Varianten helfen.

o Zufillige Start-Richtung fiir den Ball:

import random

ball_speed = 5

Geschwindigkeit als separate Variablen
ball_speed_x = random.choice((-1, 1)) * ball_speed
ball_speed_y = random.choice((-1, 1)) * ball_speed

In der Game-Schleife:
ball.x += ball_speed_x
ball.y += ball_speed_y
¢ Rect-Riander nutzen und Kollisionen ,,sauber* auflosen:

if ball.colliderect(left_paddle):
ball_speed_x *= -1 # x-Richtung umkehren (Abprall)
e Abprall oben/unten (Wiande):

if ball.top <= 0 or ball.bottom >= HEIGHT:
ball_speed_y *= -1
o Trefferwinkel variieren: Je weiter oben/unten am Paddle getroffen wird, desto mehr
vertikale Geschwindigkeit.

offset = (ball.centery - left_paddle.centery) / (paddle_h / 2) #
=l 5 oHil
ball_speed_y = ball_speed * offset
o Ball nach Punkt neu zentrieren (als Funktion):

def reset_ball(direction): # direction: -1 nach links, +1 nach rechts
ball.center = (WIDTH // 2, HEIGHT // 2)
global ball_speed_x, ball_speed_y # Zugriff auf globale Variablen
ball_speed_x = direction * ball_speed
ball_speed_y = random.choice((-1, 1)) * ball_speed
o Niitzliche Rect-Eigenschaften: left, right, top, bottom, center, centery hel-
fen bei Ausrichtung und Kollisionen.

W Aufgabe (Challenge) 9.13 Pong-Bonus

Fiigen Sie dem Pong-Spiel folgende Features hinzu:

¢ Soundeffekte bei Paddle-Kollision und Punktgewinn

e Startbildschirm mit Anweisungen

o Game-Over-Bildschirm nach einer bestimmten Punktzahl (z. B. 10 Punkte)
o Paddle-Geschwindigkeit erh6hen, wenn der Ball getroffen wird

e Hintergrundmusik wéhrend des Spiels

116
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

[#' Aufgabe 9.14 Videoaufnahme des Spiels

Nehmen Sie ein kurzes Video (ca. 1-2 Minuten) auf, das das Gameplay Ihres Spiels zeigt.
Laden Sie das Video auf eine Plattform (z. B. YouTube, Vimeo) hoch und fiigen Sie den Link
auf Moodle ein. Fiir die Bildschirmaufnahme kénnen Sie folgende Tools verwenden:

o Windows: Verwenden Sie die Bildschirmaufnahme-Funktion von PowerPoint (unter
,Einfiigen“ — , Bildschirmaufnahme“) oder die Xbox Game Bar (%]+ G)), beenden

Sie die Aufnahme mit +@+®

« macOS: Verwenden Sie die integrierte Bildschirmaufnahme ([T |+ $¢]+[5]), beenden
Sie die Aufnahme mit, [3 |+[ctrl|+Esc|

9.2 Game-Auftrag

9.2.1 Thema

Im Folgenden wéhlen Sie in Zweier- bis Dreier-Gruppen ein Game-Thema aus und entwickeln ein
kleines 2D-Game mit pygame-ce. Mogliche Themen sind:

o Sammelspiel: Bewegen Sie eine Spielfigur (z. B. Auto, Raumschiff) und sammeln Sie Items
ein (z. B. Treibstoff, Sterne). Jedes eingesammelte Item gibt Punkte.

o Endlos-Runner: Steuern Sie eine Spielfigur (z. B. Laufer, Auto) und weichen Sie Hindernissen
aus (z.B. Mauern, andere Autos). Jedes iiberstandene Hindernis gibt Punkte.

o Fangspiel: Steuern Sie eine Spielfigur (z.B. Katze, Netz) und fangen Sie herumspringende
Objekte (z. B. Méause, Schmetterlinge). Jedes gefangene Objekt gibt Punkte.

o Shooter (z.B. Space Invader): Steuern Sie ein Raumschiff und schiessen Sie auf heranna-
hende Gegner. Jeder abgeschossene Gegner gibt Punkte.

Weitere Themen koénnen in Absprache mit der Lehrperson gewéhlt werden. Wichtig ist, dass das
Spiel die geforderten Python-Konzepte sinnvoll einsetzt (siehe Anforderungen) und die Komplexitét
angemessen ist (nicht zu einfach, aber auch nicht zu komplex).

9.2.2 Anforderungen
Ihr Projekt sollte folgende, essentielle Python-Konzepte sinnvoll einsetzen

O Verwendung von pygame-ce fiir Fenster, Game-Schleife, Ereignisse, Zeichnen, Kollisionen und
Medien (Bilder, Sound), Steuerung mit Tastatur und/oder Maus

O Verwendung physikalischer Formeln fiir Bewegungen (z. B. Geschwindigkeit, Beschleunigung,
Schwerkraft)

O Verwendung von Variablen zur Speicherung von Spielzustdnden (z. B. Spielerposition, Punk-
testand, verbleibende Zeit)

O Verwendung von Funktionen zur Strukturierung des Codes (z. B. draw_player (), update_game
(), handle_input ()), mit sowie ohne return-Wert

O Verwendung von logischen Ausdriicken und Schleifen zur Steuerung des Spielablaufs (z. B.
Kollisionserkennung, Punkte zéhlen, Spielzeit)

O Verwendung von Datenstrukturen (Listen, Dictionaries) zur Verwaltung von mehreren Spiel-
objekten (z.B. Liste von Items, Liste von Hindernissen)

O Verwendung von Klassen zur Modellierung von Spielobjekten (z.B. class Player, class
Item, class Obstacle)

O Verwendung mehrerer Python-Unterdateien zur besseren Strukturierung des Codes (z. B. game

.Py, player.py, item.py)

117
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Thr Game muss Kommentare enthalten, die den Code erkliaren und die Struktur des Programms
verdeutlichen. Verwenden Sie sowohl einzeilige Kommentare (mit #) als auch mehrzeilige Kom-
mentare (mit "...") fiir Funktionen und Klassen. Schauen Sie sich die detaillierten Bewer-
tungskriterien auf Moodle an, um sicherzustellen, dass Ihr Code den Anforderungen
entspricht.

