
Informatik: Programmieren
Kapitel 4: Funktionen mit return: Mehrere Funktionen

Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)

Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)

8

Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)

Wert (8) an das Hauptprogramm zurückgeben...

Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)

Wert (8) an das Hauptprogramm zurückgeben...

...und Wert in Variable speichern, z.B. res

Funktionen: Mit return

def summiere(x1, x2):
summe = x1 + x2
return summe

res = summiere(3, 5)

print(res)

Wert (8) an das Hauptprogramm zurückgeben...

...und Wert in Variable speichern, z.B. res

Weshalb nicht einfach print verwenden?

Funktionen
Ein einfaches Beispiel

def berechne_rabatt(preis, rabatt_pct):
rabatt = preis * (rabatt_pct / 100)
return preis - rabatt

def berechne_gesamtpreis(preis, rabatt_pct, mwst):
rabattpreis = berechne_rabatt(preis, rabatt_pct)
mwst = rabattpreis * (mwst / 100)
return rabattpreis + mwst

endpreis = berechne_gesamtpreis(100, 15, 7.7)
print("Der Preis nach Rabatt und Mwst ist", endpreis)

Funktionen
Ein einfaches Beispiel

def berechne_rabatt(preis, rabatt_pct):
rabatt = preis * (rabatt_pct / 100)
return preis - rabatt

def berechne_gesamtpreis(preis, rabatt_pct, mwst):
rabattpreis = berechne_rabatt(preis, rabatt_pct)
mwst = rabattpreis * (mwst / 100)
return rabattpreis + mwst

endpreis = berechne_gesamtpreis(100, 15, 7.7)
print("Der Preis nach Rabatt und Mwst ist", endpreis)

Wert zurückgeben (und speichern)

Funktionen
Ein einfaches Beispiel

def berechne_rabatt(preis, rabatt_pct):
rabatt = preis * (rabatt_pct / 100)
return preis - rabatt

def berechne_gesamtpreis(preis, rabatt_pct, mwst):
rabattpreis = berechne_rabatt(preis, rabatt_pct)
mwst = rabattpreis * (mwst / 100)
return rabattpreis + mwst

endpreis = berechne_gesamtpreis(100, 15, 7.7)
print("Der Preis nach Rabatt und Mwst ist", endpreis)

Wert zurückgeben (und speichern)

Wert zurückgeben (und speichern)

Funktionen: Beispiel 2

def berechne_rechteck_flaeche(laenge, breite):
flaeche = laenge * breite
return flaeche

def ist_grosse_flaeche(flaeche,schwellenwert):
return flaeche > schwellenwert

Berechne die Fläche
flaeche = berechne_rechteck_flaeche(15, 8)

Überprüfe, ob die Fläche grösser als 50 ist
test = ist_grosse_flaeche(flaeche, 50)
if test:

print("Fläche des Rechtecks ist grösser als 50.")
else:

print("Fläche des Rechtecks ist kleiner 50.")

Wo sind Parameter?

Funktionen: Beispiel 2

def berechne_rechteck_flaeche(laenge, breite):

flaeche = laenge * breite
return flaeche

def ist_grosse_flaeche(flaeche, schwellenwert):
return flaeche > schwellenwert

Berechne die Fläche
flaeche = berechne_rechteck_flaeche(15, 8)

Überprüfe, ob die Fläche grösser als 50 ist
test = ist_grosse_flaeche(flaeche, 50)
if test:

print("Fläche des Rechtecks ist grösser als 50.")
else:

print("Fläche des Rechtecks ist kleiner 50.")

Wo sind Return-Werte?

Funktionen: Beispiel 2

def berechne_rechteck_flaeche(laenge, breite):

flaeche = laenge * breite
return flaeche

def ist_grosse_flaeche(flaeche, schwellenwert):

return flaeche > schwellenwert

Berechne die Fläche
flaeche = berechne_rechteck_flaeche(15, 8)

Überprüfe, ob die Fläche grösser als 50 ist
test = ist_grosse_flaeche(flaeche, 50)
if test:

print("Fläche des Rechtecks ist grösser als 50.")
else:

print("Fläche des Rechtecks ist kleiner 50.")

