Kantonsschule Im Lee

Informatik: Programmieren
&b Kapitel 4: Funktionen mit return: Mehrere Funktionen

Funktionen: Mit return

def summiere(x1l, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)

Funktionen: Mit return

def summiere(x1l, x2):
summe = x1 + x2
return |summe

8

res = summiere(3, 5)

print(res)

Funktionen: Mlt return

def summiere(xl, x2):
summe = x1 + x2

return

res =

print(res)

Funktionen: Mlt return

def summiere(xl, x2):
summe = x1 + x2

return
DR - o pelin. 2 2 s

Funktionen: Mlt return

def summiere(x1l, x2):
summe = x1 + x2

return

print(res)

Weshalb nicht einfach print verwenden?

Funktionen

Ein einfaches Beispiel

def berechne_rabatt(preis, rabatt_pct):
rabatt = preis * (rabatt_pct / 100)

def berechne_gesamtpreis(preis, rabatt_pct, mwst):
= berechne_rabatt(preis, rabatt_pct)

mwst = rabattpreis * (mwst / 100)

- = berechne_gesamtpreis(100, 15, 7.7)

print("Der Preis nach Rabatt und Mwst ist", endpreis)

Funktionen

Ein einfaches Beispiel

def berechne_rabatt(preis, rabatt_pct):
rabatt = preis * (rabatt_pct / 100)

def berechne_gesamtpreis(preis, rabatt_pct, mwst):
= berechne_rabatt(preis, rabatt_pct)

mwst = rabattpreis * (mwst / 100)

- = berechne_gesamtpreis(100, 15, 7.7)

print("Der Preis nach Rabatt und Mwst ist", endpreis)

Funktionen

Ein einfaches Beispiel

def berechne_rabatt(preis, rabatt_pct):
rabatt = preis * (rabatt_pct / 100)

def berechne_gesamtpreis(preis, rabatt_pct, mwst):
= berechne_rabatt(preis, rabatt_pct)
mwst = rabattpreis * (mwst / 100)

return

berechne_gesamtpreis (100, 15, 7.7)
print("Der Preis nach Rabatt und Mwst ist", endpreis)

Funktionen: Beispiel 2

def berechne_rechteck_flaeche(laenge, breite):
flaeche = laenge * breite
return flaeche

def ist_grosse_flaeche(flaeche,schwellenwert):
return flaeche > schwellenwert

Berechne die Fléache
flaeche = berechne_rechteck_flaeche(15, 8)

Uberpriife, ob die Fliche grésser als 50 ist
test = ist_grosse_flaeche(flaeche, 50)
if test:
print("Fléche des Rechtecks ist grdsser als 50.")
else:
print("Flache des Rechtecks ist kleiner 50.")

Wo sind | Parameter?

Funktionen: Beispiel 2

def berechne_rechteck_flaeche (_) g

flaeche = laenge * breite
return flaeche

def ist_grosse_flaeche (_) 3

return flaeche > schwellenwert

Berechne die Flé&che
flaeche = berechne_rechteck_flaeche(-)

Uberpriife, ob die Flache grdsser als 50 ist

test = ist_grosse_flaeche(_)

if test:

print ("Flache des Rechtecks ist grésser als 50.")
else:

print ("Fliche des Rechtecks ist kleiner 50.")

Wo sind [Refin-Werte?!

Funktionen: Beispiel 2

def berechne_rechteck_flaeche (_) g

flaeche = laenge * breite

Berechne die Fléache

- = berechne_rechteck_flaeche (-)

Uberpriife, ob die Fliche grésser als 50 ist

‘test = ist_grosse_flaeche(_)

if test:

print ("Flache des Rechtecks ist grésser als 50.")
elsef:

print("Flache des Rechtecks ist kleiner 50.")

Modularitat durch Funktionen

def al(x1l, x2, ...)

..

Modularitat durch Funktionen

def al(xl, x2, ...) def a2(x1, x2, x3, ...) def a3(xl, x2, ...)

return outl

Modularitat durch Funktionen

def al(xl, x2, ...) def a2(x1, x2, x3, ...) def a3(x1l, x2, ...)

return outl

Auch dieses Bild wurde mit einer Funktion erstellt...

Modularitat durch Funktionen

e E E - W N
Analogien:

» Uhren-Fabrik

» Michelin-Kiiche

> ...alle komplexen Prozesse, die man in Unter-Prozesse
aufbrechen muss!

Anwendungen: Uberall! Daten-Analyse, Al, Business Development
etc.

Auftrag

Programmier-Skript, Kapitel 8

B & Aufgaben 8.1 - 8.2

1. Zuerst in VS Code schreiben
2. Danach in Moodle testen: ,Kapitel 6 (und 3): return®

» Fur Schnelle:
> Aufgaben 8.3 - 8.4

Al & Aufgaben 6.29, 6.30

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular

» Funktionen sind Definitionen...

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular
» Funktionen sind Definitionen...
» [] ...die wie ein Kochrezept funktionieren:

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular

» Funktionen sind Definitionen...

» [] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular
» Funktionen sind Definitionen...

» [] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

» £~ Gewisse Outputs, bzw. Return-Werte konnen
zuriickgeben werden (miissen aber nicht)

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular

» Funktionen sind Definitionen...

» [] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

> Gewisse Outputs, bzw. Return-Werte kénnen
zuriickgeben werden (miissen aber nicht)

» &b ..die wie ein Koch funktionieren (Modularitat):

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular

» Funktionen sind Definitionen...

» [] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

> Gewisse Outputs, bzw. Return-Werte kénnen
zuriickgeben werden (miissen aber nicht)

» e ..die wie ein Koch funktionieren (Modularitat):
» Ein Koch schneidet alle Gemiise...

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular
» Funktionen sind Definitionen...

» [] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

> Gewisse Outputs, bzw. Return-Werte kénnen
zuriickgeben werden (miissen aber nicht)

» e ..die wie ein Koch funktionieren (Modularitat):

» Ein Koch schneidet alle Gemiise...
» ..., ein Koch grilliert die Gemdiise...

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular
» Funktionen sind Definitionen...

» [] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

» £~ Gewisse Outputs, bzw. Return-Werte konnen
zuriickgeben werden (miissen aber nicht)

» e ..die wie ein Koch funktionieren (Modularitat):

» Ein Koch schneidet alle Gemiise...
» ..., ein Koch grilliert die Gemdiise...
» .., ein Koch bereitet die Teller schén zu...

Fazit

» /& Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

» /& Vorteil von Funktionen: Code wird modular
» Funktionen sind Definitionen...

» [] ...die wie ein Kochrezept funktionieren:

> (¥ <« g Gewisse Inputs, bzw. Parameter kdnnen akzeptiert
werden (miissen aber nicht)

» £~ Gewisse Outputs, bzw. Return-Werte konnen
zuriickgeben werden (miissen aber nicht)

...die wie ein Koch funktionieren (Modularitat):

59

» Ein Koch schneidet alle Gemiise...

» ..., ein Koch grilliert die Gemdiise...

» .., ein Koch bereitet die Teller schén zu...
> etc. (jeder Koch ist eine def)