9.2.3 Bonus

O Python-spezifisch:
O Verwendung von try/except zur Behandlung von Fehlern (z.B. Laden von Medien,
Division durch Null)
O Verwendung von with-Anweisung zum sicheren Offnen und Schliessen von Dateien (z. B.
Highscore speichern)
0 Wenn Sie ein Punktesystem mit Highscore (gespeichert in einer Datei) implementieren.
0 Game-spezifisch:
O Wenn Sie viele Power-Ups (z.B. tempordre Unverwundbarkeit, Doppelte Punkte) ein-
bauen.
[0 Wenn Sie viele eigens erstellte Hintergrundmusik und/oder Soundeffekte (z. B. bei Kolli-
sion, Item-Sammlung) einbauen.
0 Wenn Sie das Spiel mit einem Gamepad/Controller steuern kénnen.
O Wenn Sie einen Online-Multiplayer-Modus (z. B. tiber LAN) implementieren.
O Weitere Ideen fiir Bonus:
0O Wenn Sie das Spiel mit einem Level-Editor (zum Erstellen eigener Level) erweitern kon-
nen.
O Wenn Sie das Spiel mit einem Story-Modus (mit Handlung und Charakteren) erweitern
kénnen.
00 Wenn Sie das Spiel mit einem besonders raffinierten Achievements-System (Erfolge) er-
weitern konnen.
[0 Wenn Sie das Spiel mit einem Debug-Modus (zum Testen und Entwickeln) erweitern
kénnen.

9.3 Bewertung

9.3.1 Projektbewertung

Die Bewertung Ihres Projekts erfolgt anhand der auf Moodle aufgelisteten Kriterien. Die maximale
Punktzahl betriagt 100 Punkte.

9.3.2 Gruppen-Besprechung des Spiels

Im Anschluss an Thre Abgabe findet eine Besprechung Thres Spiels in Gruppen mit der Lehrper-
son statt (ca. 15 Minuten pro Gruppe). Dabei werden Thnen Fragen zu Ihrem Spiel gestellt, um
Ihr Verstédndnis und Thre Reflexion zu iiberpriifen. Achten Sie darauf, in Threm Schlussbereicht zu
erwahnen, wer fiir welche Teile zustdndig war — das Verstdndnis von jedem Gruppenmitglied wird
speziell iiberpriift. Die Besprechung resultiert in einer individuellen Versténdnis-Prozentzahl von
0%-100% Punkten, welche mit Threr Endnote multiplizipert wird.

Thre Endnote wird wie folgt berechnet:

tédndnis-P tzahl
Endnote =5 - (Projekt—Punkte~ (Vers NS Toretza)) +1

100

118
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

A Acht ung

Wichtiger Hinweis 9.3 (KI-Tools):

Es wird von Thnen erwartet, dass Sie sich aktiv an der Entwicklung des Spiels beteiligen und
die geforderten Python-Konzepte verstehen und anwenden kénnen. ChatGPT oder andere KI-
Tools diirfen Sie verwenden, solange Sie Ihren gesamten Code verstehen und erklaren kénnen.
Wie Sie im obigen Benotungsschema erkennen kénnen, kann Thre Note durch mangelndes
Verstandnis stark beeintréchtigt werden (bis zur Note 1). Falls Sie ChatGPT oder andere KI-
Tools verwenden, miissen Sie dies im Code klar dokumentieren (z.B. mit Kommentaren oder
in einer Begleit-Dokumentation). Jede Zeile Code muss mindestens einer Person zugeordnet

sein!

119
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Anhang A

Lernziele

Die folgenden Lernziele geben Thnen einen Uberblick iiber die zentralen Konzepte und Fihigkeiten,
die in den Kapiteln behandelt werden. Sie dienen Ihrer Orientierung und unterstiitzen Sie dabei,
Ihren Lernfortschritt zu verfolgen. Bitte beachten Sie, dass diese Auflistung nicht abschliessend ist
und das Lésen der Ubungsaufgaben sowie das Verstéindnis der behandelten Konzepte im Skript
entscheidend fiir Thren Lernerfolg sind.

Lernziele Kapitel 2: Einfiihrung in Python und erste Schleifen

O Ich kann mit der Turtle einfache Formen zeichnen (Dreiecke, Rechtecke, Blitz, etc.)

O Ich kann mit einem breiten Stift ausgefiillte Rechtecke zeichnen (Tiire beim Haus)

U Ich setze die for _ in range(zahl)-Schleife ein, um sich wiederholende Tatigkeiten auszu-
fiihren.

Ich kann mit der Turtle regelméssige Vielecke (Vierecke, Fiinfecke, Sechsecke etc.) zeichnen.
Ich kann ,Kreise®“ als Vielecke mit grosser Eckenzahl zeichnen.

Ich kann verschachtelte Schleifen verwenden (for _ in range(zahl)-Schleifen innerhalb von
for _ in range(zahl)-Schleifen).

Ich kann Text in der Konsole mit print("...") ausgeben.

Ich setze die Operationen + und *, um komplizierte Texte (Zeichenketten) zu erzeugen.

Ich kenne die Operationen auf Zahlen, die auf Seite 19 oben aufgelistet sind, und kann diese
auch einsetzen.

Ich kann innerhalb eines Programms eine Streckenldnge mit Pythagoras berechnen.

Ich kann die Farbe und Breite des Turtle-Stifts verdndern (t.color("..."), t.width(...))
Ich kann die Turtle bewegen, ohne zu zeichnen, indem ich den ,Stift“ ab- sowie aufsetze
(t.puQ), t.pdQ))

gono ggo

oono

Lernziele Kapitel 3: Variablen, Datentypen & Debugging

O Ich kann neue Variablen erstellen, um die Resultate einfacher Berechnungen zu speichern
O Ich kann mit dem Gleich-Operator (=) eine neue Variable erstellen und kann diese in einem
Code sinnvoll verwenden.

[0 Ich kann Speicherinhalte &ndern, indem ich die Befehle +=, -=, *= und /= nutze.
O Ich kann mithilfe des input-Befehls neue Variablen wéihrend der Ausfiihrung des Codes er-
stellen.

O Ich kenne den Unterschied zwischen der Division (/) und der Ganzzahl-Division (//) und kann
beide Operatoren in geeigneten Situationen anwenden.

120
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Ich kann den Modulo-Operator % verwenden, um den Rest einer Ganzzahl-Division zu berech-
nen.

Ich kann Variablen nutzen, um eine Spirale oder &hnliche, sich stetig vergrossernde oder ver-
kleinernde Formen zu zeichnen.