Modularität durch Funktionen

x1 x2
ou

t1

def a1(x1, x2, ...)

3 12 36

Modularität durch Funktionen

x1 x2
ou

t1

def a1(x1, x2, ...)

3 12 36

x1 x2 x3
ou

t2

def a2(x1, x2, x3, ...)

x1 x2
ou

t3

def a3(x1, x2, ...)

return out1

Modularität durch Funktionen

x1 x2
ou

t1

def a1(x1, x2, ...)

3 12 36

x1 x2 x3
ou

t2

def a2(x1, x2, x3, ...)

x1 x2
ou

t3

def a3(x1, x2, ...)

return out1

Auch dieses Bild wurde mit einer Funktion erstellt...

Modularität durch Funktionen

Eingabe F1 F2 · · · Fn Ausgabe

Analogien:
I Uhren-Fabrik
I Michelin-Küche
I ...alle komplexen Prozesse, die man in Unter-Prozesse

aufbrechen muss!
Anwendungen: Überall! Daten-Analyse, AI, Business Development
etc.

Auftrag
Programmier-Skript, Kapitel 8

I PENCIL-ALT Aufgaben 8.1 - 8.2
1. Zuerst in VS Code schreiben
2. Danach in Moodle testen: „Kapitel 6 (und 3): return“

I Für Schnelle:
I PENCIL-ALT Aufgaben 8.3 - 8.4

I PENCIL-ALT Aufgaben 6.29, 6.30

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse...
I ..., ein Koch grilliert die Gemüse...
I ..., ein Koch bereitet die Teller schön zu...
I etc. (jeder Koch ist eine def)

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular

I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse...
I ..., ein Koch grilliert die Gemüse...
I ..., ein Koch bereitet die Teller schön zu...
I etc. (jeder Koch ist eine def)

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...

I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse...
I ..., ein Koch grilliert die Gemüse...
I ..., ein Koch bereitet die Teller schön zu...
I etc. (jeder Koch ist eine def)

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse...
I ..., ein Koch grilliert die Gemüse...
I ..., ein Koch bereitet die Teller schön zu...
I etc. (jeder Koch ist eine def)

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse...
I ..., ein Koch grilliert die Gemüse...
I ..., ein Koch bereitet die Teller schön zu...
I etc. (jeder Koch ist eine def)

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse...
I ..., ein Koch grilliert die Gemüse...
I ..., ein Koch bereitet die Teller schön zu...
I etc. (jeder Koch ist eine def)

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):

I Ein Koch schneidet alle Gemüse...
I ..., ein Koch grilliert die Gemüse...
I ..., ein Koch bereitet die Teller schön zu...
I etc. (jeder Koch ist eine def)

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):
I Ein Koch schneidet alle Gemüse...

I ..., ein Koch grilliert die Gemüse...
I ..., ein Koch bereitet die Teller schön zu...
I etc. (jeder Koch ist eine def)

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):
I Ein Koch schneidet alle Gemüse...
I ..., ein Koch grilliert die Gemüse...

I ..., ein Koch bereitet die Teller schön zu...
I etc. (jeder Koch ist eine def)

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):
I Ein Koch schneidet alle Gemüse...
I ..., ein Koch grilliert die Gemüse...
I ..., ein Koch bereitet die Teller schön zu...

I etc. (jeder Koch ist eine def)

Fazit

I Vorteil von return-Werten: man kann nun das Resultat
einer Funktion in einer Variable speichern und
weiterverwenden

I Vorteil von Funktionen: Code wird modular
I Funktionen sind Definitionen...
I ...die wie ein Kochrezept funktionieren:

I Gewisse Inputs, bzw. Parameter können akzeptiert
werden (müssen aber nicht)

I Gewisse Outputs, bzw. Return-Werte können
zurückgeben werden (müssen aber nicht)

I ...die wie ein Koch funktionieren (Modularität):
I Ein Koch schneidet alle Gemüse...
I ..., ein Koch grilliert die Gemüse...
I ..., ein Koch bereitet die Teller schön zu...
I etc. (jeder Koch ist eine def)

