
Informatik: Programmieren
Kapitel 4: Funktionen mit return



Woran erinnert Sie dieses Bild?



Funktionen

Womit können Funktionen verglichen werden?



Funktionen

Womit können Funktionen verglichen werden? Weshalb?



Funktionen

Womit können Funktionen verglichen werden? Weshalb?



Funktionierende Funktion?

def summiere(x1, x2):
summe = x1 + x2

summiere(3, 5)
print(summe)

Funktioniert dieser Code?
Wenn ja, was gibt er aus? Wenn nein, weshalb nicht?



Funktionen
Grundidee

x1 x2
ou

t1

def a1(x1, x2, ...)

3 12 36



Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)



Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)

8



Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)

Wert (8) an das Hauptprogramm zurückgeben...

...und Wert in Variable speichern, z.B. res



Aufträge

Im Skript:
I ARROW-UP Aufgaben 1.4 - 1.7 (Abgabe auf Moodle)

I PENCIL-ALT Aufgabe 1.8

Exclamation-Triangle Achtung

I File-pdf Bitte Skript zuerst von Moodle herunterladen
(Programmierkurs, Kapitel 7, „Unterlagen“)

I Codes immer zuerst in TigerJython ausprobieren, erst
dann auf Moodle!



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular

I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...

I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):
I Ein Koch schneidet alle Gemüse, ...

I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):
I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...

I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):
I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...

I etc. (jeder Koch ist eine def)



Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):
I Ein Koch schneidet alle Gemüse, ...
I ... ein Koch grilliert die Gemüse, ...
I ... ein Koch bereitet die Teller schön zu, ...
I etc. (jeder Koch ist eine def)