Ich kann Zahlenfolgen (z.B. alle Quadratzahlen bis zu einem bestimmten Wert) mit Python
erstellen.

Lernziele Kapitel 4: Funktionen

goooogodg

O

Ich kann eigene Befehle in Python definieren und einsetzen.

Ich verstehe den Unterschied zwischen Haupt- und Unterprogramm.

Ich kann Befehle mit Parameter definieren und einsetzen, wie z.B. quadrat (seite).

Ich kann die Lebensdauer von Variablen (inkl. Parametern) beschreiben (lokal oder global).
Ich kann beschreiben, wie sich ein Parameter von andern Variablen unterscheidet.

Ich kann Befehle mit mehreren Parameter definieren und einsetzen, wie z.B. vieleck(ecken
, laenge, farbe).

Ich kann einen Befehl innerhalb eines anderen Befehls aufrufen und dabei Variablenwerte
iibergeben.

Ich kann Speicherinhalte &ndern, indem ich den Inhalt durch den Wert eines Ausdrucks iiber-
schreibe, z.B. seite = seite * 2 + 1

Ich kann einfache Befehle kombinieren, um komplexe Probleme zu 16sen (Beispiel Hauserreihe).
Ich kann Funktionen erstellen, die einen oder mehrere Parameter sowie einen return-Wert
haben.

Ich verstehe den Unterschied zwischen einem print-Befehl und einem return-Befehl

Ich kann das Resultat einer Funktion mit return in einer Variable im Hauptprogramm spei-
chern und diese weiterverwenden

Ich kann Funktionen mit einem return-Ausdruck erstellen, den Riickgabewert der Funktion
im Hauptprogramm als Variable speichern und den Wert der Variable mit print anzeigen
lassen.

Ich kann eine (Unter-)Funktion innerhalb einer anderen (Haupt-)Funktion aufrufen, und den
Riickgabewert der Unterfunktion in der Hauptfunktion weiterverwenden.

Ich nutze den modularen Programmentwurf, um komplexe Probleme in Teilprobleme aufzu-
teilen.

Ich kann den return-Wert einer Funktion direkt und ohne Zwischenspeicherung in einem
Ausdruck verwenden, z.B. if rechteck_flaeche(19, 12) < 100:

Lernziele Kapitel 5: Verzweigungen und Logische Ausdriicke

O

O
g
U

Ich kann die if-Anweisung einsetzen und verwende dabei die Vergleichsoperatoren ==, !=, >,
<, <= und >=.

Ich kann die if-else-Struktur fiir Verzweigungen mit zwei Féllen verwenden.

Ich kann die if-elif-else-Anweisung fiir Verzweigungen mit beliebig vielen Féllen verwenden.
Ich kenne den Unterschied im Programmablauf zwischen der if-elif-else- und der if-if
-else-Struktur.

Ich kann die logischen Operatoren and, or sowie not einsetzen, um boolsche Ausdrucke zu
kombinieren.

Ich kann die break-Anweisung einsetzen, um Schleifen unter bestimmten Bedingungen abzu-
brechen.

Ich kann while-Schleifen einsetzen, um eine Schleife solange auszufithren wie eine Bedingung
wahr ist.

121
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

00 Ich kann erkldren, weshalb ein Code der nach einem ausgefithrten for _ in range(zahl)-
Ausdruck steht, nicht mehr ausgefiihrt wird.

O Ich kann fiir ein einfaches, gegebenes Code-Beispiel bestimmen, wie héufig eine bestimmte
while-Schleife ausgefiihrt wird.

O ich kann die geeignetste Schleifenart auswéhlen, um ein bestimmtes Problem zu l6sen (for _

in range(zahl) mit break oder while).

O Ich kann unterschiedliche Schleifen-Typen mit einem Flussdiagramm modellieren.

0 Ich kann den return-Wert einer Funktion direkt und ohne Zwischenspeicherung in einem
Ausdruck verwenden, z.B. if rechteck_flaeche(19, 12) < 100:

Lernziele Kapitel 6: Datenstrukturen (Listen, Dictionaries)

O Listen: Grundlagen

goono

O

g

Ich kann Listen in Python erstellen.

Ich kann mit dem Index einzelne Elemente der Liste abrufen und verédndern.

Ich kann die Anzahl Elemente einer Liste in Python mit len(liste) berechnen lassen.
Ich kann die Elemente einer Liste in einer Schleife (for _ in range(zahl), while oder
for...in) durchlaufen.

Ich kann ein Programm schreiben, das in einer Liste die Elemente mit bestimmten Ei-
genschaften findet (z.B. das Maximum oder alle ungeraden Zahlen).

Ich kann die Elemente einer Liste auf einen Wert reduzieren (z.B. die Summe der Lis-
tenelemente berechnen).

Ich kann Listen als Parameter an Funktionen iibergeben und innerhalb der Funktion
verarbeiten.

0 Algorithmen

g
g

Ich kann bubble sort in Python programmieren und verstehe den Algorithmus im Detail.
Ich kann die bindre Suche in Python programmieren und verstehe den Algorithmus im
Detail.

0 Dynamische Listen

g
U
U

Ich kann Listen mit dem Befehl .append(...) erweitern.

Ich kann Listen mit dem Befehl .pop() kiirzen.

Ich kann Listen mit dem Befehl . insert (position, wert) an einer bestimmten Position
erweitern.

J Dictionaries

g
g

oooog

O

Ich kann Dictionaries (Worterbiicher) in Python erstellen und verwenden.

Ich kann die Struktur von Schliissel-Wert-Paaren in Dictionaries erkldren und verstehe
den Unterschied zu listenbasierten Datenstrukturen.

Ich kann mit Schliisseln auf die Werte in einem Dictionary zugreifen.

Ich kann neue Schliissel-Wert-Paare zu einem Dictionary hinzufiigen.

Ich kann bestehende Werte in einem Dictionary dndern.

Ich kann iiber alle Schliissel eines Dictionaries mit einer for-Schleife iterieren.

Ich kann priifen, ob ein bestimmter Schliissel in einem Dictionary vorhanden ist (mit
if key in dictionary:).

Ich kann Dictionaries als Parameter an Funktionen iibergeben und innerhalb der Funk-
tion verarbeiten.

Ich kann komplexere Datenstrukturen erstellen, indem ich Listen und Dictionaries kom-
biniere (z.B. Liste von Dictionaries, Dictionary von Listen).

Ich kann alltdgliche Anwendungsfille fiir Dictionaries identifizieren (z.B. Telefonbuch,
Lagerbestand, Preisliste).

