
Informatik: Programmieren
Kapitel 4: Funktionen mit return



Woran erinnert Sie dieses Bild?



Funktionen

Womit können Funktionen verglichen werden?



Funktionen

Womit können Funktionen verglichen werden? Weshalb?
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Womit können Funktionen verglichen werden? Weshalb?



Funktionierende Funktion?

def summiere(x1, x2):
summe = x1 + x2

summiere(3, 5)
print(summe)

Funktioniert dieser Code?
Wenn ja, was gibt er aus? Wenn nein, weshalb nicht?



Funktionen
Grundidee

x1 x2
ou

t1

def a1(x1, x2, ...)

3 12 36



Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)



Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)

8



Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)

Wert (8) an das Hauptprogramm zurückgeben...

...und Wert in Variable speichern, z.B. res



Aufträge

Im Skript:
I ARROW-UP Aufgaben 1.4 - 1.7 (Abgabe auf Moodle)

I PENCIL-ALT Aufgabe 1.8

Exclamation-Triangle Achtung

I File-pdf Bitte Skript zuerst von Moodle herunterladen
(Programmierkurs, Kapitel 7, „Unterlagen“)

I Codes immer zuerst in TigerJython ausprobieren, erst
dann auf Moodle!



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)
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