Kantonsschule Im Lee

Informatik: Programmieren
e Kapitel 4: Funktionen mit return



Woran erinnert Sie dieses Bild?



Funktionen

Womit konnen Funktionen verglichen werden?



Funktionen

Womit konnen Funktionen verglichen werden? Weshalb?



Funktionen

Womit kénnen Funktionen verglichen werden? Weshalb?




Funktionierende Funktion? %,

def summiere(xl, x2):
summe = x1 + x2

summiere(3, 5)
print (summe)

Funktioniert dieser Code?
Wenn ja, was gibt er aus? Wenn nein, weshalb nicht?



Funktionen
Grundidee

def al(x1l, x2, ...)

..........................................




Funktionen: Mit return

def summiere(xl, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)



Funktionen: Mit return

def summiere(xl, x2):
summe = x1 + x2
return summe

8
res = summiere(3, 5)

print(res)



Funktionen: Mit return

def summiere(xl, x2):
summe = x1 + x2
return

print(res)



Auftrage

Im Skript:

@l P Aufgaben 1.4 - 1.7 (Abgabe auf Moodle)

Bl & Aufgabe 1.8

A Achtung

» B§ Bitte Skript zuerst von Moodle herunterladen
(Programmierkurs, Kapitel 7, ,,Unterlagen")

» Codes immer zuerst in TigerJython ausprobieren, erst
dann auf Moodle!

7




Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden



Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular



Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular

» Funktionen sind Definitionen...



Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular
» Funktionen sind Definitionen...
» [ ] ...die wie ein Kochrezept funktionieren:



Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular

» Funktionen sind Definitionen...

» [ ] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)



Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular
» Funktionen sind Definitionen...

» [ ] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

» £~ Gewisse Outputs, bzw. Return-Werte konnen
zuriickgeben werden (miissen aber nicht)



Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular

» Funktionen sind Definitionen...

» [ ] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

» £~ Gewisse Outputs, bzw. Return-Werte konnen
zuriickgeben werden (miissen aber nicht)

» e ..die wie ein Koch funktionieren (Modularitat):



Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular

» Funktionen sind Definitionen...

» [ ] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

>  Gewisse Outputs, bzw. Return-Werte kénnen
zuriickgeben werden (miissen aber nicht)

» e ..die wie ein Koch funktionieren (Modularitat):
» Ein Koch schneidet alle Gemiise, ...



Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular
» Funktionen sind Definitionen...

» [ ] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

» £~ Gewisse Outputs, bzw. Return-Werte konnen
zuriickgeben werden (miissen aber nicht)

» e ..die wie ein Koch funktionieren (Modularitat):

» Ein Koch schneidet alle Gemiise, ...
» ... ein Koch grilliert die Gemdiise, ...



Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular
» Funktionen sind Definitionen...

» [ ] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

» £~ Gewisse Outputs, bzw. Return-Werte konnen
zuriickgeben werden (miissen aber nicht)

» e ..die wie ein Koch funktionieren (Modularitat):

» Ein Koch schneidet alle Gemiise, ...
» ... ein Koch grilliert die Gemdiise, ...
» .. ein Koch bereitet die Teller schén zu, ...



Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular
» Funktionen sind Definitionen...

» [ ] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

» £~ Gewisse Outputs, bzw. Return-Werte konnen
zuriickgeben werden (miissen aber nicht)

...die wie ein Koch funktionieren (Modularitat):

59

» Ein Koch schneidet alle Gemiise, ...

» ... ein Koch grilliert die Gemdiise, ...

» .. ein Koch bereitet die Teller schén zu, ...
> etc. (jeder Koch ist eine def)