Ich kann die Lange eines Dictionaries, also die Anzahl der Schliissel-Wert-Paare, mit dem

122
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Befehl len(dictionary) bestimmen.
O Ich kann einen Schliissel-Wert-Paar aus einem Dictionary entfernen.
O Ich verstehe, dass Dictionaries ungeordnet sind und die Reihenfolge der Elemente keine
Rolle spielt.
O Mengen (Sets)
0 Ich kann Mengen in Python erstellen und verwenden.
O Ich kann die grundlegenden Operationen auf Mengen durchfithren, wie z.B. Vereinigung,
Schnittmenge und Differenz.
O Ich kann die grundlegenden Operationen kombinieren, um komplexere Mengenoperatio-
nen durchzufithren.
O Ich kann typische Anwendungsfélle fiir Mengen nennen, wie z.B. das Entfernen von Du-
plikaten aus einer Liste oder das Uberpriifen von Mitgliedschaften.
0 Tupel
00 Ich kann Tupel in Python erstellen und auf ihre Elemente zugreifen.
[0 Ich kann den Hauptunterschied zwischen Tupeln und Listen erkldren, ndmlich die Un-
verdnderlichkeit (Immutability) von Tupeln.
O Ich kann die wesentlichen Eigenschaften von Tupeln (geordnet, heterogen) beschreiben.
O Ich kann typische Anwendungsfille fiir Tupel nennen, wie z.B. die Riickgabe mehrerer
Werte aus einer Funktion oder die Verwendung als Schliissel in einem Dictionary.

Lernziele Kapitel 7: Klassen und Objektorientierte Programmie-
rung

Ich kann erkldren, was eine Klasse ist und wie sie sich von einem Objekt unterscheidet.

Ich kann eine einfache Klasse mit Attributen und Methoden definieren.

Ich verstehe den Zweck und die Funktionsweise des Konstruktors (__init__).

Ich kann erkldren, was der Parameter self in Methoden bedeutet und wie er verwendet wird.
Ich kann Objekte (Instanzen) einer Klasse erstellen und verwenden.

Ich kann auf Attribute und Methoden eines Objekts zugreifen.

Ich verstehe den Unterschied zwischen Klassenattributen und Instanzattributen.

Ich kann das Konzept der Vererbung erklaren und einfache Vererbungshierarchien erstellen.
Ich kann Methoden in einer Kindklasse iiberschreiben und dabei die Methoden der Elternklasse
mit super () aufrufen.

Ich kann reale Probleme mit Hilfe objektorientierter Programmierung modellieren.

Ich kann die Vorteile der objektorientierten Programmierung fiir komplexe Anwendungen
erkléaren.

goooogogoono

OO

123
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Anhang B

Nitzliche Shortcuts

[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Mit Shortcuts koénnen Sie Thre Produktivitét in vielen Bereichen boosten, daher empfiehlt es sich, diese zu ler-
nen, ebenso wie das Zehn-Finger-System. Falls Sie letzteres noch nicht beherrschen, sollten Sie dieses zuerst auf
tippl0.com trainieren.

Folgende Shortcut-Liste erhebt keinen Anspruch auf Vollstéandigkeit. Falls Sie weitere hilfreiche Shortcuts kennen,
koénnen Sie diese gerne an Cyril Wendl senden. Sie diirfen die Ubersicht der Shortcuts an jeder Priifung verwenden.

Aktion H & Windows ‘ & MacOS Aktion H &8 Windows ‘ & MacOS
Cursor bew ' efgen | (=], S »= Code Einriicken® || ‘
Cursor 'bewegen} (Worter) (ctr]+[+] + = Code Ausriicken H (@)1= ‘ EARE
T~ (ctr)+[<] =)+ # Klappt auch, wenn die einzurtickenden / auszurii-
e = e ckenden Zeilen nur teilweise markiert sind
Worter] markieren i%: 1%1)
Tabelle B.2: Shortcuts fiir Code
¥Zum Anfang / (s]+(<]
Ende der Zeile gehen ()+(+] Aktion | 28 Windows | & MacOS
Ganze Zeile markieren] @+ (e)+[T]+(=] =>» Zu Tab rechts (ctri)+ (=] (se]+(=)+[<]
E)+(Ed) | Ge)(8)+(=] € 7Zu Tab links [0+ | E)+=)+[=)
Geszla,{l.nten Text + + > 7u Tab 1, 2, ... gehen H + ‘ *
markieren
Tab schli 1]+ W 8 |+(W
< Emoji einfiigen H @+B ‘ + &3 Tab schliessen H + ‘ +
N N Tab | T i3 T
I Datei/Text kopieren H (ctrl]+[C] ‘ (%)+(c] + Neuer To H (exr+ (T ‘ ()+(1)
@ Geschl Tab || [ctrl T | (e)+(T)+(T
X Datei/Text ausschneiden et +(X] (3)+(X] Sjederesgﬁn(;isenen & H (ewr+{@)+{T] ‘ BN
(= kopieren + loschen) (s]+[C
C' Seite neu laden H (ctrl]+(R] ‘ (8)+(R]
B Datei/Text einfiigen H (ctrl]+[V] ‘ (s]+(V]
Q Toxt suchen | @ F) | (meE) Tabelle B.3: Browser-Shortcuts
B Datei speichern H (ctrl)+(S] ‘ (e)+(S]
9 Rickgingig (,undo®) || [)+(Z] | [(2)1[Z) Zeichen || % Windows | @& MacOS
C Vorwarts (redo?) || @)+ [8)+(2) | [E1()+(2) .| mek) | =10
> Fenster wechseln G | (@) ||| Bee) | =k(e)
€ Fenster zuriickwechseln (ctr)+[D)+(=) | [()+[T]+[=P { H (A3 ‘ =-+3]
m Programm schliessen H + ‘ +@ } H + ‘ +@
a Comput'er sperren @Jr ++@ \ H + ‘ +@+
< Fenster links anordnen (s&]+(<) Nicht méelich®
» Fenster rechts anordnen (s&]+(~) leht moghe | H (AltGr)+[7] ‘ (~)+(7]
2 Um Dateien auf MacOS zu verschieben (nicht kopieren): []+ & H (©])+(6) ‘ (f])+(6]
(€], danach [(®]+[=]+(V]
® Um auf MacOS zwischen mehreren Fenstern derselben Anwen- % H (@)+(5) ‘ [@)+(5]

dung wechseln: [$]+ <]

¢ Keine native Unterstiitzung durch MacOS, allerdings moglich
mit Drittanbieter-Apps wie z.B. dieser Link (Windows), bzw.

(s]+ C) (MacOS)
Tabelle B.1: Allgemeine Shortcuts

Tabelle B.4: Spezial-Zeichen

Viele weitere Shortcuts kdnnen durch Ausprobieren er- % Word | Datsi Bearbeiten Ansicht Egfigen
raten werden: Héufig steht der Anfangs-Buchstabe des 000 1 Nams vorim
englischen Wortes fiir die Aktion. So kann man beispiels-

Start Einfi Sffnen...

< Zuletzt verwendete 6ffnen h
weise aus den meisten Programmen drucken (en. print), =y B | schiaten
indem man die Abkiirzung [ctrl]+[P | (Windows) bzw. ¢ e
(%8]+[P] (MacOS) verwendet. Bei MacOS koénnen zu-) Al Vorage e
dem viele Abkiirzungen tiber das Programm-Menu (Me- : tmhanannen

nuleiste oben am Bildschirm) eingesehen werden:

[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://www.tipp10.com/de/
mailto:cyril.wendl@edu.zh.ch
https://rectangleapp.com

Anhang C

Details

C.1 Division mit Rest

Definition C.1 (Kongruenz ganzer Zahlen):
Sei m > 0 eine fest gewédhlte natiirliche Zahl. Seien a und b ganze Zahlen. Dann heissen a
und b kongruent modulo m, geschrieben

a=b (modm),

falls m die Differenz (a — b) teilt.

Definition C.2 (Modulo-Operation):

Sei m > 2 eine fest gewédhlte ganze Zahl und a eine ganze Zahl. Dann ist a kongruent modulo
m zu genau einer Zahl b € {0,1,...,m — 1}. Diese Zahl b bezeichnen wir mit dem Ausdruck
a % m.

Beispiel C.1:
Auf dem Planeten Vulcan dauert ein Tag nur 5 Stunden. Deshalb verwenden die Vulcanians
Uhren der unten abgebildeten Form. Diese Uhren verfiigt lediglich {iber einen Stundenzeiger.

Abbildung C.1: Uhr der Vulcanians

126
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

vergangene Zeit T in Stunden: | -6 | -5 | -4 -3 |-2|-1|0|1]2[3[|4]|5
T % 5: 4 10 (1|2 |3 |4 |0]1]2]3[4]|0]1

Tabelle C.1: Es sei die T' die ganzzahlige Anzahl der vergangenen Stunden. Dann ist T % 5
die Uhrzeit, welche auf der Uhr abgelesen werden kann.

Beispiel C.2 (Modulo-Operation):
Wir geben hier einige Beispiele an:

10 % 7=3
-3 % 5=2
-17 % 3=1
-7 % 3=2

Falls Sie noch mehr iiber modulare Arithmetik (und ihre weitreichende Bedeutung) erfahren méch-
ten, empfehlen wir Thnen warmstens, das Buch [1] zu studieren.

C.2 Umrechnung von Basis a zu Basis b in Python
Es sei

T = TpTp_q...ToT1T0 = Tna" + Tp_1a" " + ...+ x9a® + z10" + 20d°
die Darstellung der Zahl x in Basis a > 2. Wir wollen die Darstellung

/ A) / / —1 /12 /11 /
x bl =l bl 0T 4 ahb? 4 2 bt + 2 bO

x =2,
von z in Basis b > 2 finden. Die Ziffern «,, ..., 2}, z{, sind gesucht.
Wir berechnen
% b= (x), 0" 4+, " bt + bt + xh”) % b=
= (@0 % b+al, D" b4 b Db+ bt Db+’ %b) % b=
=0+0+...+0+2 % b) % b= (z() % b= xp,
wobei wir die Formel (z +y) % a = (x % a+y % a) % a ohne Beweis verwendet haben. Somit ist
x % b= x| die Ziffer (das Gewicht) des kleinsten Stellenwerts der Zahl x in Basis b.
Nun berechnen wir
eV =g/ /b= (al b™ + 2l b+ ahb 4 2+ 2hb0)/ /b =
=2l b/ /bt al, "V Jo+ 4 ahb?) b+ 2 Jb 4 afb®) /b =
=2 b gl b2 bt a2

Danach erhalten wir die zweithinterste Ziffer 2} durch z(!) % b und so weiter. In Programm C.1 ist
eine Python-Funktion gegeben, welche die Umrechnung von Basis a in Basis b berechnet.

127
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

def base_a_to_base_b(number_a, a, b):
der String number_a ist eine Zahlendarstellung in Basis a
if number_a == "0":
return "O"

number_10 = 0

k=20

n = len(number_a)

while k < len(number_a):
number_10 += int(number_alk]) * a **x (n - 1 - k)
k+=1

number_b = "" # leerer String
while number_10 > O:
number_b += str(number_10 % b)
number_10 //= b

return number b[::-1]

Beispiel
print (base_a_to_base_b("2310213647", 8, 9))

Programm C.1: base_a_to_base_b.py

GitHub-Tutorial

In diesem Tutorial lernen Sie Schritt fiir Schritt, wie Sie:

e einen GitHub-Account erstellen,

o cin neues Repository anlegen,

e Thren Rechner via SSH mit GitHub verbinden,

o und ein bestehendes Python-Projekt mit Git (add, commit, push) hochladen.

Git bietet folgende Haupt-Vorteile gegeniiber dem Arbeiten auf dem lokalen Computer:

« Versionskontrolle: Anderungen werden protokolliert, und frithere Versionen kénnen leicht
wiederhergestellt werden.

e Zusammenarbeit: Mehrere Personen konnen gleichzeitig an einem Projekt arbeiten, ohne
sich gegenseitig zu storen.

e Backup: Der Code ist sicher in der Cloud gespeichert und kann von iiberall abgerufen werden.

o Automatisierte Pipelines: Moglichkeit, bei jeder neuen Version einen automatischen Test-
und Deployment-Prozess zu starten, beispielsweise, um eine Dash-App auf einem Server zu
aktualisieren.

Git und VS Code vorbereiten
Installieren Sie Git mit folgendem Befehl:

macOS
brew install git

Linux (Ubuntu/Debian)
sudo apt install git

128
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

Programmieren O Informatik, 2026

Fiir Windows: Laden Sie Git von https://git-scm.com/download/win herunter und installieren
Sie es.

GitHub-Account erstellen

Offnen Sie https://github.com und klicken Sie auf Sign up. Folgen Sie den Schritten, um einen
Account anzulegen.

SSH-Schliissel erstellen und hinterlegen

Erzeugen Sie ein Schliisselpaar, laden Sie es in den SSH-Agent und fiigen Sie den Public Key bei
GitHub ein.

Fithren Sie folgenden Code auf IThrem Computer aus (Terminal auf macOS oder Linux, bzw. Git
Bash auf Windows):

ssh-keygen -t ed25519 -C "ihre_email@schule.ch"
"$(ssh-agent -s)"

ssh-add ~/.ssh/id_ed25519
pbcopy < ~/.ssh/id_ed25519.pub # Public Key in Zwischenablage kopieren

Auf GitHub: Settings — SSH and GPG keys — New SSH key.

Testen Sie die Verbindung:
ssh -T git@github.com

Git konfigurieren

Damit bei jedem commit auf Git die richtigen Angaben verwendet werden, konfigurieren Sie Git
mit Threm Namen und Threr E-Mail-Adresse. Zusétzlich stellen Sie den Standard-Branch auf main
ein:

git config --global user.name "Vorname Nachname"

git config --global user.email "vorname.nachname@stud.edu.zh.ch"
git config --global init.defaultBranch main

Neues Repository auf GitHub

Erstellen Sie iiber das ,,+“ oben rechts ein New repository, geben Sie einen Namen (z. B. mein-
python-projekt) und wahlen Sie ,Public®

Projekt vorbereiten

Wechseln Sie in den Ordner Thres Projekts:

/pfad/zu/projekt

Erstellen Sie eine .gitignore-Datei fiir Python:

__pycache__/
*.pyc

.venv/
.DS_Store
.vscode/

129
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

https://git-scm.com/download/win
https://github.com

Programmieren O Informatik, 2026

Initialisieren, Committen, Pushen

init
add .
commit -m "Erster commit!"

remote add origin git@github.com:<user>/<repo>.git
push -u origin main

Arbeiten mit VS Code
Offnen Sie den Projektordner in VS Code. Verwenden Sie die Source Control-Ansicht (Git-Symbol

links), um Anderungen zu stagen, zu committen und zu pushen.

Niitzliche Befehle

Lnderungen abrufen
git pull

Remote-URL priifen
git remote -v

130
[git] = Branch: (None) @8aff860 = Release: (2026-01-14)

C.3 Python Cheatsheet

Einfiihrung

,-[Python-Grundgeriist

]

J)

Ein einfaches Python-Programm:

Dies ist ein Kommentar

print("Hallo Welt!") # Ausgabe
von Text

:_'- o
r-[Grundrechenarten } \

Addition

3+5 # ergibt 8

Subtraktion

10 - 4 # ergibt 6

Multiplikation

3 %7 # ergibt 21

Division

10 / 3 # ergibt 3.3333...

Ganzzahldivision

10 // 3 # ergibt 3

Modulo (Rest)

10 % 3 # ergibt 1

Potenz

2 *x 3 # ergibt 8

,-[String-Operationen } \

Strings verknipfen

"Hallo" + " " + "Welt" # "Hallo
Welt"

String wiederholen
"Ha" * 3 # "HaHaHa"
Lange eines Strings
len("Python") #6
Zeichen an Position (Index)
"Python" [0] # "p"
"Python" [1] # llyll
"Python" [-1] # "n"
Teilstring
"Python" [0:2] # "Py"
"Python"[2:] # "thon"

. w

,.[Einfache Schleifen mit for]—

N-mal wiederholen

for _ in range(5):
print("Hallo")
Hallo"

Gibt 5x "
aus

Durch Zahlenbereich iterieren
for i in range(1, 6): # 1, 2, 3,
4, 5
print (i)

Variablen

r{ Variablen deklarieren]—

Variable erstellen und Wert
zuweisen

name = "Max"

alter = 25

pi = 3.14159

ist_student = True

Mehrere Zuweisungen
a, b, c=1, 2, 3

,{ Eingabe und Ausgabe }———————————a

Eingabe vom Benutzer
name = input("Gib deinen Namen ein

n)

Umwandlung in Zahl

alter = int(input("Gib dein Alter
ein: "))

gewicht = float(input("Gewicht in
kg: "))

Ausgabe mit print()

print("Hallo", name)

print("Du bist", alter, "Jahre alt
n)

Formatierte Ausgabe
print(f"Hallo {name}, du bist {
alter} Jahre alt")

F[Wert verandern }

Neuen Wert zuweisen
zahl = 10
zahl = 20 # zahl ist jetzt

Wert erhdhen/verringern

zahl = zahl + 5 # zahl ist
25

zahl += 5 # zahl ist
30

zahl -= 10 # zahl ist
20

zahl *= 2 # zahl ist
40

zahl //= 4 # zahl ist
10

20

jetzt
jetzt
jetzt
jetzt

jetzt

Funktionen

,-[Funktionen definieren]—

Einfache Funktion ohne Parameter
def begrissung() :
print("Hallo!")

Funktion mit Parametern
def begriisse_person(name) :
print (f"Hallo {namel}!")

Funktion mit Riickgabewert
def quadrat(zahl):
return zahl * zahl

Funktion mit mehreren Parametern
def rechteck_flache(lénge, breite)

return lénge * breite
Funktion mit Standardwert

def potenz(basis, exponent=2):
return basis ** exponent

,.[Funktionen aufrufen }

Funktion aufrufen
begriissung () #
Hallo!

Mit Parameter
begriisse_person("Lea") #
Hallo Lea!

Riickgabewert verwenden

ergebnis = quadrat(5) #
ergebnis = 25

print (ergebnis)

Mehrere Parameter
flache = rechteck_fléache(4, 5)
20

Mit Standardwert
potenz(3) # 9 (32)
potenz (2, 3) # 8 (22)

#

EETEN

(¥1-10-9202)

Verzweigungen und Bedingungen

F[Vergleichsoperatoren }

Gleichheit
a ==Db # Ist a gleich b7

Ungleichheit

a !=Db # Ist a ungleich b?

Grosser/Kleiner

a>b # Ist a grosser als b?

a <b # Ist a kleiner als b?

a > b # Ist a grosser oder
gleich b?

a <=b # Ist a kleiner oder
gleich b?

\

,-[Logische Operatoren }

UND: Beide Bedingungen miissen
wahr sein

if alter >= 18 and
hat_fiihrerschein:
print ("Darf Auto fahren")

ODER: Mindestens eine der
Bedingungen muss wahr sein

if hat_mitgliedskarte or ist_gast:
print("Zutritt erlaubt")

NICHT: Negiert die Bedingung
if not ist_gesperrt:
print ("Zugriff méglich")

A while-Schleife |

,-l if, elif, else l

Einfaches if
if alter >= 18:
print("Volljghrig")

if-else
if punkte >= 50:
print ("Bestanden")
else:
print("Nicht bestanden")

if-elif-else
if note ==

print ("Sehr gut")
elif note >= 5:

print ("Gut")
elif note >= 4:

print ("Geniigend")
else:

print ("Ungeniigend")

Zahler mit while

zéhler = 0

while zdhler < 5:
print(z&hler)
zédhler += 1

Abbruch mit break
while True:
eingabe = input("Weiter? (j/mn)
"
if eingabe == "n":
break

Listen

r-[Listen erstellen }

,-[Listen verarbeiten } “

Leere Liste
meine_liste = []

Liste mit Werten
zahlen = [1, 2, 3, 4, 5]

namen = ["Anna", "Ben", "Carla"]
gemischt = [1, "Hallo", True,
3.14]

,{ Auf Listen zugreifen }

Element an Position
zahlen = [10, 20, 30, 40, 50]

zahlen[0] # 10 (erstes Element)

zahlen[2] # 30 (drittes Element
)

zahlen[-1] # 50 (letztes Element
)

Teilbereich

zahlen[1:3] # [20, 30]
zahlen[:2] # [10, 20]
zahlen[3:] # [40, 50]

Element &ndern
zahlen[0] = 15 # [15, 20, 30, 40,
50]

Lange einer Liste
len(zahlen) # 5

Durch Liste iterieren
for zahl in zahlen:
print(zahl)

Mit Index iterieren

for i in range(len(zahlen)):
print (f"Position {i}: {zahlen[
ilr")

Listen-Methoden
zahlen.append (60) #
[15,20,30,40,50,60]

Wert 25 an Position 1 einfiigen
zahlen.insert (1, 25) #
[15,25,20,30,40,50,60]
letzter = zahlen.pop() # entfernt
60
zahlen.remove (30)
ersten Wert 30

entfernt

J

Algorithmen mit Listen]—,

Maximum finden
def finde_maximum(liste):
maximum = liste[0]
for zahl in liste:
if zahl > maximum:
maximum = zahl
return maximum

Summe berechnen
def summe_berechnen(liste):
summe = O
for zahl in liste:
summe += zahl
return summe

Dictionaries

,.[Dictionary erstellen }

Leeres Dictionary
mein_dict = {}

Dictionary mit Werten
person = {
Ilnamell . IlAnnall
. E
"alter": 25,
"stadt": "Zirich"

Verschachtelte Dictionaries
schiiler = {

"max": {
"alter": 16,
"note": 5.5

}’

"lisa": {
"alter": 17,
"note": 6.0

}

,.[Dictionary durchlaufen]—

alle Schliissel durchlaufen

for schluessel in person:
print(schluessel + ": " + str(
person[schluessel]))

Schliissel und Werte

for schluessel, wert in person.
items():
print (f"{schluessel}: {wert}")

nur Werte
for wert in person.values():
print (wert)

nur Schliissel
for schluessel in person.keys():
print(schluessel)

Wert abfragen
person["name"] # "Anna"
person.get('"name") # "Anna"

Wert &ndern
person["alter"] = 26

neuen Schlissel hinzufiigen
person["beruf"] = "Informatikerin"

Schliissel entfernen
del person["stadt"]

priifen, ob Schlissel existiert
if "name" in person:
print (person["name"])

,-[Auf Dictionary zugreifen]—

Mengen (Sets)

,.[Mengen (Sets) }

liste_a = ["Anna", "Ben", "Clara",
" Anna"]
liste_b = ["Ben", "David", "Eva"]

Listen zu Mengen umwandeln
set_a = set(liste_a)
set_b = set(liste_b)

Mengenoperationen

Elemente, die in mindestens in
einer der beiden Mengen sind:

vereinigung = set_a | set_b

Elemente, welche sowohl in set_a
als auch in set_b sind:
schnittmenge = set_a & set_b

Elemente, welche zwar in set_a
aber nicht auch in set_b sind:
differenz = set_a - set_b

print("Vereinigung:", vereinigung)

print ("Schnittmenge:",
schnittmenge)

print("Differenz:", differenz)

print ("Anzahl der Elemente in
set_a:", len(set_a))

(v1-

Objektorientierte
Programmierung

r-[Klassen definieren }

class Person:
Konstruktor
def __init__(self, name, alter

R
self .name = name
self.alter = alter
Methode

def vorstellen(self):
print(£"Ich bin {self.name
}, {self.alter} Jahre alt.")

Methode mit Riickgabewert
def ist_volljéhrig(self):
return self.alter >= 18

7

,-{ Objekte erstellen und verwenden F

Objekt erstellen
bob = Person("Bob", 17)
anna = Person("Anna", 25)

Methoden aufrufen

bob.vorstellen() # Ich bin Bob,
17 Jahre alt.

anna.vorstellen() # Ich bin Anna,
25 Jahre alt.

Attribute verwenden
print (bob.name) # Bob
bob.alter = 18 # Alter andern

Methode mit Riickgabewert
if anna.ist_volljéhrig():
print("Anna ist volljédhrig")

r{ Klassenattribute }

class Schiiler:
Klassenattribut (fir alle
Instanzen gleich)
schule = "Kantonsschule im Lee

anzahl = 0

def __init__(self, name,
klasse):
self .name = name
self.klasse = klasse
Schiiler.anzahl += 1

Klassenmethode

@classmethod

def get_anzahl(cls):
return cls.anzahl

\

,-l Vererbung l

class Fahrzeug:
def __init__(self, marke,
modell) :
self .marke = marke
self.modell = modell

def info(self):
return f"{self.marke} {
self.modell}"

class Auto(Fahrzeug):
def __init__(self, marke,
modell, tiiren):
super () .__init__(marke,
modell)

self.tiiren = tiiren

def info(self):

basis_info = super().info
O

return f"{basis_info} mit
{self.tiren} Tiiren"

Tabellenverzeichnis

2.1
2.2

3.1
3.2

5.1

6.1
6.2
8.1
B.1
B.2

B.3
B4

C.1

arithmetische Operationen in Python o . 11
Zusammenfassung niitzlicher turtle-Befehle o oo oL 18
héufig verwendete zusammengesetzte Operatoren L 0o e e 24
Auswahl elementarer Datentypen in Python und Beispiele 26
Logische Relationen und Schreibweise in Python 50
Beispielhafte Zeit-Tabelle fiur die bindre Suche (zum Ausfiillen), jeweils nach Zeile 9 77
Beispielhafte Zeit-Tabelle fiir die bindre Suche, jeweils nach Zeile 9 evaluiert s

Kalorienverbrauch fiir unterschiedliche Aktivitdten, pro Minute, in Abhéngigkeit des Koérpergewichts 104

Allgemeine Shortcuts oL e 125
Shortcuts fiir Code o L o o L e 125
Browser-Shortcuts oL e e e 125
Spezial-Zeichen L L e e e e e 125

Es sei die T' die ganzzahlige Anzahl der vergangenen Stunden. Dann ist T % 5 die Uhrzeit, welche

auf der Uhr abgelesen werden kann. L L L 127

135
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Abbildungsverzeichnis

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
24

3.1

4.1
4.2
4.3

5.1
5.3

6.1
6.2
6.3
7.1

7.2

C.1

PowerShell unter Windows als Administrator 6ffnen.
Meldungen dieser Art konnen Sie mit ,Ja / Yes® bestdtigen. o L.
Installation der Python-Extension in VS Code. v
Python-Programm hello_world.py in VS Code erstellen.
Python-Programm hello_world.py in VS Code ausfithren.,

Traumhaus L e e e e e e e e e
Poseidons Dreizack oL e
Stairway to Heaven oL e
Schrittweise Anndherung an einen Kreis durch ein- beziehungsweise umbeschriebene regelméssige Po-
lygone (links: 5-Ecke, mittels: 6-Ecke, rechts: 8-Ecke). L 0L

Fibonacci-Spirale L e e e

Vergleich von Schleifen mit Funktionsdefinitionen L.
Nlustration einer Funktion mit Inputs (Parametern) und Outputs (return-Wert)

Illustration einer Code-Struktur, bei welcher mehrere Funktionen zusammenarbeiten

Flussdiagrammm fiir den Code aus Beispiel 5.1 o 0oL

Bild einer Spirale, deren grosste Seitenldnge max_seite langist

Mittagessen und dazugehorige Kalorien-Informationeno 0.
Bubble-Sort-Algorithmus (erste 8 Schritte) Lo Lo
Unordentlich gepackter Koffer vs. ordentlich gepackter Koffer

Ilustration von Klassen und Instanzen in Python: Klassen (links) besitzen Eigenschaften und Metho-
den, welche fiir jede Instanz dieser Klasse (rechts) definiert und aufgerufen werden kénnen.
Illustration von Klassen und Instanzen fiir Listen in Python: Die Klasse list definiert die Struktur

und Methoden, wiahrend konkrete Listen-Objekte individuelle Inhalte besitzen.

Uhr der Vulcanians 0 e

136
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

o N 9 O w»

Literatur

[1] Joseph J. Rotman Albert Cuoco. Learning Modern Algebra: From Early Attempts to Prove
Fermat’s Last Theorem. English. 08. January 2015. Cambridge University Press, 2015. ISBN:
978-1939512017.

137
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

Glossar

BMR Base Metabolic Rate. 100-102

FPS Frames Per Second. 107

IDE Integrated Development Environment. 2
NEAT Non-Exercise Activity Thermogenesis. 103

OOP Objektorientierte Programmierung. 87

138
[git] = Branch: (None) @ 8aff860 = Release: (2026-01-14)

	Getting Started
	Installation von Python und VS Code
	Anleitung für MacOS
	Anleitung für Windows

	VS Code für Python konfigurieren (MacOS und Windows)
	Ordner / Verzeichnis für meine Programme
	Erstes Python-Programm schreiben und ausführen
	Installation von NumPy und Matplotlib

	Einführung in Python und erste Schleifen
	Einige grundlegende Befehle und Operationen
	print-Funktion und built-in Funktionen
	Python-Kommentare
	Einfache Arithmetik

	Erste Zeichnungen mit der Python-Turtle
	Schleifen

	Variablen, Datentypen & Debugging
	Variablen
	Teilen mit Rest
	Zusammengesetzte Zuweisungsoperatoren
	Arbeiten mit Text (Strings)
	Verkettung und Vervielfachung von Strings

	Datentypen
	Textinput
	Debugging
	Syntaxfehler
	Laufzeitfehler
	Semantische Fehler
	Debugging-Strategien

	Weitere Aufgaben

	Funktionen
	Eigene Funktionen in Python definieren
	Parameter
	Lebensdauer (scope) einer Variable

	Werte zurückgeben mit return
	Einzelne Funktionen
	Mehrere Funktionen

	Weitere Aufgaben

	Verzweigungen und bedingte Schleifen
	Verzweigungen mit if, elif und else
	Verzweigungen mit if
	Verzweigungen mit if und else
	Verzweigungen mit if, elif und else
	Logische Ausdrücke miteinander verbinden: and und or
	Logische Ausdrücke negieren: not

	Fussgesteuerte Schleifen mit break
	Kopfgesteuerte Schleifen mit while

	Datenstrukturen
	Listen
	Einführung in Listen
	Algorithmen
	Listen verändern

	Wörterbücher (dictionaries)
	Mengen (sets)
	Tupel
	Weitere Aufgaben

	Objektorientierte Programmierung
	Klassen
	Vordefinierte Klassen in Python
	Klassenmethoden und Attribute
	Vererbung und Polymorphismus
	Vererbung
	Polymorphismus

	Praktisches Beispiel: Bibliothekssystem
	Zusammenfassung

	Praktische Anwendungen
	Kalorienverbrauch
	Bilder Bearbeiten (Anwendung von Listen und Schleifen)
	Vorbereitung
	Aufgaben zur Bearbeitung von Bildern

	Game
	Einführung in Pygame
	Game-Auftrag
	Thema
	Anforderungen
	Bonus

	Bewertung
	Projektbewertung
	Gruppen-Besprechung des Spiels

	Lernziele
	Nützliche Shortcuts
	Details
	Division mit Rest
	Umrechnung von Basis a zu Basis b in Python
	Python Cheatsheet

	Literatur

